
Benchmarking the Memory Hierarchy of
Modern GPUs

Xinxin Mei, Kaiyong Zhao, Chengjian Liu, and Xiaowen Chu

Department of Computer Science, Hong Kong Baptist University
{xxmei,kyzhao,cscjliu,chxw}@comp.hkbu.edu.hk

Abstract. Memory access efficiency is a key factor for fully exploiting
the computational power of Graphics Processing Units (GPUs). Howev-
er, many details of the GPU memory hierarchy are not released by the
vendors. We propose a novel fine-grained benchmarking approach and
apply it on two popular GPUs, namely Fermi and Kepler, to expose the
previously unknown characteristics of their memory hierarchies. Specif-
ically, we investigate the structures of different cache systems, such as
data cache, texture cache, and the translation lookaside buffer (TLB).
We also investigate the impact of bank conflict on shared memory ac-
cess latency. Our benchmarking results offer a better understanding on
the mysterious GPU memory hierarchy, which can help in the software
optimization and the modelling of GPU architectures. Our source code
and experimental results are publicly available.

1 Introduction

GPUs have become popular parallel computing accelerators; but their further
performance enhancement is limited by the sophisticated memory system [1–6].
In order to reduce the default memory access consumption, developers usually
utilize some specially designed memory spaces empirically [3–5]. It is necessary
to have a clear and comprehensive documentation on the memory hierarchy.
Despite the need, many details of memory access mechanism are not released by
the manufacturers. To learn the undisclosed characteristics through third-party
benchmarks becomes compelling.

Some researchers benchmarked the memory system of earlier GPU architec-
tures [7–10]. They studied the memory latencies and revealed cache/translation
lookaside buffer (TLB) structures. According to reports from vendor, recent gen-
erations of GPUs, such as Fermi, Kepler and Maxwell show significant improve-
ment on memory access efficiency [11–16]. The memory hierarchies are different
from those of earlier generations. To the best of our knowledge, a state-of-art
work remains vacant.

In this paper, we explore the memory hierarchies of modern GPUs: Fermi
and Kepler. We design a series of benchmarks to investigate their structures. Our
experimental results confirm the superiority of recent architectures in memory
access efficiency. Our contributions are summarized as follows:



Table 1. Comparison of NVIDIA Tesla, Fermi and Kepler GPUs

Generation Tesla Fermi Kepler
Device GeForce GTX 280 GeForce GTX 560 Ti GeForce GTX 780

Compute Capacity 1.3 2.1 3.5

Shared Memory
size: 16 KB size: 16/48 KB size: 16/32/48 KB
bank No: 16 bank No: 32 bank No: 32
bank width: 4 byte bank width: 4 byte bank width: 4/8 byte

Global Memory
non-cached cached in L1&L2

cached in L2 or read-only
data cache

L1 cache size: 64 KB sub-
tract shared memory size;
L2 cache size: 512 KB

L1 cache size: 64 KB sub-
tract shared memory size;
L2 cache size: 1536 KB

size: 1024 MB size: 1024 MB size: 3071 MB
Texture Memory per-TPC texture units per-SM texture units per-SM texture units

1. We develop a novel fine-grained P-chase benchmark to expose GPU cache
and TLB features.

2. Based on the benchmark, we find a number of unconventional designs not
disclosed by previous literatures, such as the special replacement policy of Fermi
L1 data cache, 2D spacial locality optimized set-associative mapping of texture
L1 cache and the unequal L2 TLB sets.

3. Our source code and experimental results are publicly available.1

The remainder of this paper is organized as follows. Section 2 introduces some
background knowledge of GPU memory hierarchy. Section 3 presents our fine-
grained benchmark design. Section 4 discusses the microarchitecture of various
memory spaces of Fermi and Kepler. We conclude our work in Section 5.

2 Background: Modern GPU Memory Hierarchy

In the popular GPU programming model, CUDA (compute unified device archi-
tecture), there are six memory spaces, namely, register, shared memory, constant
memory, texture memory, local memory and global memory. Their functions are
described in [14–18]. In this paper, we limit our scope to the discussion of three
common but still mysterious ones: shared memory, global memory and texture
memory. Specifically, we aim at disclosing the impact of bank conflict on shared
memory access latency, and the cache mechanism and latency of global/texture
memory.

In Table 1, we compare the memory characteristics of the Tesla GPU dis-
cussed in [8, 9] and our two targeting GPU platforms. The compute capacity is
used by NVIDIA to distinguish the generations. The Fermi devices are of com-
pute capacity 2.x, and the Kepler devices are of 3.x. The two GPU cards we use,
MSI N560GTX-Ti Hawk (repack of GeForce GTX 560 Ti) and GIGABYTE
GeForce GTX 780 (repack of GeForce GTX 780), are of compute capacity 2.1
and 3.5 respectively. As we can find in Table 1, the most distinctive difference
is the global memory. On Tesla devices, the global memory access is non-cached
while on Fermi devices, it is cached in both L1 and L2 data cache. Kepler has
L1 data cache; but it is designed for local memory accesses rather than global
memory accesses. Besides L2 data cache, Kepler global memory accesses can
be cached in read-only data cache for compute capacity 3.5 or above. It is also

1 http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html



L2 Cache

ALU * 192

DPU * 64

SFU * 32

Tex Units * 16

Shared Memory/

L1 Data Cache

Read-Only Data Cache

DRAM

Stream Multiprocessor (SM) * 12

DRAM DRAM...

Fig. 1. Block Diagram of GeForce
GTX 780

1-2

Set 1 Set 2 Set 3

1-2

7-8

3-4

9-10

5-6

11-12

34

Set Word

Memory address =

Data:

2-Way Set-Associative Cache

2 1 0

Way 1:

Way 2:

The organization of traditional 3-set set-associative cache 

(in word order): assume the cache size is 48 bytes, i.e. 12 

words, and each cache line contains 2 words. 
3-4

5-6

7-8

9-10

11-12

13-14

15-16

17-18

19-20

21-22

23-24

Fig. 2. Traditional Set-Associative Cache

notable that modern GPUs have larger shared memory spaces and more shared
memory banks. Tesla shared memory size is fixed as 16 KB. On Fermi and Ke-
pler devices, shared memory and L1 data cache share a total of 64 KB memory
space. The texture memory is cached in all generations. Tesla texture units are
shared by three streaming multiprocessors (SMs), namely a thread processing
cluster (TPC). However, Fermi and Kepler texture units are per-SM.

As shown in Fig. 1, the shared memory, L1 data cache and the read-only data
cache are on-chip, i.e., they are within SMs. L2 cache and DRAMs are off-chip.
The L2 cache is accessed by all the SMs, and a GPU board has several DRAM
chips.

For ease of reference, we also review some fundamentals of cache systems.
The cache backs up a piece of main memory on-chip to offer very instant memory
accesses. Due to the performance-cost tradeoff, the cache sizes are limited. Fig.
2 shows the structure of a traditional set-associative cache. Data is loaded from
main memory to cache at the granularity of a cache line. Memory addressing
decides the location in the cache of a particular copy of main memory. For set-
associative cache, each line in the main memory is mapped into a fixed cache set
and can appear at any cache ways of the corresponding set. For example, in Fig.
2, word 1-2 can be in way 1 or way 2 of the first cache set. If the required data
is stored in cache, there is a cache hit, otherwise a cache miss. When the cache
is full and a cache miss occurs, some existing contents in the cache is replaced
by the required data. One popular replacement policy is least-recently used (L-
RU), which replaces the least recently accessed cache line. Modern architectures
usually have multi-level and multi-functional caches. In this paper, we discuss
the data cache and TLB (cache for virtual-to-physical memory translation page
tables). Previous cache studies all assume a cache model of equal cache sets, typ-
ical set-associative addressing and LRU replacement policy [7–10, 19, 20]. Based
on our experimental results, such model is sometimes incorrect for GPU cache
systems.

3 Methodology

3.1 Shared Memory Bank Conflict: Stride Memory Access

GPU shared memory is divided into banks. Successive words are allocated to
successive banks. If some threads belonging to the same warp access memory
spaces in the same bank, bank conflict occurs.



for ( i =0; i <= i t e r a t i o n s ; i++ ) {
data=threadIdx . x∗ s t r i d e ;
i f ( i ==1) sum = 0 ; //omit co ld miss
s t a r t t i m e = c lock ( ) ;
repeat64 ( data=sdata [ data ] ; ) ; //64 times of s t r i d e access
end time = c lock ( ) ;
sum += ( end time − s t a r t t i m e ) ;

}

Listing 1. Shared Memory Stride Access

To study the impact of bank conflict on shared memory access latency, we
utilize the stride memory access introduced in [15]. We launch a warp of threads
on GPU. Listing 1 is the kernel code of our shared memory benchmark. We
multiply the thread id with an integer, called stride, to get a shared memory
address. We do 64 times of such memory accesses and record the total time
consumption. This consumption is actually the summation of 63 times of shared
memory access and 64 times of clock() overhead. We then calculate the aver-
age memory latency of each memory access. If a bank conflict occurs, average
memory latency is much longer.

3.2 Cache Structure: Fine-grained Benchmark

The P-chase benchmark is the most classical method to explore cache memory
hierarchy [7–10, 19, 20]. Its core idea is to traverse an array A by executing j =
A[j ] with some stride. The array elements are initialized with the indices of the
next memory access. We measure the time consumption of a great number of such
memory accesses and calculate the average consumption of each access. Listing
2 and Listing 3 give the P-chase kernel and the array initialization respectively.
The memory access pattern can be inferred from the average memory access
latency. The smallest memory latency indicates cache hit and bigger latencies
indicate cache misses.

For simplicity, we define the notations for cache and P-chase parameters in
Table 2. Note that we access GPU memory k times but only N/s array elements
are accessed (k >> N/s). Memory access pattern is decided by the combination
of N and s [19].

Saavedra et al. varied both N and s in one experiment to study CPU memory
hierarchy [19, 20]. Volkov et al. applied the same method on a G80 GPU [7]. Wong
et al. developed the footprint experiment: fixing s and varying N , to study the
multi-level caches one by one of a Tesla GPU [8, 9]. Recently, Meltzer et al. used
both Saavedra’s and Wong’s footprint experiment to investigate Fermi L1 and L2
data cache structure [10]. They utilized Saavedra’s method to get an overall idea
and then analyzed each cache structure with footprint experiment. Experimental
results based on the two methods coincided with each other perfectly in [10].
However, we got different results of cache line size of texture L1 cache when we
applied the two methods. What happened?

The problem is caused by the usage of total or average time consumption.
It indicates the existence of cache miss, but little information on the miss per-
centage or the causes of cache miss. In order to get all the information, we need



to know the full memory access process. Motivated by the above, we design a
fine-grained benchmark utilizing GPU shared memory to display the latency of
every memory access.

s t a r t t i m e = c lock ( ) ;
for ( i t =0; i t<i t e r a t i o n s ; i t ++){

j=A[ j ] ;
}

end time=c lock ( ) ;
//average memory la tency

tva lue=(end time−s t a r t t i m e ) /
i t e r a t i o n ;

Listing 2. P-chase Kernel

for ( i =0; i<a r r a y s i z e ; i++){
A[ i ]=( i+s t r i d e )%a r r a y s i z e ;
}

Listing 3. Array Initialization

g l o b a l void KernelFunction ( . . . ) {
// dec lare shared memory space

s h a r e d unsigned int s t v a l u e [ ] ;
s h a r e d unsigned int s i ndex [ ] ;

for ( i t =0; i t<i t e r a t i o n s ; i t ++) {
s t a r t t i m e=c lock ( ) ;
j=my array [ j ] ;

// s tore the element index
s i ndex [ i t ]= j ;
end time=c lock ( ) ;

// s tore the access la tency
s t v a l u e [ i t ]= end time−s t a r t t i m e ;
}

}

Listing 4. Fine-grained P-chase Kernel

Listing 4 gives the kernel code of our fine-grained benchmark. We launch
one thread on GPU devices each time. By repeatedly executing j = my array [j ],
the thread visits the array elements whose indices are multiples of s. For ease
of analysis, we also record the visited array indices. We time each procedure of
reading the array element and storing the index into the shared memory. Because
the CUDA compiler automatically omit meaningless data readings, we need to
write the shared memory with the updated index, namely the index of the next
element rather than of the current one [15]. In addition, for operations of calling
clock() and writing shared memory are synchronous, to get convincible memory
latency, we need to imbed writing shared memory in the timing. Although this
brings extra measurement error, the error is relatively small compared with the
memory latency and does not affect the disclosure of memory structures.

Specifically, we apply our benchmark with strategies below to get the cache
characteristics. N and s are calculated on every word (i.e., the length of an
unsigned integer) basis.

(1) Determine C: s = 1. We initialize N with a small value and increase it
gradually until cache misses appear. C equals the maximum N where all memory
accesses fit in the cache.

(2) Determine b: s = 1. We begin with N = C + 1 and increase N gradually
again. When N < C + b + 1, only memory accesses to the first cache set are
missed. If N = C + b + 1, memory accesses to the second cache set are also
missed. Based on the increase of missed cache lines, we can find b.

(3) Determine a: s = b. We start with N = C and increase N at the granu-
larity of b. The cache miss patterns are decided by N , as shown in Fig. 3. Every
increment of N causes cache misses of a new cache set. When N > C + (a− 1)b,
all cache sets are missed. We can get a from cache miss patterns accordingly.
The cache associativity, i.e., number of cache ways, equals C/(ab).

(4) Determine cache replacement policy. In our fine-grained benchmark, we
set k > N/s so that we traverse the array multiple times. Because the array
elements are accessed in order, if the cache replacement policy is LRU, then the



Table 2. Notations for Cache and P-chase Pa-
rameters

Notation Description Notation Description
C cache size N array size
b cache line size s stride size
a No. of cache sets k iterations

Array size: N

C C+b C+2b C+ab

1st cache set 
misses

1st - 2nd cache 
sets misses

1st – ath cache 
sets misses

C
ac

h
e 

m
is

se
s

Fig. 3. Cache Miss Patterns of Various
N

memory access process should be periodic. For example, given a cache shown in
Fig. 2, N = 13 and s = 1, the memory access pattern is repeated every 13 data
loadings: whenever we visit the ith array element, it is fixed as a cache miss/hit.
If the memory access process is aperiodic, then the replacement policy cannot
be LRU. Under this circumstance, we set N = C + b, s = b, and follow the full
memory access process with a considerable k. All cache misses belong to the first
cache set. Because we also have information of accessed array indices, we can
find which cache line is replaced of every cache miss. Based on this method, we
get the particular Fermi L1 data cache replacement policy.

In addition, we design a special array initialization with non-uniform strides.
We are motivated to exhibit as many memory latencies as possible within one
experiment, similar with [19]. We apply this initialization on studying various
global memory latencies. We manually fill the array elements with the indices
rather than execute Listing 3.

To conclude, we propose a fine-grained benchmark that utilizes GPU shared
memory to store all memory access latencies. This benchmark enables exhaustive
study of GPU cache structures. We explore the global memory and texture mem-
ory hierarchy with our fine-grained benchmark. We also design a sophisticated
array initialization to exhibit various memory latencies within one experiment.

Experimental platform: the CPU is Intel CoreTM i7-3820 @3.60 GHz with
PCI-e 3.0. Our operating system is a 64-bit CentOS release 6.4. CUDA run-
time/driver version is 5.5. We use CUDA compiler driver NVCC, with options
-arch=sm 21 and -arch=sm 35 to compile all our files on Fermi and Kepler
devices respectively.

4 Experimental Results

4.1 Shared Memory

GPU shared memory is on-chip and non-cached. In many CUDA applications,
researchers utilize shared memory to speed up memory accesses [3–5]. However,
based on our experimental results, the shared memory access can be slower than
global memory access if there are considerable bank conflicts. In this section, we
investigate the impact of bank conflict on shared memory access latency.

Fig. 4 illustrates a 2-way bank conflict caused by stride memory access on
Fermi architecture. The bank width is 4-byte. E.g., word 0 and word 32 are
mapped into the same bank. If the stride is 2, thread 0 and thread 16 will
visit word 0 and word 32 respectively, causing a bank conflict. The way of bank
conflict equals the greatest common divisor of stride and 32. There is no bank
conflict for odd strides.



width: 4-byte threadIdx.x

... ... ... ... ...
Bank0

0

32

Bank1

1

33

Bank2

2

34

Bank30

30

62

Bank31

31

63

0

16

1

17

15

31

Fig. 4. Fermi Shared Memory Banks

0 2 4 8 16 32
0

300

600

900

1,200

Stride / #-Way Bank Conflict

L
a
te

n
c
y

(c
lo

ck
c
y
c
le

s)

Fig. 5. Latency of Fermi Bank Conflict

In Fig. 5, we plot the average shared memory latency of Fermi. If stride is
0, i.e., the data is broadcasted [15], memory latency is about 50 cycles. Memory
latency increases to 88 cycles for 2-way bank conflict, and 1210 cycles for 32-way
bank conflict. The increment indicates that memory loads of different spaces in
the same bank are executed sequentially. GPU kernel efficiency could be seriously
degraded when there are considerable bank conflicts.

Kepler shared memory outperforms Fermi in terms of avoiding bank conflicts
[18]. Kepler improves shared memory access efficiency by introducing the 8-byte
wide bank. The bank width can be configured by calling cudaDeviceSetShared-
MemConfig() [15]. Fig. 6 gives a comparison of memory mapping between the
two modes: 4-byte and 8-byte. We use 32-bit data so that each bank row contains
two words. In 8-byte mode, 64 successive integers are mapped into 32 succes-
sive banks. In 4-byte mode, 32 successive integers are mapped into 32 successive
banks. Different from Fermi, bank conflict is only caused by two or more threads
accessing different bank rows.

Fig. 7 shows the Kepler shared memory latency with even strides of both
4-byte and 8-byte modes. When stride is 2, there is no bank conflict for either
4-byte or 8-byte mode, whereas there is 2-way bank conflict on Fermi. When
stride is 4, there is 2-way bank conflict, half as Fermi. When stride is 6, there is
2-way bank conflict for 4-byte mode but no bank conflict for 8-byte mode. We
illustrate this situation in Fig. 6. For 4-byte mode, half of the shared memory



0

64

8 byte

128

1

65

129

2

66

130

3

67

131

4

68

132

5

69

133

6

70

134

7

71

135

8

72

136

9

73

137

62

126

190

63

127

191

Kepler shared memory: 8-byte mode, stride = 6

0

64

4 byte

128

32

96

160

1

65

129

33

97

161

2

66

130

34

98

162

3

67

131

35

99

163

4

68

132

36

100

164

31

95

159

63

127

191

Kepler shared memory: 4-byte mode, stride = 6

0

16

thread ID

11

27

6

22

0

11

1

12

22

21

Fig. 6. Kepler Shared Memory Access: 4-Byte Bank v.s. 8-Byte Bank (Stride=6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

50

100

150

200

250

300

350

400

450

500

stride

La
te

nc
y 

(c
lo

ck
 c

yc
le

s)

 

4−byte mode
8−byte mode

Fig. 7. Latency of Kepler Shared Memory: 4-Byte Mode v.s. 8-Byte Mode

banks are visited. Thread i and thread i+ 16 are accessing separate rows of the
same bank (i = 0, ..., 15). For 8-byte mode, 32 threads visit 32 banks without
conflict. Similarly, 8-byte mode is superior to 4-byte mode for other even strides
whose number is not a power of two.

In summary, Kepler can provide higher shared memory access efficiency by
the following two ways. First, compared with Fermi, 4-byte mode Kepler shared
memory can halve the chance of bank conflict. Second, 8-byte mode further
reduces bank conflict.

4.2 Global Memory

The CUDA term, global memory, includes physical memory spaces of DRAM, L1
and L2 cache. Previous studies show that there are two levels of TLB: L1 TLB
and L2 TLB to support GPU virtual memory addressing [7–9]. In this section, we



first exhibit memory latencies of various access patterns. We visit global memory
spaces with non-uniform strides to collect as many access patterns as possible
within one experiment. We then focus on the architectures of micro units, such
as L1 data cache and TLB.

Table 3. Global Memory Access Latencies of Various Patterns

Pattern 1 2 3 4 5 6
Kepler 230 236 289 371 734 1000

Fermi: L1 enabled 116 404 488 655 1259 –
Fermi: L1 disabled 371 398 482 639 1245 –

Pattern 1 2 3 4 5 6
Data cache hit hit hit miss miss miss

L1 TLB hit miss miss hit miss miss
L2 TLB – hit miss – miss miss

Global Memory Latency We collect global memory latencies of six access
patterns in Table 3. Fermi global memory accesses are cached in both L1 and L2
data cache. The L1 data cache can be manually disabled by applying compiler
option -Xptxas -dlcm=cg. We measure the memory latencies with Fermi L1 data
cache both enabled and disabled, as listed in the last two rows of left side table.

Note that Kepler gets a unique memory access pattern (pattern 6 in Table
3) of page table context switching. We find that when a kernel is launched on
Kepler, only memory page entries of 512 MB are activated. If the thread visits a
page entry that is inactivated, the hardware needs a rather long time to switch
among the page tables. This is so-called page table “miss” in [10].

View from Table 3, on Fermi devices, if the data is cached in L1, the L1 TLB
miss penalty is 288 cycles. If data is cached in L2, the L1 TLB miss penalty is 27
cycles. Because the latter penalty is much smaller, we infer that physical memory
places of L1 TLB and L2 data cache are close. Similarly, physical memory places
of L1 TLB and L2 TLB are also close, which means that L1/L2 TLB and L2
data cache are off-chip shared by all SMs.

We can also find that unless the L1 data cache is hit, caching in L1 does not
really save time. For four out of five patterns, enabling L1 data cache is about 6
or 15 clock cycles slower than disabling it.

Another interesting finding is that unless Fermi L1 data cache is hit, Kepler is
about 1.5-2 times faster than Fermi although it does not utilize L1 data cache.
Kepler has much smaller L2 data cache memory latency, L2 data cache miss
penalty and L1/L2 TLB miss penalty. It confirms the superiority of Kepler in
terms of memory access efficiency.

Fermi L1 Data Cache We list the characteristics of Fermi L1 data cache and
some other common caches in Table 4. Fermi cache can be either 16 KB or 48
KB, and we only report the 16 KB case in this paper due to limited space.
According to [10], cache associativity is 6 if it is configured as 48 KB .

One distinctive feature of Fermi L1 cache is that its replacement policy is not
LRU, because the memory access process is aperiodic. We apply our fine-grained
benchmark on arrays varying from 16 KB to 24 KB to study the replacement
policy. Fig. 8 gives the L1 cache structure based on our experimental results. L1
cache has 128 cache lines mapped into way 1-4. Of all 32 sets, one cache way
has triple the chance to be replaced than other three ways. It is updated every



Table 4. Common GPU Cache Characteristics

Parameters
Fermi L1 data

cache
Fermi/Kepler L1

TLB
Fermi/Kepler L2

TLB
Fermi/Kepler

texture L1 cache
N 16 KB 32 MB 130 MB 12 KB
b 128 byte 2 MB 2 MB 32 byte
a 32 1 7 4

LRU no yes yes yes

Way 
1

Lin
e 1

 – 3
2

Way 
2

Lin
e 3

3
 – 6

4

Way 
3

Lin
e 6

5
 – 9

6

Way 
4

Lin
e 9

7
 - 1

2
8

32 sets

Fig. 8. Fermi L1 Cache Mapping

16 18 20

0

50

100

Array size (KB): stride = 128 byte

C
a
ch

e
m

is
s

ra
te

(%
)

non-LRU cache

typical cache

Fig. 9. Miss Rate of Non-LRU Cache

Set 1

Set 2

17 entries

8 entries

Set 3 8 entries

Set 4 8 entries

Set 5 8 entries

Set 6 8 entries

Set 7 8 entries

7 sets

Fig. 10. Kepler/Fermi L2 TLB Struc-
ture

130 132 134 136 138 140 142 144

0

50

100

Array size (MB): stride = 2 MB

C
a
ch

e
m

is
s

ra
te

(%
)

unequal sets

equal sets

Fig. 11. Miss Rate of Unequal-Set Cache

two cache misses. In our experiment, way 2 is replaced most frequently. The
replacement probabilities of the four cache ways are 1

6 ,
1
2 ,

1
6 ,

1
6 respectively.

Fig. 9 shows the effect of the non-LRU replacement policy. The y-axis label,
cache miss rate, is obtained from dividing the missed cache lines by the total
cache lines. For the traditional cache, the maximum cache miss rate should be
100% [9, 19] yet the non-LRU Fermi cache has a maximum miss rate of 50%
based on our experimental result.

Fermi/Kepler TLBs Based on our experimental results, Fermi and Kepler
have the same TLB structure: L1 TLB is 16-way fully-associative and L2 TLB
is set-associative with 65 ways. The L2 TLB has unequal cache sets as shown in
Fig. 10.

We plot the L2 TLB miss rate in Fig. 11. For the traditional cache, the miss
rate increases linearly while the measured miss rate increases piecewise linearly:
N = 132 MB causes 17 missed entries at once and varying N from 134 MB to
144 MB with s = 2 MB causes 8 more missed entries each time. Thus the big
set has 17 entries, while the other six sets have 8 entries.



4.3 Texture Memory

Texture memory is read-only and cached. Fermi/Kepler texture memory also
has two levels of cache. Here we discuss texture L1 cache only.

Table 5. Texture Memory Access Latency

Device
Texture cache Global cache

L1 hit L1 miss, L2 hit L1 hit L1 miss, L2 hit
Fermi 240 470 116 404
Kepler 110 220 – 230

Texture L1 Cache We bind an unsigned integer array to linear texture, and
fetch it with tex1Dfetch(). We measure the texture memory latency of both
Fermi and Kepler as listed in Table 5. The Fermi texture L1 cache hit/miss
consumption is about 240/470 clock cycles and Kepler texture L1 cache hit/miss
consumption is about 110/220 clock cycles. The latter one is about two times
faster.

In Table 5, we also find that Fermi texture L1 cache access is much slower than
global L1 data cache access. In contrast, Kepler texture memory management is
of low cost.

In addition, our experimental results suggest a special set-associative ad-
dressing as shown in Fig. 12. The 12 KB cache can store up to 384 cache lines.
Each line contains 8 integers/words. 32 successive words/128 successive bytes
are mapped into successive cache sets. The 7-8th bits of memory address de-
fine the cache set, while in traditional cache design, the 5-6th bits define the
cache set. Each cache set contains 96 cache lines. The replacement policy is L-
RU. This mapping is optimized for 2D spatial locality [14]. Threads of the same
warp should visit close memory addresses to achieve best performance, otherwise
there would be more cache misses.

5 Conclusions

In this paper, we have explored many unexposed features of memory system of
Fermi and Kepler GPUs. Our fine-grained benchmark on global memory and
texture memory revealed some untraditional designs used to be ignored. We also
explained the advantage of Kepler’s shared memory over Fermi. We consider our
work inspiring for both GPU application optimization and performance model-
ing. However, our work still has two limitations. First, we restrict ourselves to
single thread or single warp memory access. The memory latency could be much
different due to the multi-warp scheduling. Second, due to our preliminary ex-
perimental results on L2 cache investigation, the L2 cache design is even more
complicated. Our fine-grained benchmark is incapable of L2 cache study due to
the limited shared memory size. We leave these two aspects for our future study.

Acknowledgement

This research work is partially supported by Hong Kong GRF grant HKBU
210412 and FRG grant FRG2/13-14/052.



1-8

9-16

17-24

25-32

33-40

41-48

129-136

3065-3072

Set 1 Set 2 Set 3

1-8

9-16

17-24

25-32

129-136

33-40

41-48

49-56

57-64

2969-2976

65-72

Set 4

97-104

3001-3008 3033-3040 3065-3072

89-96 121-128

4-05678

Set Word

Memory address =

Data:

4-Set Texture L1 Cache:

96 lines

384 lines

Fig. 12. Fermi & Kepler Texture L1 Cache Optimized Set-Associative Mapping

References

1. Li, Q., Zhong, C., Zhao, K., Mei, X., Chu, X.: Implementation and analysis of AES
encryption on GPU. In: High Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on. (June 2012) 843–848

2. Chu, X., Zhao, K.: Practical random linear network coding on GPUs. In: GPU
Solutions to Multi-scale Problems in Science and Engineering. Springer (2013)
115–130

3. Li, Y., Zhao, K., Chu, X., Liu, J.: Speeding up K-Means algorithm by GPUs.
Journal of Computer and System Sciences 79(2) (2013) 216–229

4. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, ACM (2009) 79–84

5. Zhao, K., Chu, X.: G-BLASTN: accelerating nucleotide alignment by graphics
processors. Bioinformatics (2014)

6. Mei, X., Yung, L.S., Zhao, K., Chu, X.: A measurement study of GPU DVFS on
energy conservation. In: Proceedings of the Workshop on Power-Aware Computing
and Systems. Number 10, ACM (2013)

7. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. Number 31,
IEEE Press (2008)

8. Papadopoulou, M., Sadooghi-Alvandi, M., Wong, H.: Micro-benchmarking the
GT200 GPU. Computer Group, ECE, University of Toronto, Tech. Rep (2009)

9. Wong, H., Papadopoulou, M.M., Sadooghi-Alvandi, M., Moshovos, A.: Demystify-
ing GPU microarchitecture through microbenchmarking. In: Performance Analysis
of Systems & Software (ISPASS), 2010 IEEE International Symposium on, IEEE
(2010) 235–246

10. Meltzer, R., Zeng, C., Cecka, C.: Micro-benchmarking the C2070. In: GPU Tech-
nology Conference. (2013)



11. NVIDIA Corporation: Fermi Whitepaper. (2009)
12. NVIDIA Corporation: Kepler GK110 Whitepaper. (2012)
13. NVIDIA Corporation: Tuning CUDA Applications for Kepler. (2013)
14. NVIDIA Corporation: CUDA C Best Practices Guide - v6.0. (2014)
15. NVIDIA Corporation: CUDA C Programming Guide - v6.0. (2014)
16. NVIDIA Corporation: Tuning CUDA Applications for Maxwell. (2014)
17. Micikevicius, P.: Local Memory and Register Spilling. NVIDIA Corporation. (2011)
18. Micikevicius, P.: GPU performance analysis and optimization. In: GPU Technology

Conference. (2012)
19. Saavedra, R.H.: CPU Performance Evaluation and Execution Time Prediction

Using Narrow Spectrum Benchmarking. PhD thesis, EECS Department, University
of California, Berkeley (Feb 1992)

20. Saavedra, R.H., Smith, A.J.: Measuring cache and TLB performance and their
effect on benchmark runtimes. Computers, IEEE Transactions on 44(10) (1995)
1223–1235


