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Abstract—The coronavirus disease 2019 (COVID-19) pandemic
has caused an unprecedented health crisis for the global. Digital
contact tracing, as a transmission intervention measure, has
shown its effectiveness on pandemic control. Despite intensive
research on digital contact tracing, existing solutions can hardly
meet users’ requirements on privacy and convenience. In this
paper, we propose BU-Trace, a novel mobile system for privacy-
preserving intelligent contact tracing based on QR code and
NFC technologies. First, a user study is conducted to investigate
and quantify the user acceptance of a mobile contact tracing
system. Second, a decentralized system is proposed to enable
contact tracing while protecting user privacy. Third, an intelligent
behavior detection algorithm is designed to ease the use of
our system. We implement BU-Trace and conduct extensive
experiments in several real-world scenarios. The experimental
results show that BU-Trace achieves a privacy-preserving and
intelligent mobile system for contact tracing without requesting
location or other privacy-related permissions.
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I. INTRODUCTION

The eruption of the COVID-19 pandemic has drastically
reconstructed the normality across the globe. Tracing and
quarantine of close contacts is an important and effective non-
pharmaceutical intervention (NPI) for reducing the transmis-
sion of COVID-19 [1]. A recent study shows that the COVID-
19 pandemic can be stopped if 60% of the close contacts can
be immediately identified, in particular combined with other
preventive measures such as social distancing [2]. However,
traditional manual contact tracing is inefficient because it is
limited by a person’s ability to recall all the close contacts
since infection and the time it takes to reach these contacts.
Thus, in a world coexisting with the infectious coronavirus,
an effective and secure digital contact tracing system is much
desired. With such a system, identified close contacts could
be provided with early quarantine, diagnosis, and treatment to
track and curb the spread of the virus.

There are several challenges in building an effective dig-
ital contact tracing system. First, user privacy protection,
especially during contact data collection and processing, is
known to have a significant impact on the uptake of such
a system [3], [4]. Thus, assuring user privacy should be the
very first requirement for digital contact tracing. Most existing
contact tracing systems [5], [6], [7], [8], [9] are designed with
a centralized model, where personal data is uploaded to a
central server for contact matching. However, in such systems,

user privacy could be compromised and system security is
not guaranteed. Based on the collected personal data (e.g.,
identities, locations, etc.), the server might be able to infer
knowledge pertaining to users’ interests. Moreover, the server
is a valuable target for malicious attackers, which may result
in serious data breach and leakage.

Second, to fully eliminate concerns about user privacy,
contact tracing should be conducted without collecting user lo-
cation data during normal operations. Even better, the contact
tracing mobile app should be neither accessing any restricted
data nor performing any restricted action that requires users’
location permissions. However, most prior solutions either
need to access location data such as GPS and e-payment
transaction records [5], [6], [7] or leverage Bluetooth for
decentralized contract tracing [10], [11], [12], [13], [14]. As
Bluetooth can be used to gather information about the location
of a user, the use of Bluetooth must explicitly request the
location permission on both Android and iOS platforms, which
could affect users’ willingness to install the mobile app and
participate in contact tracing.

Third, making the contact tracing system intelligent is
crucial to enhance user experience. For example, when a user
leaves a venue, a check-out reminder would be automatically
displayed on the screen to remind the recording of the leaving
event. Moreover, to preserve data privacy and reduce privacy
worries, the intelligent algorithm should be localized and
realized merely based on data obtained from the local mobile
phone. In other words, advanced sensor data such as step
counts cannot be utilized because access to them requires
privacy-related permissions, namely the Activity Recognition
permission on Android and the Health Data or Motion Data
permission on iOS.

Contributions. To meet these challenges, we propose BU-
Trace, a mobile contact tracing system based on QR code
and Near-Field Communication (NFC) technologies, which si-
multaneously offers user privacy protection and system intelli-
gence. Concretely, we make the following major contributions
in this paper.
• We conduct a user study to investigate and quantify

the user acceptance of a mobile contact tracing system.
Specifically, anonymous participants are provided with
qualitative virtual focus group interviews and quantitative
surveys. Based on the tailored investigation, we find
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TABLE I: Comparison with Global Contact Tracing Apps.

Country/Region Approach Tracing
Technology

Privacy
Protection

No Location
Permission Needed

System
Intelligence

Mainland China (Health
Code System)

Centralized QR Code, GSM,
e-Payment

Transactions

7 7 7

South Korea (Contact
Tracing System)

Centralized GPS 7 7 7

India (Aarogya Setu) Centralized GPS, Bluetooth 7 7 7

Singapore (SafeEntry) Centralized QR Code 7 3 7

Singapore (TraceTogether) Centralized Bluetooth 7 7 7

Australia (CovidSafe) Decentralized Bluetooth 3 7 7
Canada (COVID Shield)
German (Corona-Warn)

Switzerland (SwissCovid)
Google and Apple (ENS)

BU-Trace Decentralized QR Code, NFC 3 3 3

two most desired properties of the system, i.e., privacy
and convenience. With these user study results, we are
inspired and motivated to develop a privacy-preserving
intelligent contact tracing system.

• We propose a decentralized system to enable contact
tracing while protecting user privacy. Compared with
other systems, BU-Trace leverages QR code and NFC
technologies to record users’ venue check-in events,
which requires no location access permission at all. More-
over, the system enables participants to confidentially
conduct contact matching on local mobile phones based
on historical venue check-in records, i.e., no local data is
ever exposed during the record matching phase.

• We design an intelligent behavior detection algorithm to
ease the use of the system. Our algorithm is (i) automatic,
automatically recognizing the user’s movement behavior
to display a check-out reminder for recording the leaving
event; and (ii) localized, leveraging the mobile phone’s
internal accelerator data for local behavior detection.

• We demonstrate the practicability of BU-Trace by fully
implementing a system using readily-available infrastruc-
tural primitives. We also evaluate the effectiveness of our
proposed intelligent behavior detection algorithm within
two practical scenarios and hundreds of collected data
records. The experimental results show that BU-Trace
achieves a privacy-preserving and intelligent mobile sys-
tem for contact tracing without requesting location or
other privacy-related permissions.

II. RELATED WORK

A. Contact Tracing

Existing approaches for contact tracing utilize various tech-
nologies, such as GPS, GSM, Bluetooth, and QR code, to
decide a person’s absolute and relative location with others.
The current contact tracing systems can be classified into
centralized and decentralized models based on their archi-

tectures. In centralized systems, users are required to upload
their data to a central server, which is usually supported by
the government authority [5], [6], [7], [8], [9]. The server will
maintain the user data and perform data matching. However,
user privacy cannot be guaranteed since the user data will be
collected and uploaded to the central server. Oppositely, in
decentralized systems, all data will be collected and stored
in users’ local devices. Existing decentralized systems mainly
utilize the Bluetooth technology to determine the relative
distances among users [10], [11], [12], [13], [14]. However, all
these approaches need to request location access permission
from the mobile operation system. Concerning user privacy,
users may not be willing to install and use these mobile apps,
which makes the contact tracing ineffective. For example,
TraceTogether [9], the Bluetooth-based contact tracing app
from Singapore, has only 1.4M active users (25% of popula-
tion) after more than five months of release [15]. For a more
comprehensive comparison, we summarize and contrast the
features of various contact tracing systems in Table I. Different
from existing systems, our proposed BU-Trace in this paper
leverages QR code and NFC technologies. Moreover, the
system simultaneously enables user privacy protection and
system intelligence.

B. Sensor Data Analysis

Many new types of sensors have been equipped with modern
mobile phones, which can produce abundant sensing data
about environment and human. In order to effectively analyze
the sensor data to obtain valuable information, different meth-
ods have been proposed [16], [17], [18]. Specifically, in many
human-centric intelligent applications, it is very significant to
accurately recognize various user behaviors and motions from
the sensor data. Among existing techniques, machine learning
is proven to be a promising solution for processing time
sequence data [19]. Many learning-based methods, such as
recurrent neural networks (RNN) and long short term memory



TABLE II: For positive participants (n = 13), the reasons of
stopping using the app (1 = the most disagree; 5 = the most
agree).

Mean SD 1 2 3 4 5
If privacy leakage is
found

4.23 1.09 0 1 3 1 8

If the app is not con-
venient to use

3.85 0.80 0 0 5 5 3

(LSTM), have been developed and applied in real-world sce-
narios successfully [20], [21]. Santos et al. proposed a method
to model human motions from inertial sensor data [22]. Shoaib
et al. implemented a smartphone-based data fusion technique
for detecting various physical activities [23]. Bedogni et al.
came up with a solution to detect users’ motion types in
realtime by using sensor data collected from smartphones [24].
In addition, some studies have attempted to leverage sensor
data to detect users’ transportation modes. Fang et al. proposed
a new method to classify different transportation modes by
analyzing sensor data from multiple sources [25]. In order to
effectively recognize various human activities, most existing
approaches need to collect abundant sensor data and conduct
computation on a powerful server. In contrast, considering user
privacy, our approach will conduct sensor data analysis on
local mobile phones.

III. USER STUDY

With the voluntary principle, in order for BU-Trace to be
widely adopted in communities to break the virus transmission
chain, the developed approach should be able to effectively
satisfy users’ demands and concerns. Therefore, we start by
understanding users’ perception and acceptance of a mobile
contact tracing system.

A. Method

A user study involving quantitative survey and qualitative
focus group interviews were carried out in September 2020.
We recruited 20 participants (8 male, 12 female, aged 18-55
years) via the purposive sampling method. Invitation letters
for joining the study were sent to the Deans and Department
Heads within a public university in Hong Kong, asking the
Deans and Department Head to nominate three representatives
from the Faculty. The participants included 8 university stu-
dents and 12 staffs from five different Schools and Faculties,
covering a wide range of disciplines (including science, social
science, arts, and humanities).

The user study was conducted online. The participants
received a link directed to the quantitative questionnaire. After
finishing the questionnaire, they were asked to join a virtual
focus group hosted on Slack. The participants were allocated
into four different discussion channels (each channel included
four to five participants) and could share their perceptions and
concerns on a mobile contact tracing system, and discuss with
other participants in an asynchronous manner.

The user study mainly focused on examining the factors
that may make people adopt or resist the mobile contact

TABLE III: For negative participants (n = 7) subjects, the
reasons of changing the idea of the app usage (1 = the most
disagree; 5 = the most agree).

Mean SD 1 2 3 4 5
If privacy is com-
pletely protected

3.14 0.38 0 0 6 1 0

If the app is conve-
nient to use

3.29 0.76 0 1 3 3 0

tracing application. A total of 18 filter questions were settled,
which meant different questions were displayed to the partic-
ipants based on their answer of the current question. For all
the quantitative questions, five-point Likert scales were used
where 1 meant the most disagreement, and 5 meant the most
agreement.

B. Results

To comprehensively investigate the user acceptance of a
mobile contact tracing system, participants were divided into
two groups based on whether they hold a positive or negative
view towards the system. Concretely, 13 out of 20 participants
(called positive participants) indicated that they would like to
install and use such a mobile app for getting virus risk alerts,
while others (called negative participants) indicated that they
would not.

For positive participants, they were first requested to input
the most important factors that make them use such a mobile
app. Among their answers, the factors frequently mentioned
include getting alerts, receiving latest news about the pan-
demic, and self-protection. In addition, participants were asked
to input factors that might make them stop using the app. Pri-
vacy concern and inconvenience were two mentioned factors.
Furthermore, quantitative questions were provided to evaluate
the reasons of stopping using the app. As shown in Table
II, both privacy and convenience are crucial factors (mean
values are larger than 3). Based on the survey for positive
participants, we find that interviewees hope to receive timely
infection risk alerts from the app, but they have certain privacy
and inconvenience concerns.

For negative participants, they were first requested to grade
two scenarios where they might change the idea of using
such an app. As shown in Table III, privacy concern and
inconvenience related conditions both received higher grades.
After that, participants were invited to input some suggestions
to increase the adoption rate of the app. Participants express
very strong and salient opinions on the privacy issue and
data usage. Some incentive mechanisms were also proposed,
such as free drink or food coupons, free face masks, and free
COVID-19 testing once getting a virus risk alert. Based on
this survey, we find that privacy concern and inconvenience
are also important concerns for negative interviewees.

Finally, for all participants, we provided some quantitative
questions about options of permitting the app to check in and
check out a venue, e.g., the canteen. For the check-in scenario,
users can 1) scan a QR code every time when entering a venue
(this option does not require the permission to access the user’s



TABLE IV: Evaluation on options of permitting the app to check in and check out a venue, for all the participants (n = 20)
(1 = the most disagree; 5 = the most agree).

Mean SD 1 2 3 4 5

Check In Scan the QR code every time (no location access) 3.55 1.15 1 3 4 8 4
Bluetooth for auto check-in (need location access) 2.95 1.23 2 6 6 3 3

Check Out
Scan the QR code every time (no location access) 3.15 1.23 2 4 6 5 3
Bluetooth for auto check-in (need location access) 3.05 1.32 3 4 5 5 3
AI for auto check-out (no location access) 3.40 1.39 3 2 4 6 5

location) or 2) use Bluetooth for auto check-in (this option
requires authorizing the location permission, though the app
does not collect the user’s location data). As shown in Table
IV, users preferred to scan a QR code every time instead of
using Bluetooth for auto check-in. For the check-out scenario,
besides the QR code and Bluetooth options, another option was
provided, i.e., using intelligent technologies for auto check-
out (this option does not require the permission to access the
user’s location). As shown in Table IV, participants preferred
to choose intelligent technologies to estimate the duration of
the stay in a particular venue and realise the auto check-out.

Therefore, based on the tailored investigation, we find two
most desired properties of a contact tracing system, i.e.,
privacy and convenience. With these user study results, we are
inspired and motivated to develop an effective contact tracing
system.

IV. SYSTEM OVERVIEW

BU-Trace is a mobile system for privacy-preserving intel-
ligent contact tracing. The system will send an alert message
to users through a mobile app if they and an infected person
have visited the same place within a time period that gives rise
to risks of exposure. Figure 1 shows the BU-Trace system
architecture. Our system mainly consists of the following
actors: (i) patient, (ii) client, and (iii) authority. A patient is a
virus-infected person, while a client refers to an unconfirmed
person. An authority represents a government sector or an
organization, which can provide a close proximity certification
for further screening. In the following, we briefly describe
three basic modules of the system.

Data collection. BU-Trace utilizes QR code and NFC tech-
nologies to record users’ venue check-in information. When
users scan the system’s QR code or NFC tag before entering
a venue, the venue ID is collected. Then, the collected venue
ID, as well as the time of the visit, are saved on users’ mobile
phones. Different from existing systems, our app does not
request the location permission from the mobile platforms
but only a camera usage notification (no location access) will
be displayed on the screen during the first attempt, which
safeguards user privacy from the system level.

Privacy-preserving contact tracing. The contact tracing
module is designed as a decentralized approach to protect user
privacy. In this module, confirmed patients need to upload their
venue visit records within the past 14 days to the authority.
Specifically, to enhance the security, the hashed value of
a venue ID instead of the plain text is transmitted to the
authority. The authority will further broadcast the encrypted

Patients

① Local Collection 
& Storage ④ Report

  Cases
③ Encrypted

 IDs

Authority

② Encrypted 
IDs

Clients

... ...

VenueIDs

Fig. 1: The system architecture of BU-Trace

venue records uploaded by confirmed patients to other clients.
Upon receiving the encrypted venue records, all clients apply
the same hash function to their own venue records and conduct
a cross-check on local mobile phones. If a match is found, the
app will display an alert notification and the client could report
his/her case to the authority for further follow-up. In the whole
process, both data storage and data computation are conducted
in a decentralized manner to protect user privacy and make the
system more scalable.

Intelligent behavior detection. We design an automatic
check-out function based on an intelligent behavior detection
module, which improves not only user experience but also
time accuracy of check-out records. To avoid the location
permission request and alleviate users’ privacy concerns, the
intelligent behavior detection module utilizes only inertial sen-
sor data from the mobile phone’s accelerometer. We design a
simple yet effective sliding window-based detection algorithm
to detect the behavior transition for auto check-out reminders.
Overall, the data analysis procedure is strictly restrained in
local mobile phones based on sensor data that does not request
users’ location or any other privacy-related permissions. We
give more details about the intelligent behavior detection
method in the next section.

V. INTELLIGENT BEHAVIOR DETECTION

For effective contact tracing, both venue check-in and
check-out events should be precisely recorded. BU-Trace
enables users to record the check-in event via scanning the
QR code or tapping the NFC tag when they enter a venue.
However, our pilot experiments showed that users could easily
forget to record the check-out event when they left the venue.
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Therefore, we design an intelligent behavior detection method
to facilitate the recording of check-out events.

A. Accelerometer-Based Behavior Detection Framework

In this section, we introduce our accelerometer-based in-
telligent behavior detection framework for auto check-out
reminders in BU-Trace, as illustrated in Figure 2.

Our hypothesis is that there is usually a behavior transition
when a user is leaving a venue (e.g., taxi, train, restaurant,
theatre, etc.). BU-Trace monitors the accelerometer data in
three orthotropic directions (i.e., X, Y, and Z axes, denoted
as Ax, Ay, and Az, respectively) and intelligently infers
the check-out event by detecting such a transition. To reduce
the power consumption of BU-Trace, we design a simple
yet effective sliding window-based algorithm to detect the
behavior transition. As shown in Figure 3, the original sensor
data is separated into different windows (denoted by dashed
line) with a window width l. For each window, taking the taxi
ride as an example, it will be classified into two categories
with a behavior detection algorithm, i.e., on-taxi window and
off-taxi window. As such, the inferred check-out time will be
located in the first recognized off-taxi window (highlighted by
red dashed rectangle).

B. Behavior Detection Algorithm

Algorithm 1 describes the procedure of the behavior de-
tection algorithm. The designed algorithm mainly consists
of two behavior detection methods (i.e., volatility detection
and cyclicity detection) in terms of (i) walking volatility and
(ii) walking cyclicity, respectively. Then, the final behavior
detection result is jointly decided by the two methods.

Volatility detection. In the volatility detection method, we
aim to identify the change of behavior patterns caused by the

check-out action. In many practical scenarios, the check-out
action happens in a short period and is followed by continuous
walking for a period of time (e.g., getting off a taxi, or leaving
a restaurant). These actions will cause a distinct change of
sensor readings in the time domain. With this intuition, we
propose a simplified polynomial logistic regression algorithm
to classify a time window. First, we use powered average to
intensify the features (line 8 in Algorithm 1). For a specific
window, the powered average P̄ of accelerometer readings in
the three axes is calculated as

P̄ =
1

l

l∑
i=1

[(Ai
x)k + (Ai

y)k + (Ai
z)k], (1)

where l is the window width, k is an even integer hyperpa-
rameter, Ai

x (resp. Ai
y , Ai

z) is the ith accelerometer reading
in the window along the X (resp. Y, Z) axis. Specifically, k
is constrained to be even in order to generate positive values.
Through extensive experiments, we find that k = 4 is a good
choice in practice. Then, we identify the check-out window if
P̄ > La (line 12 in Algorithm 1), where La is a threshold
learnt from our collected training data.

Cyclicity detection. In the cyclicity detection method, we
aim to recognize the unique and inherent behavior pattern of
human walking. Based on our observation, the accelerometer
readings of human walking usually present cyclicity. Thus,
leveraging this property, we can recognize the walking win-
dows for the check-out event through accurately capturing
the periodic crests. With this intuition, we first strengthen
the cyclicity features through the kth power of the original
accelerometer data. Then, in order to reduce the influence of
unintentional shakes, we further use wavelet transform [26]
to filter the false crests in the frequency domain (line 10 in
Algorithm 1). Specifically, for the accelerometer readings in
each window Awin, we process the kth power sequence Ak

win

through

WA =
1√
|a|

∑
i

Ak
win(i)Ψ

(
t− b

a

)
, (2)

where a = am0 (a0 > 1, m ∈ Z) is the scale parameter, b =
n ·am0 ·b0 (b0 > 0, n ∈ Z) is the translation parameter, Ψ (t) is
the analyzing wavelet with a conjugate operation. Moreover,
based on the output WA, we detect the wave crests and count
the amount Pc with the constraints of peak value pv and peak
interval pi (line 11 in Algorithm 1). Finally, a threshold Lp

for the amount of crests, which is learnt from training data, is
used to classify the window. If Pc > Lp, this window will be
categorized as the walking window (line 12 in Algorithm 1).

Joint detection. To maximize the detection accuracy of
check-out events, we combine the volatility detection and
cyclicity detection methods. For each window of accelerometer
readings, it will be finally inferred as a check-out window,
only if both methods indicate the positive. Thus, in the
sliding window framework, a boolean sequence S will be
derived for each accelerometer data record, for example,
S = {. . . , in, in, in, out, out, out, . . .}. Our joint detection



Algorithm 1: Sliding Window-based Joint Detection
Algorithm

Input: Accerelometer readings A containing Ax, Ay ,
Az;

Sliding window width l;
Powered average threshold La;
Crest amount threshold Lp;
Continuous check-out window amount threshold Lw;
Output: A boolean value T indicating whether the

user has checked out
1 while there is input A do
2 Window count Cw = 0;
3 Empty window Awin = {};
4 while |Awin| < l do
5 Awin.append(A);
6 end
7 for Ai in Awin do
8 Calculate Powered Average P̄ +=

(Ai
x)

k+(Ai
y)

k+(Ai
z)

k

|Awin| ;
9 end

10 WA ← WaveletTransform(Ak
win);

11 Pc ← FindCrests(WA);
12 if P̄ > La && Pc > Lp then
13 Cw+ = 1 ;
14 else
15 Cw = 0 ;
16 if Cw > Lw then
17 return True;
18 end

algorithm then uses a variable Cw to record the number of
continuous check-out windows in the boolean sequence S
(line 13 in Algorithm 1). Finally, once Cw > Lw (line 16
in Algorithm 1), where Lw is an indicator threshold to infer
the check-out event, a check-out reminder will be triggered in
the mobile app.

Using the training data collected in the real-world, we
employ grid searches to automatically find the optimal values
of the hyper-parameters and thresholds used in the behavior
detection algorithm.

VI. IMPLEMENTATION AND EVALUATION

A. Experimental Setup

We implement the BU-Trace mobile app with Java and
the back-end system with PHP. Four models of smartphones
are used for evaluation, including Samsung A715F, Samsung
A2070, Xiaomi 10 Lite 5G, and OPPO Reno4 Pro 5G. We con-
duct experiments in two representative real-world scenarios,
i.e., taxi and canteen. Specifically, 156 and 110 accelerometer
data records are collected in the taxi scenario and the canteen
scenario, respectively. The data record length ranges from 1
minute 48 seconds to 39 minutes 40 seconds. The sampling
frequency of the accelerometer sensor is set at 50Hz.

To evaluate our proposed intelligent behavior detection algo-
rithm, we use the collected datasets to measure its effectiveness
with regard to different parameters, compare the performance
with other methods, and test the power computation of our
mobile app. Specifically, three Long Short-Term Memory
(LSTM) [21] based methods are also implemented to compare
the detection accuracy. In addition, we present the real-world
deployment of our system.

B. Performance Evaluation

Effectiveness evaluation. In this experiment, we evaluate
the effectiveness of the intelligent behavior detection module
on the whole taxi dataset and canteen dataset, respectively.
We evaluate the effectiveness from two aspects, i.e., detection
accuracy (ACC) and false positive rate (FPR). The ACC is
the proportion of correct inferences for both check-out events
and non-check-out events among the total number of records
in the dataset. The FPR is calculated as the ratio between the
number of check-out events wrongly detected in the in-venue
windows (false positives) and the total number of records in
the dataset.

Three algorithmic parameters, including window width l,
# continuous windows Lw, and powered average threshold La,
are evaluated on their influences on the detection performance.
In the experiment, we first use grid searches to find the optimal
values of these three parameters as their initial settings. Then,
we measure the effectiveness by varying the setting of each
parameter separately. Additionally, we compare our proposed
joint detection method with only volatility detection (VD) and
only cyclicity detection (CD).

Figure 4 (a) shows the ACC and FPR results of the three
methods with regard to window width l under the taxi sce-
nario. In general, under various settings of l, our method can
always have a higher ACC and a lower FPR, demonstrating
the effectiveness of combining the volatility detection and
cyclicity detection. If l is set at 2s (the optimal value), our
joint detection method can achieve the best performance with
85.26% ACC and 9.62% FPR. As a contrast, both the other
two methods have worse performance with 78.21% ACC &
16.67% FPR and 15.38% ACC & 0.00% FPR, respectively.
From the results, we can also find the accuracy of the joint
method will be decreased with a longer window width. This is
mainly because the volatility feature becomes indiscriminative
with a longer period in the taxi scenario.

Figure 4 (b) plots the ACC and FPR results with regard
to # continuous windows Lw. As can be seen, the best
performance is achieved when three continuous check-out
windows are used to detect check-out events. Due to the
inherent volatility of taxi riding, more false positive detection
cases emerge with fewer windows, resulting in a lower ACC
and a higher FPR. Moreover, benefited from the cyclicity
detection, more efficient detection could be achieved with
2s× 3 windows = 6s, as compared to the case of only using
volatility detection with 4s× 3 windows = 12s.

Figure 4 (c) shows the ACC and FPR results with regard
to the powered average threshold La used in the volatility
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Fig. 4: Effectiveness evaluation of intelligent behavior detection algorithms.

detection. When the threshold is set at 120, the highest accu-
racy and a relatively low FPR can be achieved. The experiment
results also show that our joint detection method could perform
better than the volatility detection through jointly considering
the cyclicity of human walking patterns.

Next, we evaluate the performance for the canteen scenario.
The experiment results are shown in Figure 4 (d), (e), and (f).
The optimal values for window width l, # continuous windows
Lw, and powered average threshold La are 4s, 6, and 20,
respectively. With these parameters, our method can achieve
the best performance (i.e., 81.82% ACC and 6.36% FPR) on
the whole canteen dataset. In contrast, the optimal volatility
detection only achieves 77.27% ACC and 4.55% FPR with 8s
window width and eight continuous windows. These results
suggest that in the canteen scenario, check-out events could
be detected more efficiently with our joint method. This is
because users’ movement in canteens tends to be gentle and
the behavior pattern change during the check-out is distinct
for detection. Thus, benefiting from the cyclicity detection, the
detection time of our method can be reduced compared with
the volatility detection. In summary, the experiment results
in both scenarios show that our joint method can always
achieve higher effectiveness compared with the other non-joint
methods.

Comparison with LSTM. To further evaluate our proposed
algorithm, we compare the detection performance with three
methods based on LSTM [21]. For the LSTM based methods,
we randomly extract two thirds of the whole dataset as the
training set, and the rest as the testing set. After training
the parameters on the training set, we measure the algorithm
performance on the testing set with the generated optimal
parameter values. Each accelerometer data record is divided by

a sliding window with 5s width and further fed into the model.
Three methods are tested, including detecting the status change
window (SC), detecting the current status of the window (CS),
and detecting the current status of the window with balanced
data (CSB). In the SC method, windows are categorized into
two classes, i.e., the status change window and the status
unchange window. The CS method aims at recognizing two
types of windows in terms of the current status, including
the in-venue window and the out-venue window. For the
CSB method, considering the unbalanced sample quantity, we
manually synthesize data records by concatenating more out-
venue windows and then classify windows as the CS method.

As shown in Table V, our proposed approach outperforms
the LSTM-based methods in both scenarios. The joint de-
tection method achieves a higher check-out event detection
accuracy on the testing dataset, because many discriminative
features are successfully extracted and recognized. In contrast,
the LSTM-based methods cannot learn effective features from
the unbalanced dataset or the size-limited dataset, resulting
in overfitting or lower accuracy. Specifically, for the SC and
CS methods, the quantity of status change windows and
out-venue windows in the dataset are both very limited. In
our experiments, the overfitting is observed, where the two
methods cannot converge and only output the dominant class
(i.e., the status unchange window and the in-venue window, re-
spectively). Thus, for the two methods, the check-out accuracy
is only 0.00% for both of our datasets (without synthesized
data records).

Power consumption. In this experiment, we test the power
consumption of our system on four models of mobile phones.
Four testing cases are considered, i.e., (i) BU-Trace without in-
telligent detection (screen off), (ii) complete BU-Trace (screen



TABLE V: Overall performance comparison between different methods on both taxi and canteen dataset.

Status Change Current Status Current Status Ours(Balanced)

Taxi
Classification Accuracy Overfitting Overfitting 57.17% -
Classification Loss 0.0609 0.1559 0.1623 -
Check-out Accuracy 0.00% 0.00% 40.61% 90.91%

Canteen
Classification Accuracy Overfitting Overfitting 87.99% -
Classification Loss 0.0364 0.0579 0.0722 -
Check-out Accuracy 0.00% 0.00% 71.43% 81.14%
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Fig. 5: Power consumption of BU-Trace

off), (iii) BU-Trace without intelligent detection (screen on),
and (iv) complete BU-Trace (screen on). For each case, we
conduct the test for one hour to obtain more stable results.
Figure 5 shows the results. When the phones are in screen-
off status, the intelligent auto check-out module consumes
4.32mAh of extra power in one hour on average. In other
words, the average extra power consumed by the intelligence
module is 10.96% of the consumed power by working phones
without this module. When the phones are in screen-on status,
the power consumed by screen display dominates. The average
power consumed by the intelligence module is 3.08% of that
by working phones without this module. All these results
indicate that our BU-Trace system does not consume much
power during user behaviour monitoring.

System deployment. Our developed BU-Trace system has
been deployed on the university campus since September
2020 [27]. The mobile app is available for download from
both Google Play (for Android users) and Apple’s App Store
(for iOS users). Students and staff can install and use the
mobile app without enabling the location permission. Figure
6(a) shows the main interface of the BU-Trace app. Figure
6(b) shows some photos of the tailored QR code and NFC tag
at a venue entrance. To effectively realize contact tracing, over
200 QR codes and NFC tags have been deployed at selected
venues, such as canteens, libraries, labs, and meeting rooms.
The system has been successful in tracing the contacts of
an infected student and protecting the safety of the campus
community.

REPORT MY CASE

(a) BU-Trace (b) Tailored QR code and NFC tag

Fig. 6: BU-Trace deployment

VII. CONCLUSION

In this paper, we propose BU-Trace, a mobile system for
contact tracing based on QR code and NFC technologies.
Compared with previous works, BU-Trace offers user privacy
protection and system intelligence without requesting location
or other privacy-related permissions. To realize this system, a
user study is first conducted to investigate and quantify the
user acceptance of a mobile contact tracing system. Then,
a decentralized system is proposed to enable contact tracing
while protecting user privacy. Finally, an intelligent behavior
detection algorithm is developed to ease the use of our system.
We implement BU-Trace and conduct extensive experiments
in practical scenarios. The evaluation results demonstrate the
effectiveness of our proposed mobile system.
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