Optimizing Systems for Geolocation Data: The Works!

By: Mohamed Sarwat

@MoSarwat

Turning points for our community

- The idea of having a computing/ communication device that is turned on all the time and that you can move around with
- Localization technology (e.g., GPS signal,WiFi signal, Buetooth Signal...)

Huge Announcement on July 10th 2008

Turning Points for our Community

 Almost all apps provide some sort of location-based services

Apps Generate tons of Geospatial Data

~ 15 million rides per day

How can we run geospatial computation efficiently on such massive data?

~ 10 million rides per day

Spark back then...

Did not provide a geospatial data processing API

- Geospatial was treated as yet another attribute
- The Geospatial data was only perceived as two extra columns (X,Y)
- A programmer had to write 1000s of lines of code to implement simple geospatial operations like Spatial Join

Could not efficiently optimize geospatial queries

- No spatial proximity-aware load balancing
- No spatial indexes
- No spatial data compression techniques

Call for Action

- Jia joined the Data Systems Lab in 2015
- I explained the problem to him \bullet
- We sat down and came up with the concept of Spatial RDD
- He disappeared for a few weeks and BAM he came back with an initial prototype
- Graduating ;);) ightarrow

Scala API

Spatial SQL

ESRI ShapeFiles GeoJSON Docs Docs

GeoSimulati on API

Spark

NASA HDF/ NetCDF

PostGIS

Spatial PostgreSQL

Jia Yu, Jinxuan Wu, ,M. Sarwat, "GeoSpark: a cluster computing framework for processing large-scale spatial data" in ACM SIGSPATIAL GIS 2015

Compact In-Memory Representation For a point object, GeoSpark takes 20 bytes, Kryo serializer in Spark takes 40 l bytes, Java serializer in Spark takes 1170 bytes. On average, GeoSpark custom serializer uses 5-6 times fewer bytes then default Kryo serializer and **10+ times fewer bytes** then default Java serializer.

Support heterogenous Spatial data Types

1	2	3	4	5-12	13-20	21-28	29-36	•••	•••	•••
Object	Sub-obj	Sub-	Coord	longitud	latitude	longitud	latitude	•••	Sub-	Coord
type	num	obj1	num	е		е			obj2	num
		type							type	

Data is cached in the main memory of the cluster

Spatial Data Partitioning

- Repartition data in RDD
 - Partition by spatial proximity 0
 - Still achieve load balance
 - API: CustomPartitioner

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective and beyond." GeoInformatica (2018): 1-42.

Spatial Data Partitioning

- Each spatial partitioning operation is a wide dependency • Wide dependency will incur a data shuffle

Spatial Data Partitioning

- Spatial partitioning algorithm
 - Randomly sample the RDD
 - Build a KD-Tree/Quad-Tree/R-Tree on the sample Take the leaf nodes of the tree as the global partition file Re-partition the RDD according to the partition file

- Global index ightarrow
 - Remember the tree built for spatial ulletpartitioning?
 - Use it to index partition bounding boxes
 - Lightweight, on the master machine \bullet
 - No entries for individual records
- Local indexing \bullet
 - On each SRDD partition
 - R-Tree, Quad-Tree,...
 - Has entries for individual records
 - Operations that use the spatial index <u>requires a</u> \bullet refinement phase based on the real shapes of objects

Spatial ndexing

RDD NYC California Arizona

- DAG and data shuffle: I RDD transformations
 - Global indexing: done with the spatial data partitioning (including partition range index) ightarrowLocal indexing: Map per Partition, Narrow dependency lacksquare

Spatial Indexing

Spatial SQL API

Query Optimizer

Spatial Range

0

Scala/Java Spatial RDD API

Spatial Query Processing Layer

Spatial KNN

Spatial Join

Spatial RDD (SRDD)

Spatial Join Query

- Algorithm
 - ZipPartition
 - Local index-nested loop join
 - Local de-duplication using the reference point

Spatial Join Algorithm

- ZipPartition
 - Both SRDDs should be co-partitioned \bullet
 - Any of the SRDDs can have local index

Spatial Join Algorithm

Local index-nested loop join

- Local de-duplication using the reference point
 - Spatial partitioning introduces duplicates
 - Need to remove them without incurring data shuffle!

Spatial Join Algorithm

- Reference point
 - Query results with duplicates
 - (Pa, Pb) (Pa, Pb) (Pa, Pb) (Pa, Pb)
 - Compute the intersection of Pa and Pb
 - Take Reference Point(maxX, maxY) of intersection
 - Report (Pa, Pb) in a partition only if reference point is within the boundary of this partition

Spatial Join

Integrate With Dataframe Spatial SQL

SELECT trip.* **FROM** NYCtaxi trip, GooglePlaces place trip.NumPassengers = 1 AND place.type = 'Hospital' WHERE **ST DWITHIN**(place.loc, trip.dropoff, 10) AND

- Spatial SQL: SQL-MM3, Simple Feature Access
 - SQL-MM3: PostGIS, GeoSpark, GeoMesa...
 - ST_Contains, ST_Within
 - Simple Feature Access
 - Contains, Within
 - Compatible with each other in most cases
 - Implement these functions in \bullet Spark expression (not UDF)

- Spark expression, the way Spark writes its own functions
 - Unary, binary, ternary
 - Each AST (Abstract Syntax Tree) node is a Spark expression
 - Allow the following features
 - Code generation
 - Output data type \bullet
 - Fuse into the Catalyst ullet
 - optimizer

Integrate With Dataframe

Spark Catalyst query optimizer

Make Catalyst understand geospatial!

Integrate With Dataframe

+- *FileScan csv +- Project [st_point(XXX) AS pointshape#43] +- *FileScan csv

GeoSpark performs spatial join on .7 billion GPS data and 200 thousands polygon data in ~3 mins on 4 commodity machines

Project [st_porygoniromenverope(xxx), myporygonia) As porygonsnape#20]

All-in-one system

- Spatial RDD, Spatial SQL, Spatial DataFrame
- Distributed map visualization is included
- Welcome to use GeoSpark as a benchmark!

'GeoSpark comes close to a complete spatial analytics system. It also exhibits the best performance in most cases."

"How Good Are Modern Spatial Analytics Systems?" Varun Pandey, Andreas Kipf, Thomas Neumann, Alfons Kemper, PVLDB 2018

Google "GeoSpark ASU"

In production!

	Time	Last Month		Export CSV		
Downloads From Last Month			name		count -	percent
For org.datasyslab			geospark		2,376	29%
			geospark-parent		2,128	26%
			geospark-sql_2.3		1,529	19%
			geospark-viz		867	11%
			geospark-sql_2.2		446	5%

Scala API

Jia Yu, Jinxuan Wu, ,M. Sarwat, "A demonstration of GeoSpark: A cluster computing framework for processing big spatial data" in IEEE ICDE 2016

(2) Run the Analysis

Data Processing

(1) Retrieve subset of the ata using SQL from Database

(3) Retrieve another subset of the data

BMS

Lightweight index

- Small storage footprint
- Low maintenance overhead
- Comparable Query Performance
 - nearly as fast as the Btree, R-tree, especially for selective queries (0.1%< SF <1%)

New Indexing Scheme

- and maintenance overhead
- ightarrowselective queries but should ok for queries with medium selectivity factor

Jia Yu, M. Sarwat, "Tow Birds, One Stone: A Fast, yet Lightweight, Indexing Scheme for Modern Database Systems" in PVLDB 2016

• The index only indexes blocks not data items, which significantly reduces the storage

Queries sometimes still go to false positive blocks, which is not good for very highly

Data-Aware Block Range Index

- The IDs of the first and last pages summarized by the index entry. - Summarizes more than one physically contiguous pages to reduce the overall index size.

Yu, Jia, and Mohamed Sarwat. "Indexing the Pickup and Drop-Off Locations of NYC Taxi Trips in PostgreSQL–Lessons from the Road." In SSTD 2017

	Blo	ockID	Bucket(1,1)	Bucket(1,2)	Bucket(1,3)	
		0	1	0	0	
Attanic Ave Cliffer and Cliffe		1	0	1	0	
		2	0	1	0	
		3	0	0	1	

- Each partial histogram represents the spatial data distribution of the summarized pages.

Hippo

FAST, YET LIGHTWEIGHT, INDEXING SCHEME

Jia Yu, Raha Murafah, "M. Sarwat, "Hippo in Action: Indexing 1 Billion NYC taxi trips and Beyond" at IEEE ICDE 2017

https://github.com/DataSystemsLab/hippo-postgresql

	Our Solution	B+Tree	R-Tree
Storage	~1GB	~40 GB	~80 GB
Init.	~2700 sec	~7900 sec	~70,000 se

INDEXING OVERHEAD

Hippo achieves about 40X less storage and about 60% less initialization time than the B+Tree

PostgreSQL currently implements a similar idea

Visual Exploration Tool

(2) Run the Analysis

(1) **Retrieve** subset of the ata using SQL from Database

(3) Retrieve another subset of the data

+++++ a b | e a u°

(n) Retrieve another subset of the data

- Scalability
 - more) of geolocation data?
 - 2018], [ICDE 2019])
- Interactivity

 - Materialization and Sampling

Chalenges

• How to render a high quality gigapixel heat map or a dot map for Terabytes (or

Massively parallelize the map rendering algorithm using GeoSpark ([SSDBM]

How can a human seamlessly interact and visually explore with geospatial data

Switching Gears A Bit...

Graph Data

- Google Knowledge
 Graph
- Wikidata Knowledge
 Graph
- Semantic Web
- Social Graph

 $\bullet \quad \bullet \quad \bullet$

12% to 30% of entities in such graphs are geospatial in nature

UberEats Knowledge Graph

Panini

 S_2

R4

- Assume the following graph is stored in Neo4j
- Find Mediterrenean restaurants within the Mong Kok area
- Find Asian cosines nearby the HKBU campus

Graph Data System

- Neo4j lacksquare
- Titan

• • •

Apache TinkerTop

Two Solutions

VS

Spatial Data System

- PostGIS
- **Oracle Spatial** ullet
- GeoSpark

• • •

• Spatial DBMS

- Provides a geospatial data processing API
- Does not provide a Graph data processing API
- Can Efficient optimize geospatial predicates

• Graph DBMS

- **MATCH** {f:Asian}<-[:SubcategoryOf*1..3] -[:HasInMenu] <- {r:Restaurant} WHERE Within(r,Q) Provides a graph processing API **RETURN** r
- Provided a geospatial data processing API
- Could NOT efficiently optimize geospatial predicates

Graph DBMS & Spatial DBMS

SPINDRA

- The system stores data natively as a graph in Neo4j (the same applies to other graph database systems)
- The system takes a graph query as input from the user and then returns the graph pattern(s) or paths (s) that match the user query
- The queries can involve spatial predicates like Range, KNN or Spatial Join...

MATCH {f:Asian} <- [:SubcategoryOf*1..3] -[:HasInMenu] <- {r:Restaurant}</pre> WHERE Within (r,Q) **RETURN** r

Graph Query

Location-Aware Graph Query Processing and Optimization

Location-Aware Graph Storage and Indexing

SPINDRA

[IEEE ICDE 2019] [GeoInformatica 2019] [ACM SIGSPATIAL 2018]

Location-Aware Graph Traversal

Location-Aware Graph Traversal Operator

Spatial Properties in Graph Vertex and Edges

Graph Query

MATCH {f:Asian}<-[:SubcategoryOf*1..3]
 -[:HasInMenu]<-{r:Restaurant}
WHERE Within(r,Q)
RETURN r</pre>

Location-Aware Graph Query Processing and Optimization

Location-Aware Graph Storage and Indexing

Future Work

- Building a Comprehensive Geolocation Knowledge Graph
 - A repository for facts (and events) about (at) geospatial locations
 - Challenge: spatial data integration, spatial entity linkage/resolution 0
- A Conversational interface to Spatial Databases
 - While driving you say "Hey Google, What are good restaurants for dinner" 0
 - Challenge: Natural Language to Spatial Queries and Understanding/Refning the human intent
- Spatial Data Systems support for the Internet of Things (IoT)

The Internet of Things

 Things (non-traditional computing devices) that can send / receive data via the Internet.

- **Opportunities:**
 - Every piece of data has a geospatial location and a time stamp

 - Some of these things are mobile (e.g., Smart car) 5G will tremendously increase the scale of such data

loT - Data Management Challenges

- Heterogeneity on steroids
- A n
 - Si
 - M
 - Spauai and spacio remporal Data management
- **Privacy**?

All of that needs to work LiDAR, in real-time for data being inserted at a ether: staggering rate

Some Lessons from the Road

Myths About Geospatial Data

- Myth I: Geolocation is yet another attribute
- Myth 2: Geolocation is the most important attribute
- Myth 3:All existing data systems cannot handle Geolocation data

What To Optimize a System for?

* Usability
* Interoperability
* Modularity

Interactivity
 Scalability

Acknowledgment

PhD Students

Jia Yu

Sponsors

Yuhan Sun

Vamsi Meduri

Kanchan Chowdhury

https://www.datasyslab.net

