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Brief history of recommender system research

* 1992, Information filtering and information retrieval: two sides of
the same coin, CACM 1992.

* 1994, Grouplens: news recommendation system based on
collaborative filtering technologies. “"GrouplLens: An Open
Architecture for Collaborative Filtering of Netnews”, CSCW 1994.

* 1996, Net perceptions, Inc. was founded, which may be the first
company focus on recommender system, Amazon was their
customers.

* 1997, MovielLens: non-commercial and personalized movie
recommendations for academic research. The MovielLens data set
IS the most popular data set for recommender system research.



* 2000, SVD model was proposed to reduce the dimensionality of
user-item-rating matrix data set, “Application of Dimensionality
Reduction in Recommender System -- A Case Study”, KDD 2000.

* Before 2001, the collaborative filtering 1s the dominated
recommendation technology: user based or item based
collaborative filtering. “ltem-based collaborative
filtering recommendation algorithms™, WWW 2001.

e 2006-2009, Netflix Prize, the low rank model has been well
studied, such as matrix factorization.

* 2007, the first ACM RecSys was held in UMN.



* 2010, Rendle proposed factorization machines (FM) model for CTR
prediction.

* 2011, user centric recommender systems: more comprehensive
metrics have been studied, such as diversity, serendipity, novelty,

trust, transparency.

* A user-centric evaluation framework for recommender systems, RecSys 2011
* Recommender systems: from algorithms to user experience, UMUAI 2012.

* Since 2015, Deep learning was applied in recommender system

* Collaborative deep learning for recommender systems, KDD 2015
* DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, 1JCAI2017.

* 2017, more than 40% paper about DL in RecSys2017
* 2018, reinforcement learning are used In recommender system
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Transfer the big data Into the big value
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Overview of one Android App market

* One of the most popular Chinese Android application markets

FEEE D 30t © & = “all100% 2 T44:21

* Preloaded on all one brand’s mobile phones
* 300 million registered users, 2 million applications Yl i

> LEARN witH -~ —-

* |n each day:

Visitors XX million

Category Search

Downloads (include XXX million
updating)
Associati

Search queries XX million List on




sponsored App Ads recommendation

Most important revenue source

eCPM is the online metric

Recommendation technologies:

v
v
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Models: state-of-the-art ML models
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he technology evolution of App recommender system

« App Ads(3rdphase)

Applications . Local hot list
* Novel list + App Ads(4th phase)
: . Categorylist | Gamecenter(2riphase) - Game center(3phase) Guess you like + Game center(4fh phase)
- e pag:c.el = . Game center App Ads « App Ads(2ndphase) + Same model hot list * Query suggestion
« User Profile ~+ Push message(2dphase) - App album . Query suggestion « Next app suggestion
. Push message ° Association | .., profile (2ndphase) . Association foed
Start « Search App Ads * News feed
Y V ii i ii i i '
Models
- Parallelized
Linear . Incremental Real Low Dee
model > linear > i > i > rank '
model learning time learning
Architectures:
RecSys 1.0 > RecSys 2.0 > RecSys 3.0
Online / Offline Online / Offline / Nearline Online / Nearline
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RecSys 1.0: High dimensional sparse linear model

* Model: logistic regression

p(click|show) = Logistic(w * x)
PN

Model Feature vector

1
1+ exp(—yw' x)

{

min A ||w||2 + Zn: log (1 +exp (—yinxl. ))
i=1

P(y|x)=

Maximum
Likelihood

—

* Feature engineering

— v'Application
* ID: App ID, developer ID
* Attributes: category, tag , size , rate
* Semantic: name, description

v User
* |[D: user ID
* Phone: screen size, phone type
* User behaviors
v’ Bias
* Position, source, list ID

— v Combined features
* (history download App, current App)



2 layers-Architecture of RecSys 1.0
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Performance: LR vs. user-based collaborative filtering

* #Download / #impression 0%+
e #Download / #user 70%+



RecSys 2.0: Real time technology

* Update model in real time

v'Logistic regression based on FTRL(follow-the-regularized-
leader) optimization

v Advantages: simple, theory, one pass update, online learning

Stochastic gradient Follow-the-regularized-/eader

t
. 1
Wit1 = Wi =8¢ /S, Wiy = argmin (gm Wt g Z os|lw — w3 + A1 W”l)

z=1



* Update teature In real time (more important)
v'Update user’s instant behavior

v'Advantages: catch each user’s interests immediately
» Real example: @ Shenzhen, Mate 20, download apps such

M s fitness, car price, VOA, Honor reading

Round 1: results Round 2: Results after Model weight of Round 3: Results after Model weight of
based user’s download * current App download Shopping Appl | Shopping Appl*current
initialized state app
Housing Appl Travel Appl 1.06 Express App 0.90
Joke App Housing Appl 0.56 Joke App 0.41
Shopping App Joke App 0.18 Housing App?2 0.42
Travel Appl 0,36 Travel Appl -0.09
Car App Shopping App?2 0.35 Car App 0.54
Shopping App?2 Housing App?2 0.44 Car price App 0.31
Housing App2 Car App 0.40 Rent car App 0.48
Travel App2 Express App 0.37 Shopping App?2 0.64

Express App Car price App 0.36 Shopping App3 0.64
News App / Travel App3 0.72 /'Shopping App4 0.75



3 layers-Architecture of Recsys 2.0
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Performance: Real time vs. Dally update

eCPM 22% CTR 27%

CVR 28% Income 19%



RecSys 3.0: automatic feature conjunction

Human feature engineering ‘ Automatic feature conjunction

* Fleld-aware Factorization Machine:

« Advantages (o) = s+ 313 3 ()
v'Good at sparse and categorical data
v’ Automatic feature conjunction methods
v’ Feature space is much less than degree 2 polynomial
v'Champion model of several CTR prediction contest
Factorization Machine Field-aware Factorization Machine
O O O O o O @0 @ @ O ® OO
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Performance: FFM vs. LR

eCPM 6% CTR 12%



Evolution of deep learning for recommender system

. embeding

Google @ Google DIN Alibaba
2017 \cross 2016 2018
Red path : FM path

Huawei Noah

o @_, 2017 Black path : embedding + MLP path
Rendle 2010 Chih-JenLin  Weinan Zhang : :

Xiangnan He & Jun Xiao & Tat-
Seng Chua 2017

Huawei Noah @ Weinan Zhang ONN Huawei Noah
2018 2017
2016 29




Deep learning for recommender system

DeepFM (IJCAI2017)

FPENN (RecSys 2018)
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DeepFM

* Wide: FM automatically learns
degree 2 feature combination

* Deep: DNN learns high
dimension feature combination

* Sharing embedding: learn the
embedding by both FM and
DNN through back-propagation

* Advantages:

Table 1: comparison of deep models for CTR prediction

Pre-training | High-order | Low-order Feature
Feature Feature Engineering
ENN Yes Yes No No
PNN{1.2.3} No Yes No No
Wide & Deep No Yes Yes Yes
DeepFM No Yes Yes No

-+ Addition

Model architecture

X Inner Product

_/ Sigmoid Function

-/ Activation Function

Dense

» Embedding

Weight-1 Connection
Nomal Connection

Field m
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PIN: product-network in network

Prediction
' Hidden Q
Fully Connected Layers State
f—% FC layer
. \
Sub-net 1 Sub-net 2 Sub-net i — JK —
F1 F2 F1*F2
e N N\ _ |

Embed N

W .
| [ Embed 1 } [Embed 2} Embedding
! Layer

Table 7. Overall performance. (Left-Right: Criteo, Avazu, iPinYou, Huawei)

Model | AUC (%) LogLoss | AUC (%) LogLoss | AUC (%) LogLoss | AUC (%) LogLoss

IR 7800 05631 | 7676 03868 | 7638 0005691 | 8640  0.02648
{ Feature 1 } { Feature 2 } Feature N GBDT | 7862 05560 | 77.53 03824 | 7690 0005578 | 8645  0.02656
FM 79.09 05500 | 77.93 03805 | 77.17 0005595 | 8678  0.02633
FFM 79.80 05438 | 7831 03781 | 76.18 0005695 | 87.04  0.02626

CCPM 79.55 0.5469 78.12 0.3800 77.53 0.005640 86.92 0.02633
FNN 79.87 0.5428 78.30 0.3778 77.82 0.005573 86.83 0.02629
AFM 79.13 0.5517 78.06 0.3794 77.71 0.005562 86.89 0.02649

DeepFM 79.91 0.5423 78.36 0.3777 77.92 0.005588 87.15 0.02618

KFM 79.85 0.5427 78.40 0.3775 76.90 0.005630 87.00 0.02624
NIFM 79.80 0.5437 78.13 0.3788 77.07 0.005607 87.16 0.02620
IPNN 80.13 0.5399 78.68 0.3757 78.17 0.005549 87.27 0.02617
KPNN 80.17 0.539%4 78.71 0.3756 78.21 0.005563 87.28 0.02617
PIN 80.21 0.5390 78.72 0.3755 78.22 0.005547 | 87.30 0.02614
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Service candidates

Overview of next App suggestion e e

AL

o ©
Leftmost screen sgsse sama snms s weass
* Objective: predict which services a user will  pEmmm
use, and preload them on the top of Pl . 06 Q . o

leftmost screen D = @0 0

2 EH.'.I&-I '.I'ﬂE TR L. FMEERER
TN 3L EER

* Challenges: |

v'Local RecSys: privacy issues, works even S = ¥ @ 0 O
without network ( @ . e -

v'Small data in term of sample # and feature —— oo
dimensions ! O

v'"Need efficient methods for training and Sl el S —
prediction =2 R —

v'Cold start problem 7?51?0”%5%&%@% ;ﬁ
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Feature engineering

Context Features e Discretization:

Previous used App * Previous App: One hot encoding
Cell * Popular Apps: Multi hot encoding
Battery * Clustering:
Network * GPS: distance
GPS * WiFi+time
WiFI * Transformation:
Accelerometer v'Accelerometer: mean, variance, energy, FFT
Call/SMS log v'GPS: point of interest (POI)
Time

Light

28



Feature importance (Information gain ratio)
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Experiment: model selection

* Recruit 50 subjects with their consent

* Each subject had more than 400 services usage records in 30
consecutive days

* Collects data and generate features (see In last slide)

* Test on each user
v’ Training data set: first 34 records
v Test data set: last % records

* Model & Rules
* ML models: Navie Bayes, C4.5, KNN
* Rules: most recently usage (MRU), most frequency usage (MFU)



Accuracy

Avg. Accuracy

The number of the Best
prediction model

TopN

MRU

MFU

C4.5

User-NB

KNN-10

0
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18
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* Top 4 . NB performs best
* All the ML models have similar results
* MFU performs best above Top 4
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Architecture
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Cloud & terminal collaboration: federated meta learning

* Meta-learning i1s not just designed for few-shot learning, but more
iImportantly, It provides an approach to learn shared knowledge
within a group, e.g., smartphone users.

* Share data?
* Privacy Issues Traditional Data: sample X
|
* Share model? saming
* (Possibly) .unnecessarlly large model Federated Model: CNN, LR, NB |/ 5 «
* Share algorithm., learning
Federated Algorithm: SGD, LSTM Vv V

* Local model with local training
* Trough federated meta-learning

meta-learning

33



Example: next App suggestion

Server Train the algorithm Server: train the algorithm using SGD with test loss gradient

N
4 N

— algorithm
- == |oss gradient

v v v v

- - - - Each terminal: train the model using the algorithm with local
data

Table 6. Accuracies on the Production Dataset

—l— — — -
—f— — — -

80% Support 5% Support

Top | Top 4 Top 1 Top 4

MIXED NN-unified 76.72% | 89.13% | 66.47% | 79.88%

. 4 history next I MFEU 4292% | 81.49% | 42.18% | 12.87%

Terminals @ === MRU 70.44% | 81.43% | 70.44% | 81.43%

' ? | NB 78.18% | 92.57% | 59.16% | 72.83%

“ @ ﬂ T— (R | 100steps | 5830% | 8652% | 52.53% | 75.25%

SELF 10000 steps | 78.31% | 93.70% | 65.35% | 77.11%

\_ 1 Train the model ) Ny | 100steps | '5720% | 8837% | 49.89% | 75.26%

10000 steps | 83.79% | 94.56% | 68.87% | 77.66%

MAML + LR 47.69% | 71.60% | 46.75% | 66.26%

Federated meta-learning for recommendation. arXiv META Ei;}iﬁﬂﬁ LR géggi giggg %‘l‘ﬁ Eg;g
. . + : . " .

preprint arXiv:1802.07876. 2018 Feb 22. Meta-SGD + NN | 86.23% | 96.46% | 72.98% | 78.17%




Take away:

(1) Real time Is the industry standard technology for RecSys
* Update model: catch the trend of all users’ requirements
* Update user feature: catch the change of one user’s requirement

(2) Model selection
* Primary stages: LR Is a good choice, simple, robust and easy to debug
* AutoML: select models, features, parameters automatically

(3) Recommender system with constrains
* Privacy constrain: GDPR in Europe =»Federated learning, modeling in terminal
* Data quality constrain: data loss, noisy data =»PU learning, data cleaning
» Computing resource constrain =»Flexible automatic scaling system



(4) Data > feature > model

* Claudia Perlich: “40% of web click behaviors come from Bot, 36% of mobile phone
click behaviors came from the users’ unintentionally clicks. The model learned
from the above data can only predict the Bot's behaviors well, not the user’s.”

* Always doubt the “data quality™ presumption of guilt .
* |terate the data cleaning loop:

data
(5) Beyond accuracy

* Joe Konstan: “CTR is just click behavior, why click? Clean Monitor
What iIs the decision mechanism behind it? We need to data data

Analyze
data

answer the 2 questions?” “"Recommender system should
be end-to-end systematic research, not just algorithm”

e User centric evaluation:

Accuracy

Diversity

Trust/Explanation

Serendipity

Coverage




hank you for your listening!
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