## New Advances in Spatial Trajectory Analytics

#### Xiaofang Zhou



#### + A Personal Journey

- 1994 1999 CSIRO Spatial Information Systems
  - SIRO DBMS used widely mainly to manage land and utility information
  - Worked with Dave Abel, Beng Chin Ooi, Kian-Lee Tan and Volker Gaede
  - Main focus: developing fast spatial join algorithms, spatial data sharing platforms and GIS applications for customers

#### 1999 – now University of Queensland

- Initially supported by Queensland State Govt on moving objects: green turtles!
- Beijing taxi data made a big difference (~2008)
- Worked with many people here
- Main focus: trajectory analytics for the last 10 years



# **Trajectory Data**

...data about moving objects

#### + What is Spatial Trajectory Data

Any data that record the locations of a moving object over time in a geographical space

Simple form:

<ID,  $(p_1,t_1)$ ,  $(p_2,t_2)$  ...  $(p_n,t_n)$ > ordered by time:  $t_1 < t_2 < ... < t_n$ 

General form:

<oID, tID, (p<sub>1</sub>,t<sub>1</sub>,a<sub>1</sub>), (p<sub>2</sub>,t<sub>2</sub>,a<sub>2</sub>) ... (p<sub>n</sub>,t<sub>n</sub>,a<sub>n</sub>)>

## + Where Trajectory Data Come From?



#### + Massive Amount of GPS Data



#### + Other Types of Trajectory Data









SENSORS









#### Trajectory Data is Useful 8 Route planning POI recommendation LBS and advertisement Resource/object tracking and scheduling Intelligent transport systems Belmont Redwood East Palo Al Emergency responses Urban planning and smart cities... Portola Vallev

## + Trajectory Data is Hard to Process

Volume, velocity and variety...

- A trajectory is obtained from sampling the movement of an object
  - Some sampling strategies are used → not only data, but also models to generate data
  - Objects movement with constraints (e.g., by map) → not only data, but also environment data
  - There are many other factors which cannot be controlled → data quality issues
  - Data can be both redundant as well as sparse → compression, alignment and prediction
- It is non-trivial even to restore the original trace from a trajectory → harder to compare → much harder to use



## + Moving Objects/Trajectory Work

- Initially on foundations
  - Data representation, query languages and basic operations, indexing methods etc.
- Curiosity-driven
  - Imagine a special "novel" type of query, find a "novel" indexing method and then use "standard" methods to improve efficiency
- Not directly useful
  - Strong assumptions (not useful in practice)
  - Highly specialized indexes (cannot be implemented)
- Also active in other areas
  - Data mining, social networks, recommender systems...

#### + Our Trajectory on Trajectories

Movement and path prediction [ICDE08, VLDBJ10], trajectory clustering [VLDB08], advanced spatial gueries [SIGMOD09, SIGMOD10, VLDB17, ICDE19], most popular routes [ICDE11], probabilistic range query [EDBT11, ICDE12], materialized shortest paths [TODS12], spatial keyword search for trajectories [ICDE13,15,16, 19, TKDE19], trajectory calibration and repair [SIGMOD13, VLDBJ15, EDBT18], route and location recommendation [ICDE14, SIGKDD15, ICDE16, TOIS16, TIST18], trajectory summarization [ICDE15], routing algorithms [VLDB17, VLDBJ18, ICDE19], spatial crowdsourcing [2\*TKDE19], in-memory trajectory databases [CIKM14, SIGMOD15], privacy-preserving trajectory search [ICDE15], data sparsity [MDM18], trajectory compression [TKDE19], ML for speed prediction [JCAI18], tarjectoryObased entity resolution [ICDE19], batch query processing [ADC 19, ICDE19]...

#### + An Introduction Book

Computing with Spatial Trajectories

- Yu Zheng and Xiaofang Zhou, 2011
- Part I Foundations
  - **Trajectory Preprocessing** (W.-C. Lee, J.Krumm)
  - Trajectory Indexing and Retrieval (X. Zhou et al)
- Part II Advanced Topics
  - Uncertainty in Spatial Trajectories (G. Trajcevski)
  - Privacy of Spatial Trajectories (C.-Y. Chow, M. Mokbel)
  - **Trajectory Pattern Mining** (H. Young, K. L. Yiu, C. Jensen)
  - Activity Recognition from Trajectory Data (Y. Zhu, V. Zheng, Q. Yang)
  - Trajectory Analysis for Driving (J. Krumm)
  - Location-Based Social Networks: Users (Y. Zheng)
  - Location-Based Social Networks: Locations (Y. Zheng and X. Xie)





#### + Popular Words



#### **NEW / TRADITIONAL VENUE**

New (KDD, AAAI, IJCAI)

Traditional DB (SIGMOD, VLDB, ICDE, SIGSPATIAL, MDM, SSTD, TKDE, VLDBJ)



#### + Traditional Topics





#### + New Topics

■ Data Mining ■ Database ■ Preprocessing





## + Trajectory Data in a Company (2014)

- A car navigation service provider
- Total trajectory data: 32 TB in size, 10.9 billion matched trajectories

|                                        | Current | Daily            |
|----------------------------------------|---------|------------------|
| Company X (in-car navigation provider) | 17.6TB  | 15M trajectories |
| Company Y (map app provider)           | 14.5TB  | 5M trajectories  |
| Company Z (social network)             | 0.68TB  | 18M trajectories |

- Every day, ~40M new trajectories, ~4 billion points
- Sampling rates: 50% ~2s, 99% < 10s

#### + NavInfo DataHIVE (minedata.cn, 2018)

| Vehicle          | Infrastructure     | Environment       | People         |  |
|------------------|--------------------|-------------------|----------------|--|
| Trajectories:    | Standard maps      | Weather           | Voice and text |  |
| - taxis          | High res maps      | Events            | User comments  |  |
| - uber-like      | Services POIs      | Air quality       | Search log     |  |
| - monitored      | Culture POIs       | Water quality     | Travel log     |  |
| - commercial     | Commercial POIs    | Land & water info | Operators' OD  |  |
| - user generated | Health POIs        | DEM & EEC         | Workplace info |  |
| Sensor/OBD data  | Travel POIs        | Satellite image   |                |  |
| Perception data  | City models        | Street views      |                |  |
|                  | City 3D Models     | Roadside pictures |                |  |
|                  | Business districts | Laser point cloud |                |  |
|                  | Admin boundaries   | Road condition    |                |  |
|                  | Organization maps  | Traffic condition |                |  |
|                  |                    | Traffic incidents |                |  |



#### + A Lot of Data!

|                       | Connected Cest Supervision Forewarning Information<br>Connected Cest Supervision Veather status<br>Connected Cest Supervision Veather forecast<br>Operating car-halling track Veather forecast | Androson Only Constant |              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|
|                       | or ye weather                                                                                                                                                                                  | Total                  | Per Period   |
| Vehicle               | Track (GPS and others)                                                                                                                                                                         | 1682 T                 | 2010 G/day   |
| Dynamics              | Sensor (OBD, cameras etc)                                                                                                                                                                      | 39 T                   | 123 G/day    |
| Environment           | Weather and air/water quality                                                                                                                                                                  | 7 T                    | 32 G/day     |
| Status                | Physiognomy                                                                                                                                                                                    | 135 T                  | 528 G/day    |
|                       | Traffic                                                                                                                                                                                        | 230 T                  | 237 G/day    |
| Infrastructures       | Road                                                                                                                                                                                           |                        | 62 G/mth     |
|                       | POI                                                                                                                                                                                            | 2236 T                 | 10 G/mth     |
|                       | Building and admin boundary                                                                                                                                                                    |                        | 20 G/quarter |
| People<br>Information | Profile and behavior                                                                                                                                                                           | 488 T                  | 310 G/day    |

User-generated track Commercial auto track Connected car track Commune ou track

#### + Some New Trends

- Trajectory analytics now becomes a new frontier for business intelligence
- It is imperative for many businesses to derive values form their trajectory data
- Strong interest from a wide range of industries
- Trajectory data is often used together with other types of data
- Many things we have done so far need to be revisited in the new context

#### New Challenges

An enterprise-wide spatial information system

- Prefer a general-purposes trajectory management systems
  - For monitoring and managing trajectory data
  - For supporting current and future analytics and mining applications
  - Taking advantages of fast and scalable computing platforms
- Data Integration and Data quality management
- Scalable algorithms
  - For billions of trajectories and millions of concurrent queries

# A Trajectory DBMS?

... for monitoring, managing and analyzing

## + Why a Common Platform?

Universal

- GPS, telecom tokens, social apps...
- Shared enterprise data
  - For monitoring, predication, business insights...
- Separation of conceptual, logical and physical design
  - Especially different computing platforms to consider today
- Other benefits we took for granted
  - Optimization for data storage and query processing, scheduling, concurrency control...



#### + The Large-Scale Space Problem

- A space whose structure is at a much larger scale than the sensory horizon of the agent
  - Therefore, a knowledge model is needed to understand the space
- It consists of multiple <u>interacting</u> representations, each with its own ontology, given the agent
  - More expressive power for incomplete knowledge
  - More robustness in sensorimotor uncertainty and computational limitations

Benjamin Kuipers, "The Spatial Semantic Hierarchy", Artificial Intelligence, 2000





#### + SparkDB

- A time-centric storage and processing system for trajectories
- Designed for in-memory computers
- A more ambitious system is under development, following the proposed processing framework
- Now supported by a couple of users

H. Wang, K. Zheng, X. Zhou and S. Sadiq, "SharkDB: An In-memory Column-oriented Trajectory Storage", **CIKM** 2014 Haozhou Wang, Kai Zheng, Xiaofang Zhou, Shazia Sadiq, "SharkDB: An In-Memory Storage System for Massive Trajectory Data", **SIGMOD** 2015 (demo)

# **Data Quality**

...fitness for use

#### + Data Quality in General

Data quality is about "fitness for use"

- Four many criteria
  - Accuracy
  - Completeness
  - Timeliness
  - Consistency
- Many other aspects
  - Entity linking
  - Data provenance

## + Trajectory Data Quality Issues

- Inaccuracy
  - Measurement errors and sampling issues
  - Rule-based data calibration and uncertainty management
- Redundancy
  - Low value density vs high redundancy
  - Data reduction and compression
- Data sparsity (i.e., incompleteness)
  - No matter how much data you have, you don't have enough
- Lack of structure
  - Trip information, entity information
- Lack of semantics
  - Transportation mode, activity, contextual information...

## Dealing With Low Sampling Data

- Where an object goes between two sampling points which are 10 minutes apart?
  - Interpolation based on the map
  - Interpolation based on other moving objects
  - Results: locations and paths ranked by probabilities
  - Probabilistic query processing is not always desirable but sometimes unavoidable
- And now?
  - Telecoms tokens
  - Social networks check-ins...

Kai Zheng, Goce Trajcevski, Xiaofang Zhou, Peter Scheuermann, "Probabilistic Range Queries for Uncertain Trajectories on Road Networks", **EDBT** 2011 Kai Zheng, Yu Zheng, Xing Xie, Xing Zhou, "Reducing Uncertainty of Low-Sampling-Rate Trajectories", **ICDE** 2012

## + Trajectory Calibration

Popular trajectory distance measures

- Euclidean distance, LCSS, DTW, EDR
- How distance measures work?
  - Sample points alignment
  - Aggregating differences of aligned pairs
- Experiments
  - Ground Truth: 11,000 high-sampling-rate real trajectories
  - Derived Trajectory Datasets: re-sampling, shifting, jumping
- Need to calibrate rewrite using points in a common reference set





## + Trajectory Clustering and Labeling

#### Applications

- Moving behaviors analysis
- Personalized routing
- Clustering
  - OD-specific trajectories
- Labeling
  - Features: fastest, shortest, most popular, time-related



#### + Trajectory Augmentation

Data augmentation approach

- Factorization-based [1] : tensor decomposition with extra data sources (geospatial, temporal, and historical correlation)
- Concatenation-based [2] : sub-trajectories
- Correctne3ss check [3]: similar distribution





[1]. Yilun Wang, Yu Zheng, Yexiang Xue. "Travel time estimation of a path using sparse trajectories" *SIGKDD*, *2014*.

[2]. Dai Jian, Bin Yang, Chenjuan Guo, Zhiming Ding. "Personalized route recommendation using big trajectory data." *ICDE, 2015* 

[3] D. He, B. Ruan, B. Zheng, X. Zhou, Origin-Destination Trajectory Diversity Analysis: Efficient Top-k Diversified Search, **MDM 2018** 

#### + Deep Learning for Predication

Given:

- A road map (as a directed graph)
- A sequence of speed vectors, each vector is the speed at each road segment during a time interval

 $X_t = [x_t^{r_0}, x_t^{r_1}, ..., x_t^{r_{|E|-1}}],$ 

**Problem:** Given the historical observations  $\{X_i | i = 1, ..., t\}$ , this paper aims to predict  $Y_t = \{X_j | j = t+1, ..., t+z\}$ , where z is the number of time intervals to be predicted.



#### + LC-RNN Model

- ARIMA based (conventional), RNN based (consider time only), CNN based (spatial information but previously ony at grid level)
- Look-up Convolution (LC): learn the latent features of surrounding area
- LSTM components: learn the time-series pattern that is aware of surrounding area dynamics



#### LC-RNN model

#### **Look-up Convolution**

Z. Lv, J. Xu, K. Zheng, P. Zhao, H. Yin and X. Zhou, "LC-RNN: A Deep Learning Model for Traffic Speed Prediction", **IJCAI** 2018.

## + Spatiotemporal Entity Resolution

Linking entities based on their trajectory data

- Understanding the extent to which spatiotemporal data are distinctive is crucial to:
  - Entity resolution and data integration
  - Location privacy protection
- Data sources
  - Check-ins
  - Card transactions
  - Phone tokens/call records
  - Vehicle trajectories
  - Many social networks...





## + Uniqueness of Individual Mobility

- "4 randomly sampled spatiotemporal points can uniquely identify 95% of individuals."[1]
  - Dataset
    - 1.5 M mobile phone users over 15 mths
    - Only when/where to make/receive calls
  - As for another real-world taxi dataset
    - 12,000 taxis over one month
    - <15% of taxis were successfully identified



[1] Montjoye Y A D et al. Unique in the Crowd: The privacy bounds of human mobility[J]. Scientific Reports, 2013, 3(6):1376.

#### + Everyone Has Mobility Signature?

#### Spatial signature?

- Commonality: you visit frequently, such as your office building
- Unicity: you can be distinguished from others, like personal home address



#### + Signature Representations

- Sequential signature
  - q-gram and generalized Jaccard coefficient
- Temporal signature
  - Temporal histogram and Earth Mover's Distance (EMD)
- Spatial signature
  - TF-IDF weighted vector and cosine similarity
  - $f(o) = (\langle p_1, w(p_1) \rangle, \dots, \langle p_d, w(p_d) \rangle)$ 
    - p: a spatial point
    - w(p): TF-IDF weight of p
      - TF: measures the frequency of p in T(o) commonality
      - IDF: measures how much distinctiveness *p* provides unic
- Spatiotemporal signature
  - TF-IDF weighted vector and cosine similarity
  - Each dimension is a spatiotemporal pair (p, T)

#### + Signature Reduction

#### Baselines

- Principal component analysis (PCA) [1]
- Locality sensitive hashing (LSH) [2-3]
- CUT simple but very effective
  - Signature exhibits a power-law distribution CUT long tail
  - Preserve top-*m* points with largest weights minor information loss
  - Signature's spatial shrinking

[1] K. P. F.R.S., "Liii. on lines and planes of closest fit to systems of points in space", *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 1901
[2] P. Indyk, "Approximate nearest neighbors: Towards removing the curse of dimensionality", STOC '8
[3] A. Gionis, P. Indyk, and R. Motwani, "Similarity search in high dimensions via hashing", VLDB 99

## + Signature's Spatial Shrinking

After CUT, the ratio of spatial overlapping between objects is reduced from almost 100% to 1% when dimensionality is reduced to m = 10



Original

m = 100

## + Efficient Moving Object Linking

Formalize the linking problem as a kNN search on the collection of signatures

#### Baselines:

- Cosine similarity search algorithms
  - e.g. AllPairs, APT, MMJoin, L2AP[1] ...
- Efficient kNN search methods in Euclidean space
  - Spatial indexing (e.g. R-tree)
  - Approximate *k*-NN search (e.g. LSH) [2]

[1] D. C. Anastasiu and G. Karypis, "L2AP: Fast cosine similarity search with prefix I-2 norm bounds," *ICDE 2014.*[2] A. Gionis, P. Indyk, and R. Motwani, "Similarity search in high dimensions via hashing," *VLDB* 1999

## + Weighted R-Tree (WR-tree)

- Transform the high-dimensional kNN search to 2D space
  - Combine weight and spatial information
    - *MBR(o)*: the minimum bounding rectangle of a weighted signature stored in the node
  - Two pruning strategies
    - Pruning by spatial overlapping 2D R-tree
    - Pruning by signature similarity



#### + Experiments

#### A real-world taxi dataset

- 12,000 taxis in total
- 160,000 unique points in total after trajectory calibration



Fig. 1. An example of vehicle trace calibration.

#### Evaluation metric

- Acc@k Effectiveness
- Time cost Efficiency

#### + Signature Effectiveness Study

Spatial signature is the most effective: 85.5% Acc@1

Sequential and temporal features are <u>not</u> important for the task of moving object linking

|            |                                        |       |       |       |       |       |                                        |       |       | 1     | 1       |          |           |           |           |           |
|------------|----------------------------------------|-------|-------|-------|-------|-------|----------------------------------------|-------|-------|-------|---------|----------|-----------|-----------|-----------|-----------|
| Methods    | Sequential $(q)$ Temporal $(\Delta t)$ |       |       |       |       |       | Sequential $(q)$ Temporal $(\Delta t)$ |       |       |       | Spatial | Spatiote | mporal (# | of grids) |           |           |
| Parameters | 1                                      | 2     | 3     | 4     | 5     | 1h    | 2h                                     | 3h    | 4h    | 6h    | 8h      | 12h      | N/A       | $100^{2}$ | $200^{2}$ | $300^{2}$ |
| Acc@1      | 0.681                                  | 0.679 | 0.649 | 0.627 | 0.604 | 0.127 | 0.123                                  | 0.104 | 0.087 | 0.042 | 0.018   | 0.004    | 0.855     | 0.535     | 0.567     | 0.583     |
| Acc@2      | 0.721                                  | 0.718 | 0.695 | 0.681 | 0.664 | 0.169 | 0.167                                  | 0.145 | 0.124 | 0.074 | 0.033   | 0.007    | 0.904     | 0.587     | 0.613     | 0.630     |
| Acc@3      | 0.745                                  | 0.741 | 0.724 | 0.708 | 0.698 | 0.195 | 0.186                                  | 0.172 | 0.150 | 0.092 | 0.046   | 0.009    | 0.928     | 0.612     | 0.64      | 0.651     |
| Acc@4      | 0.760                                  | 0.758 | 0.741 | 0.726 | 0.724 | 0.216 | 0.205                                  | 0.198 | 0.174 | 0.113 | 0.057   | 0.011    | 0.940     | 0.632     | 0.659     | 0.681     |
| Acc@5      | 0.768                                  | 0.768 | 0.755 | 0.741 | 0.741 | 0.233 | 0.220                                  | 0.216 | 0.192 | 0.131 | 0.071   | 0.013    | 0.948     | 0.647     | 0.673     | 0.693     |

Spatial signature is the most effective empirically. We only consider spatial signature from here.

#### Reduction Effectiveness Study

CUT outperforms PCA and LSH

- The superiority of CUT is most obvious when m is small
- CUT can reduce dimensionality dramatically with a slight accuracy decrease (< 5%)</p>

| Methods | PCA   |       |       |       | LSH   |       |       |       | CUT   |       |       |       |       | Original |       |         |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|---------|
| m       | 10    | 50    | 100   | 500   | 1000  | 10    | 50    | 100   | 500   | 1000  | 10    | 50    | 100   | 500      | 1000  | 160,000 |
| Acc@1   | 0.007 | 0.050 | 0.113 | 0.542 | 0.697 | 0.046 | 0.476 | 0.638 | 0.795 | 0.824 | 0.806 | 0.827 | 0.831 | 0.836    | 0.838 | 0.855   |
| Acc@2   | 0.012 | 0.088 | 0.187 | 0.686 | 0.801 | 0.079 | 0.542 | 0.705 | 0.847 | 0.870 | 0.866 | 0.877 | 0.880 | 0.885    | 0.886 | 0.904   |
| Acc@3   | 0.018 | 0.123 | 0.243 | 0.765 | 0.846 | 0.097 | 0.577 | 0.731 | 0.872 | 0.893 | 0.893 | 0.903 | 0.907 | 0.913    | 0.916 | 0.928   |
| Acc@4   | 0.023 | 0.150 | 0.289 | 0.809 | 0.875 | 0.118 | 0.597 | 0.748 | 0.891 | 0.912 | 0.906 | 0.919 | 0.920 | 0.928    | 0.929 | 0.940   |
| Acc@5   | 0.031 | 0.176 | 0.333 | 0.835 | 0.892 | 0.130 | 0.617 | 0.760 | 0.900 | 0.924 | 0.917 | 0.929 | 0.930 | 0.937    | 0.939 | 0.948   |

We will use reduced signatures obtained by CUT algorithm with m = 10 in the following.

#### Search Efficiency Study

- 2D R-tree and WR-tree are more efficient than others
  - The importance of pruning by spatial overlapping
- WR-tree is better than 2D R-tree
  - The significance of pruning by signature similarity

|            | Linear | L2AP   | LSH    | 2D R-tree | WR-tree |
|------------|--------|--------|--------|-----------|---------|
| D  = 3000  | 2.269  | 3.090  | 1.769  | 0.651     | 0.140   |
| D  = 6000  | 8.182  | 14.557 | 6.652  | 2.801     | 0.633   |
| D  = 9000  | 19.733 | 36.541 | 15.642 | 5.122     | 0.908   |
| D  = 12000 | 27.183 | 70.440 | 38.131 | 18.876    | 1.403   |

Time cost (s) of different linking algorithms (m = 10, k = 1).

Fengmei Jin, Wen Hua, Jiajie Xu, Xiaofang Zhou, "Moving Object Linking Based on Historical Trace", **ICDE** 2019.

#### + More To Be Done...

What are those selected points?

- More efficiency improvement, and for join queries too
- How to safe guide the process?
  - Minimum amount of data? Drifting?
- Heterogeneous data sources
  - Mobile phone token data
  - Social media data
  - Both data and ground truth are difficulty to get...

How to protect privacy with trajectory data?

# **Algorithms Revisited**

...old problems, new challenges

#### + New Context

More data, more queries, more applications, more computing platforms, and more tools

- Example 1: batch shortest path query processing
- Example 2: correctness-aware kNN query processing

Mengxuan Zhang, Lei Li, Wen Hua and Xiaofang Zhou, "Batch Processing of Shortest Path Queries in Road Networks", **ADC** 2019. Dan He, Sibo Wang, Xiaofang Zhou and Reynold Cheng, "An Efficient Framework for Correctness-Aware kNN Queries on Road Networks", **ICDE** 2019.

#### + Conclusions

#### • We have discussed:

- More data, more queries, more applications, more tools
- The need for a general-purpose and open platform
- Data quality again is a key issue
- Many things now need to be revisited
- Some of our current research problems
  - Large-scale space problems
  - Dynamic road networks and contained-based routing
  - Massive concurrent queries and updates
  - Trajectories as a focal point for data integration
  - Time for a trajectory DBMS?

Now it's the most exciting time to work on trajectories!