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Tradeoff between Privacy and

Utility

Privacy__ Utility

A privacy notion for
privacy protection
guarantee

p

A

Design a mechanism
under such notion with
high utility

>
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AOL Data Release [NYTimes 2006]

* In August 2006, AOL Released search keywords of

650,000 users over a 3-month period.

* User IDs are replaced by random numbers.
» 3 days later, pulled the data from public access.

AOL searcher # 4417749 Thelman Arnold,

a 62 year old

“landscapers in Lilburn, GA” widow who lives

zueries on las.t name “Arnold” NYT in Liburn GA, has
homes sold in shadow lake ) ‘ three dogs,

subd/w..s‘/on Gwinnett County, GA frequently

“num fingers”

searches her
friends’ medical
ailments.

“60 single men”
“dog that urinates on everything”

Re-identification occurs!
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Differential Privacy wuworets. 200

* ldea: Any output should be about as likely

regardless of whether or not | am in the dataset

D’ D Def. Algo A satisfies e-differential
X v privacy if for any neighboring D and

D" and any possible output ¢,
s Pr[A(D)=t]
y }:L e "~ = Pr[A(D")=t] —

€

A(D') A(D) Parameter €: strength of privacy
protection, known as privacy budget.



Key Assumption Behind DP:
The Personal Data Principle

* After removing one individual’s data, that

individual’s privacy is protected perfectly.

e Even if correlation can still reveal individual info, that is not
considered to be privacy violation

* In other words, for each individual, the
world after removing the individual’s data is
an ideal world of privacy for that individual.
Goal is to simulate all these ideal worlds.
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Differential Privacy in the
Centralized Setting

*$¥ Data mining

Database ' @ Statistical queries

Differential Privacy Interpretation:

lassical . )
Class ca.c / The decision to include/exclude an
centralized L ’ o

, individual’s record has limited (&)
setting

influence on the outcome.
Smaller € =» Stronger Privacy



Differential Privacy in the

Centralized Setting
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Local Differential Privacy

As Apple starts analyzing web browsing &
health data, how comfortable are you with
raps differential privacy?
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The Frequency Oracle Protocols
under LDP

- o= Est((y})

%y takes reports {y} from all
. users and outputs
estimations c(v) for any
value v in domain D

* y=P)
= takes input value v from y _
‘domain D and outputs y. =——> o

FO is € -LDP iff for any v and v’ from D, - s ==
and any valid output vy, 3 A\
l:l:r[ll:(v)zy] S eg Em- % E\%
)= . .
r[P(vr)=y] 1o 3
. z!‘i@ B,




Random Response (Warner’65)

* Survey technique for private questions

* Survey people:
* “Do you a disease?”

* Each person: 0 Provide :
* Flip a secret coin 1) Seeing answer, not certain about the secret.

e Answer truth if head (w/p 0.5)
* Answer randomly if tail
* E.g., a patient will answer “yes” w/p 75%, and “no” w/p 25%

* To get unbiased estimation of the distribution:

* If n, out of n people have the disease, we expect to see

E[I,] = 0.75n, + 0.25(n — n,,) “yes” answers

I,—0.25n . : L :
e c(n,) == ~is the unbiased estimation of number of patients
v 0.75-0.5




Concrete Example

An individual will answer “yes” w/p 75%, and “no” w/p 25%

Expected Expected
yes no

observed 65 35

C(nv) T 0.75—0.25 estimate 80 20
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From Two to Any Categories

RAPPOR: Randomized
Aggregatable Privacy-

Preserving Ordinal
Response. U. Erlingsson, V.
Pihur, A. Korolova, CCS 2014

Random

v

Response

v Diff il _ | Local, Private, Efficient
Locally Ditferentially Private Protocols Protocols for Succinct

for Frequency Estimation T. Wang, J. Histograms R. Bassily, A
Blocki, N. Li, S. Jha: USENIX Security Smith. STOC 2015 ’
2017 ' '



Generalized Random Response

e User:
e Given®

Intuitively, the hlgher p, the more accurate

. .
Toss a However, when d is large, p becomes small

* Ifitis (for the same &) 1-p
* Otherw q=——
_ p(d 2) p(d=8) | p(d=128) | p(d = 1024)
0.52 0.13 0.016 0.001
1 0.73 0.27 0.027 0.002
0.88 0.51 0.057 0.007
4 0.98 0.88 0.307 0.05
- LJI_le — Il - i

MULloJEE To get rid of dependency on domain size,

we move to the other protocols.
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Unary Encoding (Basic RAPPOR)

« Encode the value v into a bit string x := 0, x|v] =1
« e.g., D=1{1,234},v=3,thenx =10,0,1,0]

* Perturb each bit, preserving it with probability p

e/? 1
* P11 = Po-0o =P = gz, P1i-0 = Po-1 =4 = 27
PriP(EW))=x] _ P11 5 Poo _ e

Pr[P(E('))=x] = po»1 DPi-o0
* Since x is unary encoding of v, x and x' differ in two locations
* Intuition:

* By unary encodmﬁ each location can only be 0 or 1, effectivel
reducing d in each location to 2. (But privacy budget is halved\g

* When d is large, UE is better than DE.
* To estimate frequency of each value, do it for each bit.



Binary Local Hash

The original protocol uses a shared random matrix; this is an
equivalent description

Each user uses a random hash function from D to {0,1}
The user then perturbs the bit with probabilities

ef 1
eer1’ 1™ oeqq

op:

Pr[P(E(v)) =b] p

—_ T _ ,e

T PIPEW)) =b] g

The user then reports the bit and the hash function
The aggregator increments the reported group

1 1
Ell,] =n,-p+(—n,)-(Gq+3p)
1

Iy—m--
v 2

Unbiased Estimation: c(v) = T

2



Optimization

* We measure utility of a mechanism by its variance
* E.g., in Random Response,

. _ I,—n-q _ Var|(ly] ~ n-q-(1—-q)
Varle(v)] Var[ pP—q ] (p—q)? (p—q)?

* We propose a framework called ‘pure’ and cast

existin min ,Var[c(v)]
* Eac nqr(1-q)
or min..
. q (p, q)IZ orts each

where p q satlsfys LDP

e A pure protocol IS speC|f|ed by p' and q

* Each input is perturbed into a value “supporting it” with
p’, and into a value not supporting it with g’
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Frequency Estimation Protocols

* Randomised response: a survey technique for eliminating
evasive answer bias

e S.L. Warner, Journal of Ame. Stat. Ass. 1965
* Direct Encoding (Generalized Random Response)

* RAPPOR: Randomized Aggregatable Privacy-Preserving
Ordinal Response.

* U. Erlingsson, V. Pihur, A. Korolova, CCS 2014
e Unary Encoding, Encode into a bit-vector

* Local, Private, Efficient Protocols for Succinct Histograms
e R. Bassily, A. Smith. STOC 2015.
* Binary Local Hash: Encode by hashing and then perturb

 Locally Differentially Private Protocols for Frequency
Estimation

* T. Wang, J. Blocki, N. Li, S. Jha: USENIX Security 2017




Optimized Local Hash (OLH)

* |[n original BLH, secret is compressed into a bit,
perturbed and transmitted.

* Both steps cause information loss:
 Compressing: loses much
* Perturbation: information loss depends on €

* Key Insight: We want to make a balance between the
two steps:

* By compressing into more groups, the first step carries more
information

* Variance is optimized when g = e® + 1
* See our paper for details.



Other Topics

* Dearling with numerical data, estimating mean:
e Goal: Find the mean of continuous values

* Assumption: Each user has a single value x within the range of
[—1,+1]

* Intuition: Report +1 with higher probability if x closer to +1

. [http?://arxiv.org/abs/1606.05053,https://arxiv.org/pdf/1712.0
1524

* Frequent itemset mining:

* Zhan Qin, et al.: Heavy Hitter Estimation over Set-Valued Data
with Local Differential Privacy. ACM CCS 2016

* Tianhao Wang, Ninghui Li, Somesh Jha:
Locally Differentially Private Frequent Itemset Mining. IEEE
Symposium on Security and Privacy 2018



Other interesting problems

e Stochastic gradient descent
* Goal: Find the optimal machine learning model
* Assumption: Each user has a vector x
* Intuition: Bolt-on sgd with noisy update
* [https://arxiv.org/abs/1606.05053]

* Bound the privacy leakage
* Goal: Make multiple, periodic collection possible
* Assumption: Each user has a value x(t) that change with
time
* Intuition: Decide whether to participate based on the
current result

e [https://arxiv.org/abs/1802.07128]
* Many more
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Outline

e Current Research Problem
 Marginal Release



Marginal Release

* Full contingency table: distribution of all attribute combinations

Dataset: _

| User | Gender | Smoke S
Alice female smoker | :
Bob male non-smoker : :
- ' < female, smoker > 0.15 |
Tom male smoker : ’ :
| < male, non-smoker > 0.1 |
| 1
| <male, smoker > 04 |

Lily female non-smoker N N

* Marginal table: distribution of part of attribute combinations

< * non-smoker > 0.55 1-way marginal

< * smoker > 0.45




Marginal Release

* Each marginal is a frequency distribution, which can be seen
as a frequency oracle problem

* Marginal release in local setting:

smoker — FO i
non-smoker —— FO k(
! Aggregator:

smoker —— FO ’| Calculate all
h(—way marginals

non-smoker — FO

Non-smoker —— FO 7'

* Challenge: large number of attributes d



Marginal Release

 Straightforward method (1)

All Frequency
attributes »

All k-way

marginals

Full contingency
» »

female smoker
€ < female, non-smoker > 0.35
mal non-smoker

ale ONn-SMOke < female, smoker > 0.15
male smoker

< male, non-smoker > 0.1

< male, smoker > 0.4
female non-smoker

e Drawback:

* Estimation error is exponential proportionaltod, Var = 0(2%)

* Time and space complexity are exponential proportional to d.




Marginal Release

 Straightforward method (2)

Attributes corresponding » Frequency » INIRQIEN
to each k-way marginal Oracle marginals

< female, *> <* smoker>
< male, *> <* non-smoker>
- J .. . d\ 4. . .
N e Divide user population into (k) disjoint groups
d
(k) e users in each group report one k-way marginal
* Drawback:

* When (z) becomes large, each user contributes less information to

each marginal

* Still cause large estimation error, Var = 0(2*- (Z))



Marginal Release

e Fourier Transformation Method [SIGMOD’ 18]

All Unary Fourier Sample and All k-way

* Key observation:

e Calculation of a k-way marginal requires only a few coefficients in the
Fourier domain (values in marginals & Fourier coefficients)

e Better than the two straightforward methods, in theory and in practice
Var = 0( Ek <d> )
s=0 k

 Drawback:

* To reconstruct all k-way marginals, there will be several coefficients to
be estimated.

e Perform poorly for large k




Marginal Release

 CALM: Consistent Adaptive Local Marginal [CCS’ 18]

* [ntuition:
* First construct a set of candidate marginals
* Use the above marginals to reconstruct other unknown marginals

- -

| @ Use maximum

entropy

,/,’———————————. —————— \ \\
Fo @ Specify , 1
[ {\ marginals 1 ;
I ————————————————
: UL L L 1 ““““ . N :
o= =Y . . @ Construct noisy | | @ Ensure E !
d : marginals =—b  consistency !
h E . T, i {\ & non-negativity | !
- |
1
1
1
1
1
1
1

Marginal tables



Marginal Release

 CALM: Consistent Adaptive Local Marginal [CCS’ 18]

1008 x
—®b—P—F 2
= = —— - ] .

> ~ <—— Full Contingency Table
L 1072 W :
S
5 P H——
g Y— § «— K-way Marginal Table
= P—
D 12 ¥

¥Y——9—4 «— Fourier Transformation

1073

02 04 06 08 1.0 1.2 14 16 1.8 20
€

byn=2%d=16k=3

* The estimation error of CLAM decreases by 1-2 orders of magnitude.
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Graph Data Mining

* Graph data mining has numerous applications in web, social
network, transportation and knowledge base.

0 1.1 0 0 1
@@ S R | b
A |1 1.0 0 1 0fi—> Adjacency bit vector
YT "™ oo oo
@ 0O 1.1 1 0 1
11 0 1 10

* Node-LDP: LDP definition applies to any two adjacency bit vectors

. | | |ololololo
- N I I T I I I I

* Edge-LDP: LDP definition applies to any two adjacency bit vectors
that only differ in one bit

M+ |+ | 1 1| 1| | olo oo
;- RN RN

* Results so far only for edge-LDP definition




Graph Data Mining

* Synthetic social graph generation [CCS’ 17]

 Randomized Neighbor List (RNL)

* Perturb each bit of the adjacency bit vector with RR

e Retain some neighborhood information, but introduce a lot of
fake edges

m
Il
p—

O 4,039 nodes 4,039 nodes

88,234 edges _ 4,427,047 edges

Facebook 98% fake edges

* Degree-based Graph Generation (DGG)
e Perturb degree of each node with edge-LDP (Laplace noise)
* Generate a synthetic graph by graph generation model (BTER)
* Accurately collect statistics, but lose neighborhood information




Graph Data Mining

* RNL vs. DGG: neither baseline is very satisfying

* LDPGen: group-based graph generation
 Strike a balance between noise and information loss
* An iterative solution
* Each user sends more information to aggregator
(a single degree = a degree vector)




Graph Data Mining
* Three phases of LDPGen

1. Initial grouping: aggregator randomly
partitions users into k groups

- Users report noisy degree vector of their links
to these groups

- Aggregator optimizes k and refines grouping




Graph Data Mining
* Three phases of LDPGen

1. Initial grouping: aggregator randomly
partitions users into k groups

- Users report noisy degree vector of their links
to these groups

- Aggregator optimize k and refine grouping

2. Grouping refinement: aggregator
partitions users with similar degree
distribution into new groups




Graph Data Mining
* Three phases of LDPGen

1. Initial grouping: aggregator randomly
partitions users into k groups

- Users report noisy degree vectors of their links
to these groups

- Aggregator optimize k and refine grouping

2. Grouping refinement: aggregator
partitions users with similar degree
distribution into new groups

- Users report again noisy degree vectors of their
links to the new groups




Graph Data Mining

* Three phases of LDPGen

1. Initial grouping: aggregator randomly
partitions users into k groups

- Users report noisy degree vector of their links
to these groups

- Aggregator optimize k and refine grouping

2. Grouping refinement: aggregator
partitions users with similar degree
distribution into new groups

- Users report again noisy degree vectors of their
links to the new groups

3. Graph generation: sample a
corresponding graph from BTER model
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Key-Value Data Collection

* Key-value pair is an,popylar data model

e ——

* To estimate the average ,” . \nch app

l . cm—

100%: -

“! <j | 0.5h  0.1h  0.2h »0.1h
© e

2.1h 2.8h 3.2h  1.5h

- O

0.5h 2.2h 1.6h 1.1h




Key-Value Data Collection

he-correiation-betweenkeys
< Cancer, 0.2 >
Cancer 0.2

Frequency Oracle

Fever

\/

< Fever, 0.4 >
0.4 ¢ [0.5,1.0]

nd \l‘\l [ Va¥ el

Disease | _Domain _
Cancer [0, 0.35]
HIV [0.3, 0.6]
Fever [0.5, 1.0]



Key-Value Data Collection

* PrivKV: iterative model [S&P’ 19]

 Perturbation protocol
1
I-p

Alice <0, 0>

<1I 06> — <1, 06>

0 <1,0.6>—><0,0>

Bob <1, 0.6>

il <0, 0> p 0 <0,0>—<0,0>
0
Tom <1, 0.8> ]<

P 1 <0,0>—>«<1,?>

@g |




Key-Value Data Collection

* |[terative model

Users ,

I I
; <l,v> |
" Frequency|!
! o i
i <k’ v'>H '
| ;
! - Initialize Mean !
<0,0> |

' Correct outliers with 7i '
""""""""""" Tl'hfdn}i all users the discretized estimated mean: v =discretization(i)|

®
* Analysis

e High accuracy: the estimated mean gradually approaches
the ground truth.

* High communication bandwidth with multiple iterations




Key-Value Data Collection

e Batch processing and virtual iterations

Users Aggregator
Perturbed data ] .
} Real teration
M
Batch ©® -

} Virtual iterations ! 4 Mean prediction

Perturbed data

} Real ieration

Batch @ o gamaE

f‘:::_::::;

= e B
* Analysis

* Without user involvement in virtual iterations —reduce network
transmission overhead

* No privacy budget cost in virtual iterations — improve accuracy

} Virtual iterations : 4= Mean prediction




Key-Value Data Collection

» Key-value correlation

Deviate from the
true distribution

Il Ground truth
1.0l e=3.2
BWc:=15
=038

=
ey s N2 M =04

k-RR& Harmony

similar distribution
as the real mean.

Il Ground truth
1O =32
=16
=038
< = /
Ney /Dv ~ =Y - €=0.4

PrivKV M
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Ilterative Interactions

* Access the original data multiple times
- multiple rounds of interactions

* In each round, the aggregator poses new queries in the
light of previous response

* Existing works:
* Heavy hitter estimation [CCS’ 16]
* Synthetic graph generation [CCS’ 17]
* Key-value data collection [S&P’ 19]
* Machine learning model [ICDE’ 19]

Estimation
accuracy

Communication '
bandwidth

e The effectiveness of iterations ?



Privacy-Preserving Machine

. chhﬂmler]grning needs to learn from real data

* LDP incurs heavy perturbation

* Traditional machine learning assumes centralized data
e Each user only has a local view under LDP

* Existing works:
* Simple machine learning models, e.g., linear regression,
logistic regression and support vector machine [ICDE’ 19]

* Single-round machine learning [S&P’ 17] [ICML" 17]

* Machine learning with LDP ?
m Machine

learning




Theoretical Underpinnings

* LDP emerged most recently from the theory literature
* What can we learning privately? [FOCS’ 08]
* Local privacy and statistical minimax rates [FOCS’ 13]

* Still many theoretical questions about LDP
 What are the lower bounds of the accuracy guarantee?

* Is there any benefit from adding an additive “relaxation” 6
to the privacy definition?

Pr[A(s) =s*] < ef:PrlA(s") =s*]+ 6

e How to minimize the amount of data collected from each
user to a single bit?



Conclusions

* Privacy-preserving data release is an important and
challenging problem.

* Local Differential Privacy is a promising privacy model and
has been widely adopted.

* Lots of current research that can be applied to mobile
e Histogram estimation, frequent itemset mining
* marginal release, graph data mining
* key-value data collection, private spatial data aggregation

* Lots of opportunity for new work:
e Optimal mechanisms for local differential privacy
* High-dimensional data perturbation protocol
* Unstructured data: text, image, video



Thank youl!



