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Tradeoff between Privacy and 
Utility

UtilityPrivacy

A privacy notion for 
privacy protection 

guarantee

Design a mechanism
under such notion with 

high utility
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AOL Data Release [NYTimes 2006]
• In August 2006, AOL Released search keywords of 

650,000 users over a 3-month period.
• User IDs are replaced by random numbers.
• 3 days later, pulled the data from public access.

“landscapers in Lilburn, GA”
queries on last name “Arnold”
“homes sold in shadow lake 
subdivision Gwinnett County, GA”
“num fingers”
“60 single men”
“dog that urinates on everything”

Thelman Arnold, 
a 62 year old 
widow who lives 
in Liburn GA, has 
three dogs,  
frequently 
searches her 
friends’ medical 
ailments.

AOL searcher # 4417749

NYT

Re-identification occurs!
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Differential Privacy [Dwork et al. 2006]

• Idea: Any output should be about as likely 

regardless of whether or not I am in the dataset

𝐷′ D

5

𝐴(𝐷′) 𝐴(𝐷)

Def.  Algo 𝐴 satisfies 𝜖-differential 
privacy if for any neighboring D and 
D’ and any possible output 𝑡, 

𝑒−𝜖 ≤
Pr[𝐴 𝐷 =𝑡]

Pr[𝐴 𝐷′ =𝑡]
≤ 𝑒𝜖

Parameter 𝜖: strength of privacy 
protection, known as privacy budget.
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Key Assumption Behind DP: 
The Personal Data Principle

• After removing one individual’s data, that 
individual’s privacy is protected perfectly.
• Even if correlation can still reveal individual info, that is not 

considered to be privacy violation

• In other words, for each individual, the 
world after removing the individual’s data is 
an ideal world of privacy for that individual.  
Goal is to simulate all these ideal worlds. 
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Data mining
Statistical queriesDatabase

+Noise

Differential Privacy in the 
Centralized Setting

Data DataData Data Data

Classical/
centralized
setting

Differential Privacy Interpretation:
The decision to include/exclude an 
individual’s record has limited (𝜀)

influence on the outcome.
Smaller 𝜀➔ Stronger Privacy

Differential Privacy Interpretation:
The decision to include/exclude an 
individual’s record has limited (𝜀)

influence on the outcome.
Smaller 𝜀➔ Stronger Privacy
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Data mining
Statistical queriesDatabase

+Noise

Differential Privacy in the 
Centralized Setting

Trusted

Data DataData Data Data
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Trust boundary



Local Differential Privacy

Data mining
Statistical queriesDatabase

No worry about untrusted server

Data+Noise Data+Noise Data+Noise

9

Trust boundary
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The Frequency Oracle Protocols 
under LDP

• 𝑦 ≔ 𝑃(𝑣)
takes input value 𝑣 from 
domain 𝐷 and outputs 𝑦.

𝑦

• 𝑐 ≔ 𝐸𝑠𝑡( 𝑦 )
takes reports {𝑦} from all 
users and outputs 
estimations 𝑐(𝑣) for any 
value 𝑣 in domain 𝐷

FO is 𝜀 -LDP iff′for any 𝑣 and 𝑣′ from 𝐷, 
and any valid output 𝑦,

Pr 𝑃 𝑣 =𝑦

Pr 𝑃 𝑣′ =𝑦
≤ 𝑒𝜀
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Random Response (Warner’65)
• Survey technique for private questions

• Survey people:
• “Do you a disease?”

• Each person:
• Flip a secret coin
• Answer truth if head (w/p 0.5)
• Answer randomly if tail 
• E.g., a patient will answer “yes”  w/p 75%, and “no” w/p 25%

• To get unbiased estimation of the distribution:

• If 𝑛𝑣 out of 𝑛 people have the disease, we expect to see 

𝐸[ 𝐼𝑣] = 0.75𝑛𝑣 + 0.25(𝑛 − 𝑛𝑣) “yes” answers

• 𝑐(𝑛𝑣) =
𝐼𝑣−0.25𝑛

0.75−0.5
is the unbiased estimation of number of patients

Provide deniability: 
Seeing answer, not certain about the secret.
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Concrete Example

truth Expected 
yes

Expected 
no

yes 80 60 20

no 20 5 15

𝑐(𝑛𝑣) =
𝐼𝑣−0.25𝑛

0.75−0.25

An individual will answer “yes”  w/p 75%, and “no” w/p 25%

65 35

80 20

observed

estimate
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From Two to Any Categories

Generalized
Random
Response

Unary
Encoding

Random
Response

Local
Hash

RAPPOR: Randomized 
Aggregatable Privacy-
Preserving Ordinal 
Response. Ú . Erlingsson, V. 
Pihur, A. Korolova, CCS 2014

Local, Private, Efficient 
Protocols for Succinct 
Histograms R. Bassily, A. 
Smith.  STOC 2015.

Locally Differentially Private Protocols 
for Frequency Estimation T. Wang, J. 
Blocki, N. Li, S. Jha: USENIX Security 
2017
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Generalized Random Response

• User:
• Given v ∈ 𝐷 = {1,2,… , 𝑑})
• Toss a coin with bias 𝑝
• If it is head, report the true value 𝑦 = 𝑣
• Otherwise, report any other value with probability 𝑞 =

1−𝑝

𝑑−1
(uniformly at random)

• 𝑝 =
𝑒𝜀

𝑒𝜀+𝑑−1
, 𝑞 =

1

𝑒𝜀+𝑑−1
⇒

Pr 𝑃 𝒗 =𝒗

Pr 𝑃 𝒗′ =𝒗
=

𝑝

𝑞
= 𝑒𝜀

• Aggregator:
• Suppose 𝑛𝑣 users possess value 𝑣, 𝐼𝑣 is the number of reports 

on 𝑣.

• 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ 𝑞
• Unbiased Estimation: 𝑐(𝑣) =

𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞

Intuitively, the higher 𝑝, the more accurateIntuitively, the higher 𝑝, the more accurate

However, when 𝑑 is large, 𝑝 becomes small
(for the same 𝜀)

However, when 𝑑 is large, 𝑝 becomes small
(for the same 𝜀)

𝜀 𝒑(𝒅 = 𝟐) 𝒑(𝒅 = 𝟖) 𝒑(𝒅 = 𝟏𝟐𝟖) 𝒑(𝒅 = 𝟏𝟎𝟐𝟒)

0.1 0.52 0.13 0.016 0.001

1 0.73 0.27 0.027 0.002

2 0.88 0.51 0.057 0.007

4 0.98 0.88 0.307 0.05

To get rid of dependency on domain size,
we move to the other protocols.

To get rid of dependency on domain size,
we move to the other protocols.
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Unary Encoding (Basic RAPPOR)

• Encode the value 𝑣 into a bit string 𝒙 ≔ 0, 𝒙 𝑣 ≔ 1
• e.g., 𝐷 = 1,2,3,4 , 𝑣 = 3, then 𝒙 = [0,0,1,0] 

• Perturb each bit, preserving it with probability 𝑝

• 𝑝1→1 = 𝑝0→0 = 𝑝 =
𝑒𝜀/2

𝑒𝜀/2+1
𝑝1→0 = 𝑝0→1 = 𝑞 =

1

𝑒𝜀/2+1

• ⇒
Pr 𝑃(𝐸 𝑣 )=𝒙

Pr 𝑃(𝐸 𝑣′ )=𝒙
≤

𝑝1→1

𝑝0→1
×

𝑝0→0

𝑝1→0
= 𝑒𝜀

• Since 𝒙 is unary encoding of 𝑣, 𝒙 and 𝒙′ differ in two locations

• Intuition: 
• By unary encoding, each location can only be 0 or 1, effectively

reducing 𝑑 in each location to 2. (But privacy budget is halved.)
• When 𝑑 is large, UE is better than DE.

• To estimate frequency of each value, do it for each bit.
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Binary Local Hash
• The original protocol uses a shared random matrix; this is an 

equivalent description

• Each user uses a random hash function from 𝐷 to 0,1

• The user then perturbs the bit with probabilities

• 𝑝 =
𝑒𝜀

𝑒𝜀+1
, 𝑞 =

1

𝑒𝜀+1

⇒
Pr 𝑃(𝐸 𝒗 ) = 𝑏

Pr 𝑃(𝐸 𝒗′ ) = 𝑏
=
𝑝

𝑞
= 𝑒𝜀

• The user then reports the bit and the hash function

• The aggregator increments the reported group

• 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ (
1

2
𝑞 +

1

2
𝑝)

• Unbiased Estimation: 𝑐(𝑣) =
𝐼𝑣−𝑛⋅

1

2

𝑝−
1

2
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Optimization
• We measure utility of a mechanism by its variance

• E.g., in Random Response, 

• 𝑉𝑎𝑟 𝑐 𝑣 = 𝑉𝑎𝑟
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞
=

𝑉𝑎𝑟[𝐼𝑣]

𝑝−𝑞 2 ≈
𝑛⋅𝑞⋅(1−𝑞)

𝑝−𝑞 2

• We propose a framework called ‘pure’ and cast
existing mechanisms into the framework.
• Each output 𝑦 “supports” a set of input 𝑣

• E.g., In Unary Encoding, a binary vector supports each 
value with a corresponding 1

• E.g., In BLH, Support(𝑦) = 𝑣 𝐻 𝑣 = 𝑦

• A pure protocol is specified by 𝑝′ and 𝑞′
• Each input is perturbed into a value  “supporting it” with 
𝑝′, and into a value not supporting it with 𝑞′

𝑚𝑖𝑛𝑞′𝑉𝑎𝑟 𝑐 𝑣

or 𝑚𝑖𝑛𝑞′
𝑛⋅𝑞′⋅(1−𝑞′)

𝑝′−𝑞 ′2

where 𝑝′, 𝑞′ satisfy 𝜀-LDP

𝑚𝑖𝑛𝑞′𝑉𝑎𝑟 𝑐 𝑣

or 𝑚𝑖𝑛𝑞′
𝑛⋅𝑞′⋅(1−𝑞′)

𝑝′−𝑞 ′2

where 𝑝′, 𝑞′ satisfy 𝜀-LDP
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Frequency Estimation Protocols

• Randomised response: a survey technique for eliminating 
evasive answer bias
• S.L. Warner, Journal of Ame. Stat. Ass. 1965
• Direct Encoding (Generalized Random Response)

• RAPPOR: Randomized Aggregatable Privacy-Preserving 
Ordinal Response.
• Ú . Erlingsson, V. Pihur, A. Korolova, CCS 2014
• Unary Encoding, Encode into a bit-vector

• Local, Private, Efficient Protocols for Succinct Histograms
• R. Bassily, A. Smith.  STOC 2015.
• Binary Local Hash: Encode by hashing and then perturb

• Locally Differentially Private Protocols for Frequency 
Estimation
• T. Wang, J. Blocki, N. Li, S. Jha: USENIX Security 2017



Optimized Local Hash (OLH)

• In original BLH, secret is compressed into a bit,
perturbed and transmitted.

• Both steps cause information loss:
• Compressing: loses much
• Perturbation: information loss depends on 𝜖

• Key Insight: We want to make a balance between the 
two steps:
• By compressing into more groups, the first step carries more 

information

• Variance is optimized when 𝑔 = 𝑒𝜀 + 1

• See our paper for details.



Other Topics
• Dearling with numerical data, estimating mean:

• Goal: Find the mean of continuous values
• Assumption: Each user has a single value 𝑥 within the range of 
[−1,+1]

• Intuition: Report +1 with higher probability if 𝑥 closer to +1
• [https://arxiv.org/abs/1606.05053,https://arxiv.org/pdf/1712.0

1524]

• Frequent itemset mining:
• Zhan Qin, et al.: Heavy Hitter Estimation over Set-Valued Data 

with Local Differential Privacy. ACM CCS 2016
• Tianhao Wang, Ninghui Li, Somesh Jha:

Locally Differentially Private Frequent Itemset Mining. IEEE 
Symposium on Security and Privacy 2018



Other interesting problems
• Stochastic gradient descent

• Goal: Find the optimal machine learning model
• Assumption: Each user has a vector 𝒙
• Intuition: Bolt-on sgd with noisy update
• [https://arxiv.org/abs/1606.05053]

• Bound the privacy leakage
• Goal: Make multiple, periodic collection possible
• Assumption: Each user has a value 𝑥(𝑡) that change with 

time
• Intuition: Decide whether to participate based on the 

current result
• [https://arxiv.org/abs/1802.07128]

• Many more



Mobile Data Collection and Analysis with 
Local Differential Privacy - Part 2

Qingqing Ye

Renmin University of China
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Marginal Release

• Full contingency table: distribution of all attribute combinations

User Gender Smoke

Alice female smoker

Bob male non-smoker

Tom male smoker

…

Lily female non-smoker

v F(v)

< female, non-smoker > 0.35

< female, smoker > 0.15

< male, non-smoker > 0.1

< male, smoker > 0.4

2-way marginal

1-way marginal
v F(v)

< female, * > 0.5

< male, * > 0.5

v F(v)

< *, non-smoker > 0.55

< *, smoker > 0.45

• Marginal table: distribution of part of attribute combinations

Dataset:



Marginal Release

• Each marginal is a frequency distribution, which can be seen 
as a frequency oracle problem

• Marginal release in local setting:

FO

Aggregator:

Calculate all 
k-way marginals

• Challenge: large number of attributes d

Alice female … smoker

Bob male … non-smoker

Tom male … smoker

Sally female … Non-smoker

Lily female … non-smoker

FO

FO

FO

FO

Users:



Marginal Release

• Straightforward method (1)

v F(v)

< female, non-smoker > 0.35

< female, smoker > 0.15

< male, non-smoker > 0.1

< male, smoker > 0.4

Frequency 
Oracle

All k-way 
marginals

• Drawback: 

• Estimation error is exponential proportional to d, 

• Time and space complexity are exponential proportional to d.

All 
attributes

Full contingency 
table

𝑉𝑎𝑟 = 𝑂(2𝑑)

Gender Smoke

female smoker

male non-smoker

male smoker

… …

female non-smoker



Marginal Release

• Straightforward method (2)

v

< female, *>

< male, *>

Frequency 
Oracle

• Drawback: 

• When 𝑑
𝑘

becomes large, each user contributes less information to 

each marginal

• Still cause large estimation error,

Attributes corresponding 
to each k-way marginal

v

<*, smoker>

<*, non-smoker>

All k-way 
marginals

𝑑
𝑘

• Divide user population into 𝑑
𝑘

disjoint groups

• users in each group report one k-way marginal

𝑉𝑎𝑟 = 𝑂(2𝑘 ∙
𝑑
𝑘
)



Marginal Release

• Fourier Transformation Method [SIGMOD’ 18]

• Key observation:
• Calculation of a k-way marginal requires only a few coefficients in the 

Fourier domain (values in marginals→ Fourier coefficients)

• Better than the two straightforward methods, in theory and in practice

• Drawback:
• To reconstruct all k-way marginals, there will be several coefficients to 

be estimated.  

• Perform poorly for large k

Fourier 
Transformation

All k-way 
marginals

All 
attributes

Sample and 
randomize

Unary 
encoding

𝑉𝑎𝑟 = 𝑂(෍
𝑠=0

𝑘 𝑑
𝑘

)



Marginal Release

• CALM: Consistent Adaptive Local Marginal [CCS’ 18]

• Intuition:
• First construct a set of candidate marginals

• Use the above marginals to reconstruct other unknown marginals

FO



Marginal Release

• CALM: Consistent Adaptive Local Marginal [CCS’ 18]

• The estimation error of CLAM decreases by 1-2 orders of magnitude.

CALM

Fourier Transformation

Full Contingency Table

K-way Marginal Table
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Graph Data Mining
• Graph data mining has numerous applications in web, social 

network, transportation and knowledge base.

• Node-LDP: LDP definition applies to any two adjacency bit vectors 

• Edge-LDP: LDP definition applies to any two adjacency bit vectors 
that only differ in one bit

• Results so far only for edge-LDP definition 

1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

𝑙𝑖 :

𝑙𝑗 :

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0

𝑙𝑖 :

𝑙𝑗 :

0 1
1 0

1 0
1 0

0 1
1 1

1 1
0 0

0 0
0 0

1 0
1 1

0 1
1 1

1 1
0 1

0 1
1 0

Adjacency bit vector



Graph Data Mining
• Synthetic social graph generation [CCS’ 17]

• Randomized Neighbor List (RNL)
• Perturb each bit of the adjacency bit vector with RR
• Retain some neighborhood information, but introduce a lot of 

fake edges

• Degree-based Graph Generation (DGG)
• Perturb degree of each node with edge-LDP (Laplace noise)

• Generate a synthetic graph by graph generation model (BTER)

• Accurately collect statistics, but lose neighborhood information

4,039 nodes
88,234 edges

4,039 nodes
4,427,047 edges

𝜖 = 1

Facebook 98% fake edges



Graph Data Mining
• RNL vs. DGG: neither baseline is very satisfying

• LDPGen: group-based graph generation
• Strike a balance between noise and information loss

• An iterative solution

• Each user sends more information to aggregator 

(a single degree → a degree vector)

RNL

DGG

LDPGen



Graph Data Mining
• Three phases of LDPGen

1.  Initial grouping: aggregator randomly 
partitions users into k groups

- Users report noisy degree vector of their links 
to these groups

- Aggregator optimizes k and refines grouping

k = 2
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Graph Data Mining
• Three phases of LDPGen

1.  Initial grouping: aggregator randomly 
partitions users into k groups

- Users report noisy degree vector of their links 
to these groups

- Aggregator optimize k and refine grouping

2.  Grouping refinement: aggregator 
partitions users with similar degree 
distribution into new groups

- Users report again noisy degree vectors of their 
links to the new groups

3.  Graph generation: sample a 
corresponding graph from BTER model

k = 3
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Key-Value Data Collection

• Key-value pair is an popular data model

• To estimate the average screen-on time of each app

< Key, Value >

2.1h 2.8h 3.2h 1.5h

0.5h 0.1h 0.2h 0.1h

0.5h 2.2h 1.6h 1.1h



Key-Value Data Collection

• The correlation between keys and values
Disease Domain

Cancer [0, 0.35]

HIV [0.3, 0.6]

Fever [0.5, 1.0]

< Cancer, 0.2 >

Mean Oracle

Cancer 0.2

Fever 0.4

< Fever, 0.4 >

0.4 ∉ [0.5, 1.0]

Frequency Oracle



Key-Value Data Collection

• PrivKV: iterative model [S&P’ 19]

• Perturbation protocol

Users Item

Alice < 0,  0 >

Bob < 1,  0.6 >

Chris < 0,  0 >

Tom < 1,  0.8 >

1

1

0

p

1-p

0

0

1

p

1-p

<1, 0.6> <1, 0.6>

<1, 0.6> < 0, 0 >

< 0, 0 > < 0, 0 >

< 0, 0 > < 1, ? >

v*



Key-Value Data Collection
• Iterative model

• Analysis
• High accuracy: the estimated mean gradually approaches 

the ground truth.
• High communication bandwidth with multiple iterations



Key-Value Data Collection
• Batch processing and virtual iterations

• Analysis
• Without user involvement in virtual iterations —reduce network 

transmission overhead
• No privacy budget cost in virtual iterations — improve accuracy 

Perturbed data

Mean 

……

Users Aggregator

Batch 

Perturbed data

Mean 

…… 
Batch

Iteration 10

6Iteration

5Iteration

1Iteration Real iteration

Virtual iterations

Real iteration

Virtual iterations

Mean prediction

Mean prediction



Key-Value Data Collection
• Key-value correlation

similar distribution 
as the real mean.

Deviate from the 
true distribution
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Iterative Interactions
• Access the original data multiple times 

→multiple rounds of interactions

• In each round, the aggregator poses new queries in the 
light of previous response

• Existing works:
• Heavy hitter estimation [CCS’ 16]

• Synthetic graph generation [CCS’ 17]

• Key-value data collection [S&P’ 19]

• Machine learning model [ICDE’ 19]

• The effectiveness of iterations ?

Estimation 
accuracy

Communication 
bandwidth



Privacy-Preserving Machine 
Learning
• Machine learning needs to learn from real data

• LDP incurs heavy perturbation

• Traditional machine learning assumes centralized data
• Each user only has a local view under LDP

• Existing works:
• Simple machine learning models, e.g., linear regression, 

logistic regression and support vector machine [ICDE’ 19]

• Single-round machine learning [S&P’ 17] [ICML’ 17]

• Machine learning with LDP ?
Statistics

Machine 
learning



Theoretical Underpinnings
• LDP emerged most recently from the theory literature

• What can we learning privately? [FOCS’ 08]

• Local privacy and statistical minimax rates [FOCS’ 13]

• Still many theoretical questions about LDP

• What are the lower bounds of the accuracy guarantee?

• Is there any benefit from adding an additive “relaxation” 𝛿
to the privacy definition?

Pr[𝐴 𝑠 = 𝑠∗] ≤ 𝑒𝜀 ∙ Pr 𝐴 𝑠′ = 𝑠∗ + δ

• How to minimize the amount of data collected from each 
user to a single bit?



Conclusions
• Privacy-preserving data release is an important and 

challenging problem.

• Local Differential Privacy is a promising privacy model and 
has been widely adopted.

• Lots of current research that can be applied to mobile
• Histogram estimation, frequent itemset mining
• marginal release, graph data mining
• key-value data collection, private spatial data aggregation

• Lots of opportunity for new work:
• Optimal mechanisms for local differential privacy
• High-dimensional data perturbation protocol
• Unstructured data: text, image, video



Thank you!


