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Location data collected from individual devices % EMORY

(Source: New York Times 12/2018) UNIVERSITY



Over 235 million locations captured from more than 1.2

million unique devices during a three-day period in 2017
(Source: New York Times 12/2018) % EMORY

UNIVERSITY
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33%/47% of Android/
1OS apps shared GPS
coordinates with third
parties

Location data sharing by i0S apps (left) to domains (right)
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Who Knows What About Me? A Survey of Behind the Scenes Personal Data Sharing to Third Parties by Mobile Apps,

2015-10-30 https://techscience.org/a/2015103001/ UNIVERSITY



In about four months’ of data
reviewed by The Times, her location
was recorded over 8,600 times — on
average, once every 21 minutes.

TECHNOLOGY

By Francie Diep March 27, 2013

LOCATION DATA CAN UNIQUELY IDENTIFY
CELLPHONE USERS

A NEW STUDY DEMONSTRATES HOW EASY IT IS TO IDENTIFY PEOPLE FROM THE LOCATI
TRACKING DATA ON THEIR CELLPHONES.
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The Mobile Data Economy
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Enabling Data Analytics with Centralized
Differential Privacy
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Enable Mobile Apps and Analytics with Local
Differential Privacy
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Enabling Mobile Apps and Analytics with Local
Differential Privacy

- Background
 Local differential privacy
» Geo-indistinguishabillity (local d-privacy)
- Extended privacy notions
 Protecting dynamic locations (CCS15, VLDB17 demo)
* Protecting spatiotemporal events (ICDE19)
* New mobile applications
« Spatial crowdsourcing with geo-indistinguishability
(ICDE18)
* New mechanisms

« Supporting both analytics and mobile applications

(CNS19)
EMORY
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Local Differential Privacy

Privacy definition

* Any two locations produce “similar’
distributions (bounded by ¢)

P!’(A(Xl) = Zr) c

PrAGo) —z0) = ©
*  Mechanism
- Randomized response (with
encoding)
« Applications
« Simple analytics (e.g. frequency
estimation)
« Google, Apple, Microsoft
« Limitations

« Qutput not useful for mobile apps




Geo-Indistinguishability (Local d-privacy)

* Privacy Definition

« Any two locations at distance at
most r produce “similar”
distributions proportional to the
distance (bounded by € r)

P!’(A(Xl) = Zr)
FV(¢4(X2):::ZI)

* Mechanism:

* Planar Laplace mechanism
» Applications

* Mobile apps/location sharing
* Limitations:

« Temporal correlations of dynamic
locations not considered

* Not optimal for analytics
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Geo-Indistinguishability: Planar Laplace Mechanism

Generating random point z (from actual point
X € X) according to planar Laplace distribution
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Enabling Mobile Apps and Analytics with Local
Differential Privacy

- Extended privacy notions
* Protecting dynamic locations (CCS15, VLDB17 demo)
* Protecting spatiotemporal events (ICDE19)
* New mobile applications
« Spatial crowdsourcing with geo-indistinguishability
(ICDE18)
* New mechanisms

« Supporting both analytics and mobile applications

(CNS19)
EMORY
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Location Privacy: Temporal Correlations

Temporal correlations (adversary knowledge): moving patterns and

previously released perturbed locations
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Differential Privacy with &-location set

« O-location set differential privacy

« Any two locations in the probable location set produce “similar”
distributions proportional to the distance (bounded by ¢)

* Probable location set determined by hidden Markov Model

PriA) = 20) _
PF(A(XQ) = Zt) o

observable: @ @ @ @
unobservable: _C(bv @

Y. Xiao, L. Xiong. Protecting Locations with Differential Privacy under Temporal Correlations. CCS 2015
Y. Xiao, L. Xiong, S. Zhang, Y. Cao. LocLok: Location Cloaking with Differential a0
Privacy via Hidden Markov Model. VLDB demo, 2017 EMQ;RTYY



Optimal perturbation mechanism

«  Minimize expected distance between perturbed location z and true
location X

ERROR = \/E||z — x*||3

«  While satisfying constraint of differential privacy — any pair of
locations x1 and x2 are indistinguishable

PriA(x1) =z:) _ . °
Pr( A — <e ° °
r(A(x2) = z) - -
X
« Exponential mechanism and Laplace ° °

mechanism are not optimal
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Planar Isotropic Mechanism

(a) (b) (c)
- Based on sensitivity hull K of d-location set which
determines the lower bound error
* An improved K-norm mechanism based on Isotropic

transformation
» Achieves optimality while achieving differential privacy
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Results: Perturbed Trace lllustration
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Results: k-Nearest Neighbor Queries
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From Location Privacy to Spatiotemporal
Privacy

 Location privacy mechanisms protect location at a time
point
« May not protect spatiotemporal activities?
 Staying in hospital for 2 hours
* From home to office every morning
* Need formal notions and mechanisms

Yang Cao, Yonghui Xiao, Li Xiong, Liquan Bai. PriSTE: From Location Privacy to
Spatiotemporal Event Privacy (short paper). ICDE 2019 EMORY
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Spatiotemporal events

- Boolean expression for spatiotemporal event
* Location at a time point (u' ='s;)

Spatial dimension | Temporal dimension | Spatial and Temporal
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From Location Privacy to Spatiotemporal Event
Privacy

* Location privacy
« Two locations produce “similar” distributions/observations

« Spatiotemporal event privacy

« A true event and a negative event produce “similar”
location traces

Pr(oy,09,--- ,0;/EVENT)
< e‘Pr(oy,09,-++ ,0,|~EVENT)

PRESENCE or PATTERN
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Spatiotemporal Privacy Framework

- LPPM: Existing location privacy mechanism, e.g. Planar Laplace
Mechanism for geo-indistinguishibility

* PrivacyCheck: check spatiotemporal event privacy and calibrate
privacy budget

. rturbed
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Results

Strong LPPM may satisfy spatiotemporal privacy already
Weak LPPM need to reduce privacy budget significantly (less utility) to

achieve same level of spatiotemporal privacy
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Enabling Mobile Apps and Analytics with Local
Differential Privacy

* New mobile applications
« Spatial crowdsourcing with geo-indistinguishability
(ICDE18)
* New mechanisms

« Supporting both analytics and mobile applications

(CNS19)
EMORY
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ONLINE TASK ASSIGNMENT IN SPATIAL
CROWDSOURCING

-y
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Privacy preserving online task assignment in
spatial crowdsourcing

« Both requester and worker locations are perturbed using geo-
Indistinguishability
* Three-stage framework for task assignment using uncertain locations

U2U by Server U2E by Requester ;| E2E by Worker
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Hien To, Cyrus Shahabi, Li Xiong. Privacy-Preserving Online Task a0 EMORY
Assignment in Spatial Crowdsourcing with Untrusted Server. ICDE 2018 ' UNIVERSITY



Enabling Mobile Apps and Analytics with Local
Differential Privacy

« New mechanisms

« Supporting both analytics and mobile applications

(CNS19)
EMORY

UNIVERSITY



Supporting both range queries and frequency
estimation

* EXxisting
 Local differential privacy with randomized response —
frequency estimation
* Geo-indistinguishabillity (local d-privacy) with planar
Laplace mechanism — range queries
+ Goal

* Optimize for both frequency estimation and range
gueries while ensuring local d-privacy

 Basic idea

 Assign different perturbation probabilities for different
iInput/output pairs in a way related to the distance

X. Gu, M. Li, Y. Cao and L. Xiong, Privacy-Preserving Range Queries and Frequency

Estimation with Geo-indistinguishability. IEEE Conference on Communications andz ¢

Network Security (CNS), 2019 < EMORY
UNIVERSITY



Results: Comparison

Gowalla dataset

Empirical: RR ——0U —O—PL —¥—EM —A—LE

1 -
S
& 5
- ]
% :
= =
04t =
5 02) =
&
o' p]
0 : =

1 2 3 4

RR: Randomized Response
OU: Optimized with Unary Encoding
PL: Planar Laplace mechanism

EM: Exponential mechanism EMORY

LE: Linear equation mechanism UNIVERSITY



Enabling Mobile Apps and Analytics with Local
Differential Privacy

- Extended privacy notions
* Protecting dynamic locations (CCS15, VLDB17 demo)
 Protecting spatiotemporal events (ICDE19)
* New mobile applications
 Spatial crowdsourcing with geo-indistinguishability
(ICDE18)
* New mechanisms

« Supporting both analytics and mobile applications
(CNS19)

* Open challenges
* Privacy/utility tradeoff
* User empowerment
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Assured Information Management and Sharing
(AIMS)
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Assured Information Management and Sharing
(AIMS)
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