
Page 1 of 3

Title (Units): COMP1150 Object Oriented Programming (3,3,2)

Course Aims: To study the object-oriented programming principles and techniques. Upon completion, students

should be able to use an object-oriented language to develop rather complex programs.

Prerequisite: COMP 1180 Structured Programming or COMP1170 Introduction to Structured Programming

Learning Outcomes (LOs):
Upon successful completion of this course, students should be able to:

No. Learning Outcomes (LOs)
 Knowledge
1 Describe the principles of object-oriented programming
2 Apply the concepts of data encapsulation, inheritance, and polymorphism to large-scale software
3 Acquire the concepts of Graphical User Interfaces
 Professional Skill
4 Design and develop object-oriented computer programs
5 Design and develop programs with Graphical User Interfaces capabilities
 Transferable Skill
6 Formulate problems as steps so as to be solved systematically
 Attitude
7 Integrate robustness, reusability, and portability into large-scale software development
8 Develop software with team-work in mind

Calendar Description: This course introduces the object-oriented programming concepts, principles, and techniques,

including classes, objects, inheritance, and polymorphism. All these concepts are illustrated via a
contemporary object-oriented programming language.

Assessment:

No. Assessment

Methods
Weighting Remarks

1
 Continuous

Assessment 40%

Continuous assessments are designed to measure how well the students have learned
the fundamentals and major concepts of object-oriented programming. A number of
machine problems will be given to students to train them to design programs via the
object-oriented approach. Practical tests will be used to test their programming
capabilities.

2

Examination 60%
Final examination questions are designed to see how far students have achieved their
intended learning outcomes. Questions will primarily be concepts and skills based to
assess the student's ability in object-oriented programming.

Rubrics

Criteria Excellent (A) Good (B) Satisfactory (C) Marginal Pass (D) Fail (F)
Principles of
object-oriented
programming

The student
acquires excellent
knowledge in the
principles of
object-oriented
languages,
namely, data
encapsulation,
inheritance, and
polymorphism.

The student
acquires
sufficient
knowledge in the
principles of
object-oriented
languages,
namely, data
encapsulation,
inheritance, and
polymorphism.

The student
acquires average
knowledge in the
principles of
object-oriented
languages,
namely, data
encapsulation,
inheritance, and
polymorphism.

The student is
able to describe
the meanings of
data
encapsulation,
inheritance, and
polymorphism,
and to give simple
examples on
them.

The student is
unable to describe
the meanings of data
encapsulation,
inheritance, and
polymorphism, and
to give simple
examples on them.

Applying object- The student is The student is The student is The student can The student cannot

Page 2 of 3

oriented
techniques to
software packages

able to
extensively apply
object-oriented
techniques to
write software
applications with
multiple classes,
e.g., enforcing
data hiding as
much as possible
via class privacy.

able to
sufficiently
apply object-
oriented
techniques to
write software
applications with
multiple classes,
e.g., enforcing
data hiding via
class privacy.

able to apply
object-oriented
techniques in
some key
elements of
software
applications with
multiple classes,
e.g., enforcing
data hiding via
class privacy.

apply some
object-oriented
techniques to
write software
applications with
multiple classes,
e.g., enforcing
data hiding via
class privacy.

apply object-
oriented techniques
to write software
applications with
multiple classes,
e.g., enforcing data
hiding via class
privacy.

Graphical user
interfaces

The student
demonstrates
excellent know-
how in writing
programs with
graphical user
interfaces.

The student
demonstrates
considerable
know-how in
writing programs
with graphical
user interfaces.

The student
demonstrates
average know-
how in writing
programs with
graphical user
interfaces.

The student
demonstrates
some know-how
in writing
programs with
graphical user
interfaces.

The student does not
demonstrate any
know-how in
writing programs
with graphical user
interfaces.

Exception
handling

The student
correctly writes
object-oriented
programs with
complicated
exception
handling facilities.

The student
correctly writes
object-oriented
programs with
considerable
exception
handling
facilities.

The student
correctly writes
object-oriented
programs with an
average amount
of exception
handling
facilities.

The student
correctly writes
object-oriented
programs with
some exception
handling facilities.

The student cannot
write object-oriented
programs with any
exception handling
facilities.

Learning Outcomes and Weighting:

References: C. S. Horstmann and G. Cornell, Core Java 2 (Volume I-Fundamentals), Prentice Hall, 7th Edition,

2004.
H. M. Deitel and P. J. Deitel, Java How to Program, Prentice Hall, 7th Edition, 2007.
A. Kak, Programming with Objects: A Comparative Presentation of Object Oriented Programming
with C++ and Java, Wiley-IEEE Press, 2003.
J. Bishop, Java Gently: Programming Principles Explained, Addison-Wesley, 3rd Edition, 2001.
G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design
with Applications, Addison-Wesley, 3rd Edition, 2007.
K. Arnold, J. Gosling, and D. Holmes, Java Programming Language, Prentice Hall, 4th Edition, 2005.

Course Content in Outline:

 Topic
I.

Object-oriented Concepts

II. Object-Oriented Programming
A. Classes and objects
B. Methods and messages
C. Classification, generalization and specialization
D. Inheritance
E. Interfaces and inner classes

Content LO No.
I. Object-oriented Concepts 1-2, 4-5, 7-8
II. Object-oriented Programming 1-2, 4-5, 7-8
III. GUI Programming 3, 6
IV. Exception Handling, Streams and Files, and Advanced Features 7-8

Page 3 of 3

F. Polymorphism
G. modularity

III. GUI Programming

A. Graphical user interface
B. Event handling
C. Applets

IV. Others
A. Exception handling
B. Streams and files
C. Advanced features

	Title (Units): COMP1150 Object Oriented Programming (3,3,2)

