Title (Units): COMP7940 Cloud Computing (3,2,1) Course Aims: The objective of this course is to examine techniques underlying the design and engineering of distributed systems and cloud computing systems. Students will also acquire hands-on experience in cloud computing software. Prerequisite: Basic concepts on data communications ### **Course Intended Learning Outcomes (CILOs):** Upon successful completion of this course, students should be able to: | No. | Course Intended Learning Outcomes (CILOs) | | | | |-----|--|--|--|--| | | Knowledge | | | | | 1 | Describe system models for distributed and cloud computing. | | | | | 2 | Explain the design principles of computer clusters and data centers. | | | | | 3 | Describe and distinguish different virtualization techniques. | | | | | 4 | Explain cloud-enabling technologies, cloud mechanisms, and cloud architectures. | | | | | | Professional Skill | | | | | 5 | Use cloud computing software to solve real problems. | | | | | | Attitude | | | | | 6 | Solve problems and exhibit self-learning abilities in distributed and cloud computing. | | | | ### **Calendar Description:** This course introduces the techniques underlying the design and engineering of distributed systems and cloud computing systems. Topics include cloud and distributed system models, computer clusters, virtualization, cloud storage and data centers, cloud-enabling technologies, cloud mechanisms, and cloud architectures. Students will also acquire hands-on experience in cloud programming and software. ### Teaching and Learning Activities (TLAs): | CILOs | Type of TLA | |-------|---| | 1-4 | Students will learn various design principles in distributed and cloud computing via lectures | | | and assignments. | | 5, 6 | Students will acquire hands-on experience in cloud computing software via lectures and | | | machine problems. | #### **Assessment:** | No. | Assessment | Weighting | CILOs to be | Description of Assessment Tasks | | |-----|--------------------------|-----------|-------------|---|--| | | Methods | | addressed | | | | 1 | Continuous
Assessment | 40% | 1-6 | Tests and machine problems are designed to test and evaluate the student's understanding in | | | | Assessment | | | distributed and cloud computing as well as the ability in using cloud computing software to solve real problems. | | | 2 | Examination | 60% | 1-4 | Final examination questions are to evaluate learning outcomes in the knowledge domain. Questions are to test students' thorough understanding on the principles of distributed and cloud computing. | | #### **Assessment Rubrics:** | | Excellent (A) | Good (B) | Satisfactory (C) | Marginal Pass (D) | Fail (F) | |----------------|----------------------|--------------------|-----------------------|-------------------|--------------------| | | Fully understand all | Understand most of | Sufficiently | Understand a | Does not | | various design | the design issues | the design issues | understand the design | minimum set of | understand most of | | issues in | | | issues | design issues | the issues | | | Excellent (A) | Good (B) | Satisfactory (C) | Marginal Pass (D) | Fail (F) | |---|---|--|---|--|--| | distributed
systems and
cloud computing
platforms | | | | | | | Describe the
design principles
of computer
clusters for
scalable
computing | Fully understand the design principles of computer clusters | Understand most of
the design
principles of
computer clusters | Sufficiently
understand design
principles of
computer clusters | Understand a
minimum set of
design principles of
computer clusters | Does not
understand most of
the design
principles of
computer clusters | | | Fully understand the principles and techniques of virtualization of IT resources and data centers | the principles and
techniques of
virtualization of IT | Sufficiently understand the principles and techniques of virtualization of IT resources and data centers | Understand a
minimum set of the
principles and
techniques of
virtualization of IT
resources and data
centers | Does not
understand most of
the principles and
techniques of
virtualization of IT
resources and data
centers | | Explain cloud-
enabling
technologies,
cloud
mechanisms, and
cloud
architectures | Fully explain cloud-
enabling
technologies, cloud
mechanisms, and
cloud architectures | cloud-enabling
technologies, cloud
mechanisms, and | Sufficiently explain
cloud-enabling
technologies, cloud
mechanisms, and
cloud architectures | Explain a minimum
set of cloud-
enabling
technologies, cloud
mechanisms, and
cloud architectures | most of cloud-
enabling | | Use cloud
computing
software to solve
problems | | | Demonstrate a
considerable degree
of correctness in
using cloud
computing software
for problem solving | Demonstrate some
degree of
correctness in using
cloud computing
software for
problem solving | Does not have the
ability to correctly
use cloud
computing
software for
problem solving | # **Course Content and CILOs Mapping:** | Cor | tent | CILO No. | |-----|---|----------| | I | Concepts and Models of Distributed System and Cloud Computing | 1, 2, 4 | | II | Computer Clusters for Scalable Computing | 2 | | III | Cloud-Enabling Technologies | 2, 4 | | IV | Virtual Machines and Virtualization | 3, 5 | | V | Cloud Computing Mechanisms and Architectures | 3, 4 | | VI | Cloud Programming and Software | 5, 6 | ### **References:** - Dan C. Marinescu, Cloud Computing: Theory and Practice, 3rd Edition, Morgan Kaufmann, 2022 - Gabriel N. Schenker, Learn Docker Fundamentals of Docker 19.x -Second Edition, 2020 - Thomas Erl, and Eric Monroy, Cloud Computing: Concepts, Technology, Security, and Architecture, Pearson, 2023. - Roy H. Campbell, Kevin A. Kwiat and Charles A. Kammhoua, Assured Cloud Computing, 1st Edition, Wiley-IEEE Computer Society Press, 2018 ### **Course Content:** ## **Topic** I. Concepts and Models of Distributed System and Cloud Computing - A. Basic Concepts and Terminology - B. System Models for Distributed System and Cloud Computing (SaaS/PaaS/IaaS, Public/Private/Hybrid Cloud) - C. Concurrency in the Cloud - D. Speedup and Load Balancing ## II. Computer Clusters for Scalable Computing - A. Clustering for Massive Parallelism - B. Computer Clusters and MPP Architectures - C. Design Principles of Computer Clusters - D. Cluster Job and Resource Management ### III. Cloud-Enabling Technologies - A. Networking Technology for Cloud Computing - B. Storage Technology for Cloud Computing - C. Big Data and Data Streaming - D. Storage Technology Case Studies (e.g. Google File System, NoSQL) ### IV. Virtual Machines and Virtualization - A. Levels of Virtualization - B. Virtual Machine - C. Containers and Orchestration - D. Case Studies (e.g. Hyper-V, Docker, Kubernetes) ### V. Cloud Computing Mechanisms and Architectures - A. Specialized Cloud Mechanisms - B. Cloud Management Mechanisms - C. Cloud Security Mechanisms for Private and Public cloud - D. Cloud Computing Architectures ### VI. Cloud Programming and Software - A. Basic Programming in Distributed Environments - B. Services and Service Oriented Architecture - Case Studies (e.g., Google App Engine, Amazon Web Services) - D. Setting up and Administering Cloud Computing Software for Problem Solving