Title (Units): COMP2017 Operating Systems (3,3,1)

Course Aims: To introduce the fundamentals and major concepts of operating systems design

and implementation; to study the detailed operations of various components of an

operating system.

Prerequisite: COMP2006 Computer Organization

COMP2045 Programming and Problem Solving

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)		
	Knowledge		
1	Describe the basic concepts of operating systems, including development and achievements,		
	functionalities and objectives, structure and components		
2	Explain how memory, I/O devices, files, processes and threads are managed, and evaluate the		
	performance of various scheduling algorithms		
3	Explain the concepts covered in concurrency control, including mutual exclusion and		
	synchronization, deadlock and starvation		
4	Develop software using multiprocess and multithread programming techniques		
	Professional Skill		
5	Analyze the relationship between the operating system and the hardware environment in which it		
	runs		
	Attitude		
6	Develop the role of operating systems in a wider context, e.g., extending OS services via system calls		

Calendar Description:

This course introduces the fundamentals of operating systems design and implementation. Topics include an overview of the components of an operating system, mutual exclusion and synchronization, deadlock and starvation, implementation of processes and threads, resources scheduling algorithms, memory management, and file systems.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-3, 5	Students will learn operating systems concepts via lectures, tutorials and continuous
	assessment activities.
3-4, 6	Students will acquire hands-on experience in multiprocess / multithread programming,
	process synchronization and deadlock, and extending OS services via lectures, laboratory
	exercises and continuous assessment activities.

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks	
	Methods		addressed		
1	Continuous Assessment	40%	1-6	Continuous assessment activities are designed to assess students' mastery of the major concepts of operating systems and the associated hands-on skills. These activities include both written work (e.g., written assignment or test) and hands-on work (e.g., programming assignment or practical test).	
2	Examination	60%	1-5	Final examination questions are designed to assess how far students have achieved their intended learning outcomes. Questions will primarily be analysis and skills based to assess students' ability in operating systems design and implementation.	

Assessment Rubrics:

Criteria	Excellent (A)	Good (B)	Satisfactory (C)	Marginal Pass (D)	Fail (F)
objective s, functiona lities, and compone nts in an operating	the objectives of operating systems, how operating systems are related to computer hardware, what functionalities are provided to users, and what the major	functionalities are provided to users, and what the major	of operating systems, how operating systems are related to computer hardware, what functionalities	The student is able to identify major components in an operating system, name some basic functionalities in an operating system, and briefly describe how these components or functionalities work.	The student is unable to identify major components in an operating system, name some basic functionalities in an operating system, and briefly describe how these components or functionalities work.
Processes and	thoroughly the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and how to schedule processes and	The student understands sufficiently the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and how to schedule processes and threads.	processes and threads, what mutual exclusion is, how to synchronize	The student understands some basic concepts of processes and threads, deadlocks, and process/thread scheduling algorithms.	The student has no knowledge in basic concepts of processes and threads, deadlocks, and process/thread scheduling algorithms.
Memory, I/O devices, and files	excellent know- how in the management of main and virtual memory, I/O	know-how in the	The student demonstrates average know- how in the management of main and virtual memory, I/O		The student does not know about the management of main and virtual memory, I/O devices, and files.

	files.	devices, and files.			
and/or multithre ad program ming	programs that meet all	multiprocess/m ultithread programs that meet most	The student writes multiprocess/m ultithread programs that	multiprocess/m ultithread programs that	The student is unable to program with multiprocess/m ultithread techniques.

Course Content and CILOs Mapping:

Cont	CILO No.	
I	Operating Systems Overview	1, 5-6
II	Process & Thread Management	2-6
III	Concurrency Control	3-4, 6
IV	Memory Management	2, 5-6
V	Processor Scheduling	2, 5-6
VI	I/O & File Management	2, 5-6
VII	Case Studies	1-6

References:

- A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, Addison-Wesley, 10th Edition. 2019.
- W. Stallings, Operating Systems: Internals and Design Principles, Prentice-Hall, 9th Edition. 2017.
- A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th Edition. Prentice-Hall, 2014.

Course Content:

Topic

- Operating Systems Overview
 - 1. Historical development
 - Operating system objectives and functionalities
 - 3. Major achievements
- II. Process & Thread Management
 - 1. Process concepts
 - 2. Thread concepts
 - 3. Descriptions, structures, and controls
 - 4. Multiprocess and Multithread programming
- III. Concurrency Control
 - 1. Mutual exclusion
 - 2. Synchronization
 - 3. Deadlock
 - 4. Starvation
- IV. Memory Management
 - 1. Multiprogramming and partitions
 - 2. Paging and segmentation
 - 3. Virtual memory4. Demand paging

 - 5. Page replacement algorithms

- V. Processor Scheduling

 - Scheduling concepts
 Uniprocessor and multiprocessor scheduling
 Algorithm evaluation
- I/O & File Management
 I/O devices
 Disk scheduling
 File organization
 Directory structures VI.
- VII. Case Studies