Title (Units): COMP3115 Exploratory Data Analysis and Visualization (3,2,1)

Course Aims: To learn the essential exploratory techniques for analyzing and visualizing data,

and to gain hands-on experience of using software tools for data analytics.

Prerequisite: i) MATH 2005 Calculus, Probability and Statistics for Computer Science

or

ii) COMP 2865 Fundamental of Data Analysis and Management

or

III) Any ITEC course at Level 2 or above

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)				
	Knowledge				
1	Describe exploratory data analysis and visualization concepts				
2	Describe data analysis and visualization models and algorithms				
3	Identify applicability of different data analysis and visualization models techniques to solve real-				
	world problems				
	Professional Skill				
4	Acquire and pre-process data				
5	Apply exploratory data analysis to some real data sets and provide interpretations via relevant				
	visualization				
	Attitude				
6	Illustrate the awareness of the importance and limitation of the exploratory data analysis paradigm				

Calendar Description: This course aims at providing basic concepts and techniques in exploratory data

analysis and visualization. Hands-on experience of using data analytics software

tools will also be covered.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-3	Student will learn the concepts from lecture
1-5	Student will achieve the outcomes via assignment on exploratory data analysis
4-6	Student will achieve the outcomes via guided laboratory with data analysis software
4-6	Student will achieve the outcomes via project based on real world data

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks	
	Methods		addressed		
1	Lab exercises	15%	4-6	Labs will be used to develop their skills in	
				exploratory data analysis.	
2	Assignments	15%	1-5	Assignments and labs will be used to consolidate	
				their knowledge on exploratory data analysis.	
3	Quiz	10%	1-3	Quiz will be used to evaluate the understanding of	
				the students on the key concepts in the middle of the	
				course.	
4	Project	20%	3-5	Project will further strengthen their understanding	
				and problem solving skills using data analytics.	
5	Examination	40%	1-5	Final examination questions are designed to	
				evaluate how far students have achieved their	
				intended learning outcomes. Analysis based	
				questions will be used to assess the understanding	
				of exploratory data analysis problems. Problem	
				solving questions will be used to assess students'	

	ability in tackling applications in data analysis and
	visualization.

Assessment Rubrics:

	Excellent (A)	Good (B)	Satisfactory (C)	Marginal Pass (D)	Fail (F)
· · · · · · · · · · · · · · · · · · ·	Thorough description of almost all data mining algorithms	Description of most of the algorithms	Description of some of the algorithms	Description of a small number of algorithms	
* *	Thorough description of almost all usage of data mining	-	Description of some of the usage	· ·	Description of a very small number of usage
	Suggestion of almost all correct solutions	Suggestion of most of the solutions		Suggestion of a small number of solutions	Suggestion of a very small number of solutions
and provide	with concise and precise visualization	some types of data with clear	types of data with some visualization of the results.	limited types of data with primitive visualization of the	Incorrect analysis of most types of data with inappropriate visualization of the results.

Course Content and CILOs Mapping:

Cor	CILO No.		
I	I Introduction to Exploratory Data Analysis and Visualization		
II	Pattern Discovery	1 - 3, 5	
III	Graphical Visualization	1 - 3, 5	
IV	Case Studies in Exploratory Data Analysis for Different Application Domains	3, 5, 6	

References:

- W.L. Martinez and A.R. Martinez. Exploratory Data Analysis with MATLAB, Chapman & Hall/CRC, 2011
- B. Everitt. An Introduction to Applied Multivariate Analysis with R (Use R!), Springer, New York, 2011
- W. McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O' Reilly, 2012
- M.A. Russell. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub and More, O' Reilly, 2013

Course Content:

Topic

- I. Introduction to Exploratory Data Analysis and Visualization
 - A. Overview of the exploratory aspect of data analysis
 - B. Data acquisition from on-line data sources and preprocessing techniques
- II. Pattern Discovery

- A. Dimensionality Reduction Linear and Non-Linear Models
- B. Clustering and Classification
- C. Smoothing Scatterplots and Regression
- III.
- Graphical Visualization
 A. Visualizing Clusters
 B. Visualization Data Distributions
 C. Multivariate Visualization

 - D. Graph Data Visualization
- IV. Case Studies in Exploratory Data Analysis for Different Application Domains