Title (Units):	COMP 7140 Algorithms for Optimi	zation (3,3,0)
		~ / / /

Course Aims: To introduce the concepts and issues behind optimization problems, and the principles behind different optimization algorithms. Topics include both unconstrained and constrained optimization algorithms.

Prerequisite: Research Postgraduate Student Standing

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)
	Knowledge
1	Explain the concepts and issues behind optimization problems.
2	Describe the principles behind different optimization algorithms.
3	Apply the algorithms to solve real problems.
	Skill
4	Implement computational algorithms for optimization.

Calendar Description: To introduce the concepts and issues behind optimization problems, and the principles behind different optimization algorithms. Topics include both unconstrained and constrained optimization algorithms.

Teaching and Learning Activities (TLAs):

CILOs	TLAs will include the following:
1-3	• Students will learn the concepts and issues behind optimization problems, and the principles behind different optimization algorithms via lectures, programming assignments, and exams.
3-4	• Students will gain the practical skills of implementing optimization algorithms to solve problems.

Assessment:

I

No.	Assessment Methods	Weighting	CILOs to	Remarks
			be	
			addressed	
1	Written Assessment	30%	1-4	Continuous assessments in the form of written assignments will be used to evaluate how well students can apply the algorithms.
2	Programming Assessment	30%	1-4	Continuous assessments in the form of programming assignments will be used to evaluate how well students have learned the concepts and principles of optimization algorithms.
3	Examination	40%	1-3	Examination will be used to evaluate the students' overall understanding and proficiency on the concepts and principles behind different optimization algorithms.

Assessment Rubrics:

Excellent (A)	• Achieve all four CILOs, demonstrating a thorough understanding and solid knowle	
	of optimization algorithms.	
	• Able to apply a variety of techniques for solving optimization problems.	

Good (B)	• Achieve most of the four CILOs, demonstrating a good understanding and competent				
	knowledge of optimization algorithms.				
	• Able to apply an appropriate technique for solving optimization problems.				
Satisfactory (C)	• Achieve some of the four CILOs, demonstrating a basic level of understanding and				
	knowledge of optimization algorithms.				
	• Able to provide solutions for simple optimization problems.				
	• Achieve few of the four CILOs, with little understanding of optimization algorithms.				
rall (r)	Unable to provide solutions for simple optimization problems.				

Course Intended Learning Outcomes and Weighting:

Content	CILO No.
I. Introduction to Optimization Problems	1
II. Linear Programming	1-4
III. General Optimization	1-4

References:Mykel J. Kochenderfer and Tim A. Wheeler. Algorithms for Optimization, Illustrated
Edition, The MIT Press, 2019
Walter Gander, Martin J. Gander and Felix Kwok. Scientific Computing – An Introduction
Using Maple and Matlab, Springer Verlag, 2014
Dimitri P. Bertsekas. Convex Optimization Algorithms, Athena Scientific, 1st Edition, 2015
Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University
Press, 1st edition, 2014

Course Content in Outline:

<u>Topic</u>

- I. Introduction to Optimization
- II. Linear ProgrammingA. The Exchange AlgorithmB. Linear Programming MethodsC. General Linear Programs
- III. General Optimization
 - A. Classification of Optimization Problems
 - B. Mathematical Optimization
 - C. Unconstrained Optimization Methods
 - D. Constrained Optimization Methods