Title (Units): COMP7440 Web-based and Ubiquitous Health Care (3,2,1)

Course Aims: This course covers the healthcare systems applicable to Web, social media, and

ubiquitous environment. It will explain to students how the healthcare system can monitor patients and elderly as they maintain their normal everyday activities, through body sensors and home environment sensors. It will further introduce how the data are collected to make trend analysis, determine state of well-being and

warn health workers of potential problems.

Prerequisite: Postgraduate Student Standing

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)				
	Knowledge				
1	Explain the media or environment that enable ubiquitous healthcare systems				
2	Identify different kinds of sensor technologies for data acquisitions and analysis				
3	Explain how to make trend analysis and to prevent potential problems from happening				
	Professional Skill				
4	Design systems to monitor patients' activities through sensor networks				
5	Apply the knowledge in the tracking of patients, localization, gesture and fall detection				
	Attitude				
6	Evaluate important issues and concerns related to data security and privacy				

Calendar Description:

This course covers the healthcare systems applicable to Web, social media, and ubiquitous environment. It will explain to students how the healthcare system can monitor patients and elderly as they maintain their normal everyday activities, through body sensors and home environment sensors. It will further introduce how the data are collected to make trend analysis, determine state of well-being and warn health workers of potential problems.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA			
1-3	Students will learn the underlying techniques and technologies involved in ubiquitous			
	healthcare systems via lectures, tutorials, and assignments.			
4-5	Students will learn and gain hands-on experience on sensor networks and how patients'			
	activities can be detect and monitored through tutorials and special lab demonstrations			
6	Students will realize the importance of data security and privacy through case studies and			
	discussions during lectures.			

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks	
	Methods		addressed		
1	Continuous	40%	1-6	Continuous assessments are designed to measure	
	assessment			how well the students have learned the underlying	
				technologies for the Web-based Systems and	
				Healthcare Information Systems. Students also have	
				to understand how different sensor networks help to	
				collect, organize, transmit and store for further	
				analysis and responses. Students also have to do	
				literature search and comparative studies to	
				recognize the current advances in this field of study.	
2	Examination	60%	1-3	Final examination questions are designed to see	
				how far students have achieved their intended	
				learning outcomes. Questions will primarily be	

	analysis and skills based to assess the students'
	ability in this field of study.

Assessment Rubrics:

	Excellent (A)	Good (B)	Satisfactory (C)	Fail (F)
_	Fully understand	Understand most of	Sufficiently	Do not understand
or environment that		the media or	understand the media	
enable ubiquitous		environment that	or environment that	environment that
•	-	enable ubiquitous	enable ubiquitous	enable ubiquitous
	•	healthcare systems	healthcare systems	healthcare systems
Identify different	Capable to identify	Capable to identify	Capable to identify	Not capable to
	different kinds of	the right kind of	the kind of sensor	identify any kind of
technologies for	sensor	sensor technologies	technologies for	sensor technologies
	U	for most of the data	normal data	for data acquisitions
and analysis	-	acquisitions and	acquisitions and	and analysis
	and analysis	analysis	analysis	
	Fully understand	Understand most of	Sufficiently	Do not know how to
Explain how to	how to make trend	the cases on how to	understand the cases	make trend analysis
make trend analysis		make trend analysis	on how to make trend	
_	prevent potential	and to prevent	analysis and to	potential problems
1 1	problems from	potential problems	prevent potential	from happening
from happening	happening	from happening	problems from	
			happening	
Design and Explain	Fully capable to	Capable to design	Capable to design a	Not capable to design
systems to monitor	design sophisticate	systems to monitor	minimal system to	systems to monitor
patients' activities	systems to monitor	patients' activities	monitor patients'	patients' activities
through sensor	patients' activities	through sensor	activities through	through sensor
networks	through sensor	networks	sensor networks	networks
	networks			
Acquire the	Fully capable to	Capable to make use	Capable to make use	Not capable to make
knowledge in the	make use of the	of the knowledge in	of the knowledge in	use of the knowledge
tracking of patients,	knowledge in the	the tracking of	the tracking of	in the tracking of
localization, gesture		patients, localization,	patients, localization,	patients, localization,
and fall detection	patients,	gesture and fall	gesture and fall	gesture and fall
	localization,	detection most of the	detection in some	detection
	gesture and fall	time	selected cases	
	detection			

Course Content and CILOs Mapping:

Cor	CILO No.	
I	Systems Overview	1,2
II	Healthcare Information Systems	1,2
III	Sensor Networks, Data Acquisitions and Analysis	2,4,5
IV	Case Studies	1-3,6

References:

- Cory Beard, William Stallings, Wireless Communication Networks and Systems, Pearson Education, 2015.
- Bill Phillips and Chris Stewart, Android Programming: The Big Nerd Ranch Guide (Big Nerd Ranch Guides), 2nd edition, Wiley, 2015.
- Cameron Banga, Josh Weinhold, Essential Mobile Interaction Design: Perfecting Interface Design in Mobile, Pearson Education, 2015.
- David Mark an et., Beginning iPhone Development with Swift: Exploring the iOS SDK, Apress, 2014.
- Greg Nudelman, Android Design Patterns: Interaction Design Solutions for Developers, Wiley, 2013.

- Aaron Saunders, Building Cross-Platform Apps using Titanium, Alloy, and Appcelerator Cloud Services, Wiley, 2014.
- T. Thomas-Brogan, Health Information Technology Basics: A Concise Guide to Principles and Practice, Jones & Bartlett Publishers, 2008.
- Ramona Nelson, and Nancy Staggers, Health Informatics: An Interprofessional Approach, Elsevier, 2013. ISBN-13: 978-0323100953, ISBN-10: 0323100953.
- Nadinia A. Davis, and Melissa LaCour, Health Information Technology (3rd Edition), Elsevier Saunders 2013. ISBN-13: 978-1437727364, ISBN-10: 1437727360.
- Robert E. Hoyt, and Ann Yoshihashi, Health Informatics: Practical Guide for Healthcare and Information Technology Professionals (6th Edition), Informatics Education, 2014. ISBN: 978-1-304-79110-8

Course Content:

Topic

- I. Systems Overview
 - A. The Internet and web-based systems
 - B. Ubiquitous computing service
 - C. Social media and mobile applications
- II. Healthcare Information Systems
 - A. Electronic patient record (ePR)
 - B. Electronic health record (eHR)
 - C. Personal health record
 - D. Telemedicine/telehealth/remote medical expertise systems
 - E. eHealth portal
- III. Sensor Networks, Data Acquisitions and Analysis
 - A. Body sensor network
 - B. Personal area network
 - C. Localization network
 - D. Vital sign monitoring
 - E. Gestures and fall detection
 - F. Data storage and organization
 - G. Data analysis
- IV. Case Studies
 - A. eHealth portal
 - B. Ubiquitous healthcare services
 - C. Location bracelet
 - D. Gesture and fall detection
 - E. Vital sign monitoring
 - F. Personal emergency link
 - G. Mobile applications in hospital/ward/clinic