Title (Units):	COMP2017 Operating Systems (3,3,1)
Course Aims:	To introduce the fundamentals and major concepts of operating systems design and implementation; to study the detailed operations of various components of an operating system.
Prerequisite:	 (i) COMP2006 Computer Organization (ii) COMP2045 Programming and Problem Solving OR COMP2046 Problem Solving Using Object Oriented Approach

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)				
	Knowledge				
1	Describe the basic concepts of operating systems, including development and achievements,				
	functionalities and objectives, structure and components				
2	Explain how memory, I/O devices, files, processes and threads are managed, and evaluate the				
	performance of various scheduling algorithms				
3	Explain the concepts covered in concurrency control, including mutual exclusion and				
	synchronization, deadlock and starvation				
4	Develop software using multiprocess and multithread programming techniques				
	Professional Skill				
5	Analyze the relationship between the operating system and the hardware environment in which it				
	runs				
	Attitude				
6	Develop the role of operating systems in a wider context, e.g., extending OS services via system calls				

Calendar Description: This course introduces the fundamentals of operating systems design and implementation. Topics include an overview of the components of an operating system, mutual exclusion and synchronization, deadlock and starvation, implementation of processes and threads, resources scheduling algorithms, memory management, and file systems.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-3, 5	Students will learn operating systems concepts via lectures, tutorials and continuous
	assessment activities.
3-4, 6	Students will acquire hands-on experience in multiprocess / multithread programming,
	process synchronization and deadlock, and extending OS services via lectures, laboratory
	exercises and continuous assessment activities.

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks
	Methods		addressed	
1	Continuous Assessment	40%	1-6	Continuous assessment activities are designed to assess students' mastery of the major concepts of operating systems and the associated hands-on skills. These activities include both written work (e.g., written assignment or test) and hands-on work
2	Examination	60%	1-5	(e.g., programming assignment or practical test). Final examination questions are designed to assess how far students have achieved their intended learning outcomes. Questions will primarily be analysis and skills based to assess students' ability
				in operating systems design and implementation.

Assessment Rubrics:

Criteria	Excellent (A)	Good (B)	Satisfactory (C)	Marginal Pass (D)	Fail (F)
Basic objective s, functiona lities, and compone nts in an operating system	excellent knowledge in the objectives of operating systems, how operating systems are related to computer hardware, what functionalities are provided to users, and what the major components are in operating	the objectives of operating systems, how operating systems are related to computer hardware, what functionalities are provided to users, and what the major	The student acquires average knowledge in the objectives of operating systems, how operating systems are related to computer hardware, what functionalities are provided to users, and what the major components are in operating systems.	major components in an operating system, name some basic functionalities in an operating system, and	The student is unable to identify major components in an operating system, name some basic functionalities in an operating system, and briefly describe how these components or functionalities work.
Processes and Threads	The student understands thoroughly the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and how to schedule processes and	The student understands sufficiently the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and	The student understands more than basic concepts in the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and		The student has no knowledge in basic concepts of processes and threads, deadlocks, and process/thread scheduling algorithms.
Memory, I/O devices, and files	excellent know- how in the management of main and virtual memory, I/O	the management of main and virtual	management of main and virtual	management of	The student does not know about the management of main and virtual memory, I/O devices, and

	files.	devices, and files.		devices, and files.	files.
and/or multithre ad program ming	The student correctly writes multiprocess/m ultithread programs that meet all specifications.	writes multiprocess/m ultithread programs that meet most	ultithread programs that	multiprocess/m ultithread programs that meet a few	The student is unable to program with multiprocess/m ultithread techniques.

Course Content and CILOs Mapping:

Content		CILO No.
Ι	Operating Systems Overview	1, 5-6
II	Process & Thread Management	2-6
III	Concurrency Control	3-4, 6
IV	Memory Management	2, 5-6
V	Processor Scheduling	2, 5-6
VI	I/O & File Management	2, 5-6
VII	Case Studies	1-6

References:

- A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, Addison-Wesley, 10th Edition. 2019.
- W. Stallings, Operating Systems: Internals and Design Principles, Prentice-Hall, 9th Edition. 2017.
- A. S. Tanenbaum and H. Bos, Modern Operating Systems, 5th Edition. Pearson, 2023.

Course Content:

Topic

I. Operating Systems Overview

- 1. Historical development
- 2. Operating system objectives and functionalities
- 3. Major achievements
- II. Process & Thread Management
 - 1. Process concepts
 - 2. Thread concepts
 - 3. Descriptions, structures, and controls
 - 4. Multiprocess and Multithread programming

III. Concurrency Control

- 1. Mutual exclusion
- 2. Synchronization
- 3. Deadlock
- 4. Starvation

IV. Memory Management

- 1. Multiprogramming and partitions
- 2. Paging and segmentation
- 3. Virtual memory
- 4. Demand paging
- 5. Page replacement algorithms

- V. Processor Scheduling

 - Scheduling concepts
 Uniprocessor and multiprocessor scheduling
 Algorithm evaluation

I/O & File Management1. I/O devices2. Disk scheduling3. File organization4. Directory structures VI.

- VII. Case Studies