Title (Units): COMP1007 Introduction to Python and Its Applications (3,2,1)

Course Aims: This course provides an introduction to problem solving and programming using

the Python scripting language. A variety of practical applications of Python will

also be introduced through a series of hands-on exercises.

Prerequisite: Nil

Anti-requisite: COMP1005 Essence of Computing (Year 2021 and onwards),

COMP3047 Software Engineering,

JOUR4046 Integrated Date-driven Storytelling,

MATH3097 Programming with Mathematical Software

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)			
	Knowledge			
1	Interpret the fundamental programming constructs of Python, including variables, expressions,			
	functions, control structures, and lists.			
2	Explain how problems in various application domains can be solved using Python.			
	Professional Skill			
3	Implement software programmes designed using Python to solve practical problems.			

Calendar Description:

This course provides an introduction to problem solving and programming using the Python scripting language. A variety of practical applications of Python will also be introduced through a series of hands-on exercises.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-2	Students will attend lectures to learn the concepts of programming constructs of Python and
	its applications in various domains.
2-3	Students will attend programming sessions to gain practical skills on Python scripting
	development.
2-3	Students will work on programming exercises and assignments to enhance what they have
	learnt.

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks
	Methods		addressed	
1	Programming	20%	1-3	Practicing a functional problem-solving approach to
	assignments			solve a variety of
				homework problems.
2	Project	20%	2-3	Group project to evaluate students' practical skill of
				Python programming.
3	Practical test	20%	1-3	An individual assessment will be conducted to
				evaluate the student's understanding in Python
				programming.
4	Examination	40%	1-3	Final examination questions are designed to see
				how far students have achieved their intended
				learning outcomes.

Assessment Rubrics:

Excellent (A)	 Able to design and construct complicated Python scripts to solve a variety of problems, as seen in various domains. Demonstrate an excellent self-learning capability.
Good (B)	 Able to design and construct useful Python scripts by combining and extending examples. Demonstrate a good understanding of how Python could be used in various domains. Full mastery of all basic Python programming constructs.
Average (C)	 Able to develop Python scripts with substantial help and guidance. Adequate knowledge on basic Python programming constructs.
Satisfactory (D)	 Produce a less than workable Python script. Able to explain the correct use of each basic programming construct in Python.
Unsatisfactory (F)	 Unable to identify and explain the basic programming constructs in Python. Unable to create his/her own Python scripts.

Course Content and CILOs Mapping:

Co	CILO No.	
Ι	Python Fundamentals	1 - 3
II	Hands-on experience in various applications in Python	1 - 3

References:

- G. Ciaburro, Hands-On Simulation Modeling with Python: Develop simulation models to get accurate results and enhance decision-making processes. Birmingham, England: Packt Publishing, 2020.
- B. Lubanovic, Introducing python: Modern computing in simple packages, 2nd ed. Sebastopol, CA: O' Reilly Media, 2019.
- L. Vaughan, Impractical python projects: Playful programming activities to make you smarter. San Francisco, CA: No Starch Press, 2018.

Course Content:

Topic

- I. Python Fundamentals
 - 1. Program control and logic
 - 2. Data types and structures
 - 3. Function
 - 4. Text processing
 - 5. Handling quantitative data
- II. Hands-on experience in various applications in Python
 The topics will be selected from, but are not limited to, the
 following:
 - 1. Finding frauds in data with Benford's law
 - 2. Personal product recommendation with collaborative filtering
 - 3. Unlock business insights with Markov chain models
 - 4. Decision making with optimal stopping theory