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Every	industry	wants	intelligence

• Has	shown	impressive	
results	in	voice	and	image	
recognition
• Finding	new	applications,	
from	fashion	to	finance

Credit:	https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/



Deep	learning	is	not	new

• Early	works	on	learning	neural	
networks
• Frank	Rosenblatt (1958)	created	
the perceptron,	an	algorithm	for	
pattern	recognition	based	on	a	
two-layer	computer	learning	
network	using	simple	addition	
and	subtraction

• Backpropagation	was	
developed	in	several	steps	
since	1960	

Biological	inspiration



Convolutional	Network



Deep	learning	timeline

1986

• Solve	general	learning	problems
• Tied	with	biological	 system

But	it	was	given	up	…

• Hard	to	train
• Insufficient	computational	resources
• Small	training	sets
• Does	not	work	well

Rumelhart,	Hinton,	and	
Williams,	Nature	1986
Neural	network	
back	propagation



Deep	learning	timeline

Rumelhart,	Hinton,	and	
Williams,	Nature	1986
Neural	network	
back	propagation

1986 2006Dark	Age	of	Neural	Network

• Loose	tie	with	biological	systems
• Flat	structures
• Specific	methods	 for	specific	tasks

• Hand-crafted	features	(GMM-HMM,	SIFT,	LBP,	
HOG)

SVM,	Boosting,	Decision	
tree,	KNN



Hand-crafted	features

SIFT Spin	 image

HoG RIFT

Textons GLOH

Coming	up	with	features	is	often	difficult,	time-
consuming,	and	requires	expert	knowledge.	



Deep	learning	timeline

Rumelhart,	Hinton,	and	
Williams,	Nature	1986
Neural	network	
back	propagation

1986 2006Dark	Age	of	Neural	Network

• Loose	tie	with	biological	systems
• Flat	structures
• Specific	methods	 for	specific	tasks

• Hand-crafted	features	(GMM-HMM,	SIFT,	LBP,	
HOG)

Kruger	TPAMI’13

SVM,	Boosting,	Decision	
tree,	KNN



Deep	learning	timeline

Rumelhart,	Hinton,	and	
Williams,	Nature 1986
Neural	network	
back	propagation

1986 2006Dark	Age	of	Neural	Network

• Stacking	many	hidden	 layers
• Better	learning	algorithms

• Unsupervised	and	layer-wised	pre-training
• Dropout	 to	prevent	overfitting
• …

SVM,	Boosting,	Decision	
tree,	KNN

Hinton	et	al,	Neural	
Computation	2006
Deep	belief	net



Deep	learning	timeline

Rumelhart,	Hinton,	and	
Williams,	Nature 1986
Neural	network	
back	propagation

1986 2006Dark	Age	of	Neural	Network

SVM,	Boosting,	Decision	
tree,	KNN

Hinton	et	al,	Neural	
Computation	2006
Deep	belief	net

2011 2012

Speech

Breakthrough	in	
computer	vision!



What	made	CV	again	respect	neural	nets?

• Completely	destroying	non-deep	learning	methods	on	a	modern	competitive	
benchmark
• ImageNet	benchmark	by	Fei-Fei Li	et	al.

• Feature	learned	from	large-scale	dataset	can	be	well	generalized	to	other	tasks	
and	datasets!



What	leads	to	the	breakthrough?

• So,	why	indeed,	did	purely	supervised	learning	with	backpropagation	not	work	
well	in	the	past?	Geoffrey	Hinton summarized	the	findings	up	to	today	in	these	
four	points:
1. Our	labeled	datasets	were	thousands	of	times	too	small.
2. Our	computers	were	millions	of	times	too	slow.
3. We	initialized	the	weights	in	a	stupid	way.
4. We	used	the	wrong	type	of	non-linearity.



What	leads	to	the	breakthrough?

Li	Fei-Fei

Data

ImageNet	with	
1	million	images	and	

labels

Algorithms

Geoffrey	Hinton	

Network	structure	design
New	training	strategies

GPU

1	Titan	X	is	20x	faster	than	
16-core	Xeon	CPUs



ImageNet	Large	Scale	Visual	Recognition	Challenge	(ILSVRC)

• The	most	famous	AI	
contest	in	the	world	
• Represent	the	state-of-
the- art	of	computer	
vision	
• 1,200,000 Training	
Images	
• 100,000 Testing	Images	
• 1000 Classes	



ImageNet	Image	Classification	Challenge	2012

Object	recognition	over	1,000,000	images	and	1,000	categories	(2	GPUs)

Rank Name Error	
rate

Description

1 U.	Toronto 0.15315 Deep	learning
2 U.	Tokyo 0.26172 Hand-crafted	

features	and	
learning	models.
Bottleneck.

3 U. Oxford 0.26979
4 Xerox/INRIA 0.27058



Deep	networks	for	ImageNet

MSRA	ResNetAlexNet



Some	observations

Prediction	accuracy

Size	of	training	data

Deep	learning

Other	machine	 learning	 tools



Why	deep	learning	works	so	well?

• Local	minima	do	not	arise	in	very	high	dimensional	space,	so	greedy-search	
gradient	optimization	is	not	trapped	in	a	"box”	
• With	distributed	representations,	it	is	possible	to	represent	exponential	
number	of	regions	with	a	linear	number	of	parameters.Multiple	layers	help	to	
implement	complex	functions	more	concisely.

Bengio et	al.,	Identifying	 and	attacking	the	saddle	point	problem	 in	high-dimensional	 non-convex	
optimization,	 2014
LeCun et.	al.,	 The	Loss	Surfaces	of	Multilayer	Networks,	2015
Goodfellow et	al.,	Qualitatively	characterizing	neural	network	optimization	problems,	 2015







Eternal	topic	on	face	recognition

Intra-personal variation

Inter-personal variation

How to separate the two types of variations?



Learn	identity	features	with	verification	signal

Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc. ICCV, 2013.



DeepID:	Learn	identity	features	with	identification	signal

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.



Face	Detection Deep	Face	Hallucination

Deep	Super-Resolution

Face	Alignment⚉

⚉

⚉ ⚉
ICCV	2015
CVPR	2016

ECCV	2014
TPAMI	2015
ICCV	2015
ECCV	2016

ECCV	2016ECCV	2014
TPAMI	2015
CVPR	2015
CVPR	2016

Face	Attribute	Recognition⚉
ICCV	2015
CVPR	2016



Face	Detection
WIDER	FACE:	A	Face	Detection	Benchmark

S.	Yang,	P.	Luo,	C.	C.	Loy,	X.	Tang
in	Proceedings	of	IEEE	Conference	on	Computer	Vision	and	Pattern	

Recognition,	2016



WIDER FACE



Face	Detection	Dataset

1998

MIT+CMU

§ Basic information
§ 130 images
§ 507 faces

§ Characteristic
§ Gray-scale,	mostly	frontal	

§ Methods
§ Viola-Jones	detector. IJCV	2001.
§ Assembly	of	part	detector.	In ECCV	2004.



Face	Detection	Dataset

2010

FDDB

1998

§ Basic information
§ 2845 images
§ 5171 faces

§ Characteristic
§ Mostly	celebrity	face.	

§ Methods
§ Domain	Adaptation	of	a	Cascade	of	

Classifiers. CVPR	2011.
§ Detecting	and	Aligning	Faces	by	Image	

Retrieval.	CVPR	2013.

MIT+CMU



Face	Detection	Dataset

2011

PASCAL FACE

1998 2010

§ Basic information
§ 851 images
§ 1,335 faces

§ Characteristic
§ Most	of	image	has	only	one	face.

§ Methods
§ Tree	Parts	Model.	CVPR,	2012.

MIT+CMU FDDB



Face	Detection	Dataset

20111998 2010

§ Basic information
§ 205 images
§ 468 faces

§ Characteristic
§ Background	is less clutter.

§ Methods
§ Boosted	Exemplar.	CVPR,	2014.	
§ Joint	Cascade.	ECCV.	2014.

2012

MIT+CMU FDDB PASCAL FACE AFW



Face	Detection	Dataset

20111998 2010 2012

MALF

2015

§ Basic information
§ 5,250 images
§ 11,931 faces

§ Characteristic
§ Most	of	faces	in	large	or	medium	scale.

§ Methods
§ HeadHunter.	ECCV.	2014.
§ Multi-view	CNN. ICMR,	2015.

MIT+CMU FDDB PASCAL FACE AFW



Face	Detection	Dataset

20111998 2010

AFW

2012

MALF

2015

IJB-A

§ Basic information
§ 24,327 images
§ 49,759 faces

§ Characteristic
§ Large	number	of	video	frames,	highly	

redundant.
§ Methods

§ Compact	Cascade	CNN. arXiv. 2015
§ Faster	R-CNN. arXiv. 2016

MIT+CMU FDDB PASCAL FACE



Diversity

MIT+CMU FDDB WIDER	FACE



Data	scale
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Richer	annotations

507 1335 2808 5171 49759 95448
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Rich	label	annotations
Occlusion

Illumination

Expression

Pose

Blur

Normal ExtremeIntermediate



WIDER	FACE	is more challenging
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WIDER	FACE	is more challenging
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WIDER	FACE	is more challenging
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WIDER	FACE	is more challenging
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WIDER	FACE	is more challenging
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Input	image

Proposal
network1

Proposal
network2

Proposal
network3

Proposal
network4

Detection
network1

Detection
network2

Detection
network3

Detection
network4

Final	results

10-30	Pixels

30-120	Pixels

120-240	Pixels

240-480	Pixels

30×30	Pixels

120×120	Pixels

240×240	Pixels

480×480	Pixels

Multiscale	proposal	
networks

Response	maps Proposals Multiscale	detection	
networks

Detection	results

Stage	1 Stage	2

Multi-scale two-stage cascade networks



WIDER FACE for testing
A	face	detector	is	trained	using	external	data,	and	tested	on	the	WIDER	FACE	test	partition.

(a)	Easy	set (b)	Medium	set (c)	Hard	set

Faceness DPM ACF VJ



WIDER FACE for training
A	face	detector	is	trained	using	WIDER	FACE	training/validation	partitions,	and	tested	on	
FDDB	dataset.

ACF

Faceness



WIDER FACE for training

ACF-WIDER

Faceness-WIDER

ACF

Faceness

A	face	detector	is	trained	using	WIDER	FACE	training/validation	partitions,	and	tested	on	
FDDB	dataset.



Webpage:	http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/



FacenessNet [ICCV’15]

Hair CNN

Eye CNN

Nose CNN

Mouth CNN

Facial Hair CNN

Input Image

Upsampling

Conv7 Feature

Conv7 Feature

Conv7 Feature

Conv7 Feature

Conv7 Feature

Upsampling

Upsampling

Upsampling

Upsampling

Ground Truth
Prediction

x

Part 
Localization



Why	using	attributes?



Generating	face	proposal

Part Proposal

NMS

Face Proposal

Spatial 
configuration

A

Spatial 
configuration

Spatial 
configuration

Spatial 
configuration

Spatial 
configuration

A A A A

Hair Eye Nose Mouth Facial Hair



Partness Map



Results	on	FDDB
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Face	Attribute	Recognition
Learning	Deep	Representation	for	Imbalanced	Classification

C.	Huang,	Y.	Li,	C.	C.	Loy,	X.	Tang
in	Proceedings	of	IEEE	Conference	on	Computer	Vision	and	Pattern	

Recognition,	2016

Code	available:	http://mmlab.ie.cuhk.edu.hk/projects/LMLE.html



CelebA face	attributes	dataset

200K celebrity	images,	
each	with 40 attribute

Liu	et	al.	“Deep	Learning	
Face	Attributes	in	the	
Wild”,	ICCV	2015

http://mmlab.ie.cuhk.edu.
hk/projects/CelebA.html



CelebA face	attributes	dataset



Previous	work
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Liu	et	al.	“Deep	Learning	Face	Attributes	in	the	Wild”,	ICCV	2015



Previous	work

• Classification	accuracy biased	to	the	majority	class
• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 )*	+	),

-*	+	-, 	

• We	adopt	a	balance	accuracy
• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = .

/
)*
-* +

),
-,

𝑁𝑝	and	𝑁𝑛	are	the	numbers	of	positive	and	negative	samples,	while	𝑡𝑝	and	𝑡𝑛	are	the	
numbers	of	true	positive	and	true	negative.	



A	more	fundamental	problem

• Without	handling	
imbalanced	class	
issue
• Prediction	biases	
toward	the	majority	
class	
• Poor	accuracy	for	
the	minority	class	

CelebA positive/negative	distribution



Existing	solutions

• Class	re-sampling	[Drummond	&	Holte,	ICML’03]

• Random	under-sampling	of	majority	class
Remove valuable	information

• Random	over-sampling	of	minority	class
Introduce	artificial	noise

• Cost-sensitive	learning	[Zadrozny et	al.,	ICDM’03]

• Assigns	higher	misclassification	costs	to	the	minority	class
How	to	design	costs?



Motivation

• Is	there	a	better	way	apart	from	sampling	and	cost	learning?

Minority	class:	very	few	
instances	with	high	degree	of	
visual	variability	

The	genuine	neighborhood	
of	these	instances	is	easy	to	
be	invaded	by	other	 imposter	
nearest	neighbors

Can	we	introduce	tighter	
constrains	to	ameliorate	
such	invasion?	



Triplet	loss	helps	to	a	certain	extent

• Class-level	constraint
• 𝑥6 – an	anchor	
• 𝑥6

* – a	positive	instance	(of	the	same	class)
• 𝑥6, – a	negative	instance	(different	class)

Class 1
minority

Class 2
majority

xi

x

p
i

x

n
i

Wearing	hat Not	wearing	hat



Triplet	loss	helps	to	a	certain	extent
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Features	extracted	from	DeepID2	model	 Triplet	embedding	

2D	feature	embedding	of	one	imbalanced	binary	face	attribute	



Contributions

• Learning	deep	feature	embedding	for	imbalanced	data	classification

• A new	method that	preserves	locality	across	clusters	and	discrimination	
between	classes

• Large	margin	classification	via	fast	cluster-wise	kNN search



Our	solution	compared	to	triplet	loss
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Features	extracted	from	
DeepID2	model	 Triplet	embedding	

2D	feature	embedding	of	one	imbalanced	binary	face	attribute	

Our	solution



Large	Margin	Local	Embedding	

• Our	goal:	
Learn	a	Euclidean	embedding	𝑓(𝑥) from	an	image	𝑥 into	a	feature	space	ℝ;,	such	that	the	
embedded	features	are	discriminative	with	minimal	possible	local	class	imbalance.

• Main	idea:
1. Find	patterns	(clusters)	in	each	class

2. Draw	classification	boundary	locally	only	between	marginal	clusters,	so	not	depends	
on	class	size

3. Learn	deep	features	to	reduce	class	imbalance	in	any	local	neighborhood



Large	Margin	Local	Embedding	
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Quintuplet	sampling

• Cluster- and	class-level
• 𝑥6 	– an	anchor
• 𝑥6

*+	– the	anchor’s	most	distant	within-
cluster	neighbor	
• 𝑥6

*<	–	the	nearest	within-class	neighbor	of	
the	anchor,	but	from	a	different	cluster	
• 𝑥6

*<<	–	the	most	distant	within-class	
neighbor	of	the	anchor	
• 𝑥6, – the	nearest	between-class	neighbor	
of	the	anchor	
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Quintuplet	sampling

• Ensure	the	following	relationship	
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D(f(xi), f(xj)) = kf(xi)� f(xj)k22 is	the	Euclidean	distance



Advantages

• Richer	information	and	a	stronger	constraint	than	the	conventional	class-level	
image	similarity	

• No	information	loss	unlike	under-sampling

• No	artificial	noise	unlike	over-sampling



How	to	obtain	the	clusters?

• Obtain	the	initial	clusters	for	each	class	by	applying	k-means	on	some	prior	
features	

• Face	attribute	recognition,	we	use	pre-trained	DeepID2	features

• Alternating	scheme	
• Refine	the	clusters	using	features	extracted	from	the	proposed	model	itself	every	𝑛
iterations	



Triple-header	hinge	loss

• To	constrain	three	margins	between	the	four	distances	
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Triple-header	hinge	loss

• To	constrain	three	margins	between	the	four	distances	
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Triple-header	hinge	loss

R2 space
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Network	architecture	(learning)

CNN

CNN

CNN

CNN

CNN
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Summary	of	steps

● Clustering	by	k-means

● Generate	quintuplets	from	
cluster	&	class	membership

● Re-sample	batches	equally	
from	each	class

● Forward	their	quintuplets	to	
CNN	to	compute	loss

● Back-propagation

Feature-based	clustering

Feature	learning/updating

Every	5000	iterations



Why	is	it	effective?

• Triplet	loss
• The	similarity	information	is	only	extracted	at	the	class-level
• Homogeneously	collapse	each	class	irrespective	of	their	different	degrees	of	variation	
• When	a	class	has	high	data	variability,	it	is	also	hard	to	maintain	the	class-wise	margin	

• Triple-header	hinge	loss
• Generates	diverse	quintuplets	that	differ	in	the	membership	of	both	clusters	and	classes
• Captures	the	considerable	data	variability	within	each	class	
• Can	easily	enforce	the	local	margin	



Nearest	neighbor	imbalanced	classification

• We	modified	kNN in	two	ways:
1. In	the	well-clustered	embedding	space	LMLE,	we	treat	each	cluster	as	a	class-specific	

exemplar,	and	perform	a	fast	cluster-wise kNN search.
2. Use	a	large	margin	decision

Let	𝜙(𝑞) be	query	𝑞's	local	neighborhood	
defined	by	its	kNN cluster	centroids	{𝑚6}6<.B 		

yq = argmax

c=1,...,C

0

B@ min

mj2�(q)
yj 6=c

D(f(q), f(mj))� max

mi2�(q)
yi=c

D(f(q), f(mi))

1

CA



CelebA dataset	(100k	train,10k	test)

Class	imbalance	level	(=	|positive	class	rate-50|%)	

Anet
classification	accuracy	=	
87.24%,	
balance	accuracy	=	
80.02%

Ours	
classification	accuracy	=	
90.35%,	
balance	accuracy	=	
84.25%



CelebA dataset	(100k	train,10k	test)

• Code	available
• http://mmlab.ie.cuhk.edu.hk/pr
ojects/LMLE.html
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Face	Hallucination
Deep Cascaded Bi-Network for Face Hallucination

S. Zhu, S. Liu, C. C. Loy, X. Tang
in Proceedings of European Conference on Computer Vision, 

2016

Code available: https://github.com/zhusz/ECCV16-CBN







Low	Resolution	
Input



Low	Resolution	
Input





Face	Detection Deep	Face	Hallucination

Deep	Super-Resolution

Face	Alignment⚉

⚉

⚉ ⚉
ICCV	2015
CVPR	2016

ECCV	2014
TPAMI	2015
ICCV	2015
ECCV	2016

ECCV	2016ECCV	2014
TPAMI	2015
CVPR	2015
CVPR	2016

Face	Attribute	Recognition⚉
ICCV	2015
CVPR	2016



Face	Alignment	by	Coarse-to-Fine	Shape	Searching

Full	version	code	available:	https://github.com/zhusz/CVPR15-CFSS

S.	Zhu,	C.	Li,	C.	C.	Loy,	X.	Tang,	Face	Alignment	 by	Coarse-to-Fine	Shape	Searching,	CVPR	2015

40	ms per-frame	on	MATLAB



Super-resolution	CNN	(SRCNN)

Full	version	code	available:	http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

C.	Dong,	 C.	C.	Loy,	K.	He,	X.	Tang,	Image	Super-Resolution	 Using	Deep	Convolutional	 Networks,	TPAMI	2015

Put	together	operations	 that	were	traditionally	treated	individually

Feature	extraction Non-linear	Mapping Reconstruction

Bicubically 
upsampled low-
resolution image 

(input)



Fast	Super-resolution	CNN	(FSRCNN)

Full	version	code	available:	http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html

C.	Dong,	 C.	C.	Loy,	X.	Tang,	Accelerating	the	Super-Resolution	 Convolutional	Neural	Network,	ECCV	2016

40x	faster	than	SRCNN,	real-time	on	CPU,	with	no	performance	degradation

Feature	extraction Non-linear	Mapping DeconvolutionExpandingShrinking

…

Low-resolution 
image (input)

High-resolution 
image (input)



Low	Resolution	
Input

SRCNN Existing	Hallucination	
Methods OUR	METHOD High-Resolution	

Image



General Super-Resolution

• Recoveringwithout synthesizing
• Cannot cope with very low-
resolution faces
• Not using face structural priors

Dong TPAMI’15 Salvador ICCV’15 Wang ICCV’15

Dong,	C.,	Loy,	C.C.,	He,	K.,	Tang,	X.:	Image	super-resolution	 using	deep	convolutional	networks.	In:	PAMI.	(2015)

Wang,	Z.,	Liu,	D.,	Yang,	J.,	Han,	W.,	Huang,	T.:	Deep	networks	for	image	superresolution with	sparse	prior.	In:	ICCV.	(2015)
Salvador,	 J.,	Perez-Pellitero,	E.:	Naive	bayes super-resolution	 forest.	In:	ICCV.	(2015)



Existing Face Hallucination Approaches

• Visually dissimilar
• Assumes correct alignments
• Exemplar based, slow

Yang CVPR’13 Tappen ECCV’12 Jin CVPR’15

Yang,	C.Y.,	Liu,	S.,	Yang,	M.H.:	Structured	 face	hallucination.	In:	CVPR.	(2013)
Tappen,	M.F.,	Liu,	C.:	A	bayesian approach	to	alignment-based	 image	hallucination.	In:	ECCV.	(2012)
Jin,	Y.,	Bouganis,	C.S.:	Robust	multi-image	based	blind	 face	hallucination.	In:	CVPR.	(2015)



The hallucination problem

Recovering Synthesizing

Existing face hallucination
approaches

No Yes

General super-resolution
approaches

Yes No

Original low-res Spatial cues (face prior)

Existing face hallucination
approaches

Information not
effectively used

Yes

General super-resolution
approaches

Yes Neglected

Two desired capabilities

Two information sources



How to enforce spatial cues?

• The chicken-and-egg dilemma
• Face	hallucination	vs. dense	face	correspondence	field

• Cascaded frameworks
• General super-resolution
• Face alignment



Contributions

• Task-alternating cascade framework
• Between face	hallucination	or	dense	face	correspondence	field

• A gated	deep	bi-network	
• Effectively	exploits face	spatial	prior

Code available: https://github.com/zhusz/ECCV16-CBN



The	dense	correspondence	 field	prediction	step

The	face	hallucination	step

Task-alternating cascade framework



Gated Bi-Network
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The	face	hallucination	step



The response of each branch

EWk
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Common Branch

High-Frequency Branch
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Face	structural	prior



Synthesis guided by face structural prior

+



Face	prior	warping

+



High-frequency face prior

• Preliminary	high-frequency	map
• Residual	image	between	the	original	image and bicubic interpolation of low-res
• Warp	the	residual	map	into	the	mean	face	template	domain
• Average	the	magnitude	of	the	warped	residual	maps	over	all	training	images
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High-Frequency Branch
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Learning the gated bi-network
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Quantitative results



Ablation study
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Qualitative results (large pose)

Yang,	C.Y.,	Liu,	S.,	Yang,	M.H.:	Structured	 face	hallucination.	In:	CVPR.	(2013)
Liu,	C.,	Shum,	H.Y.,	Freeman,	W.T.:	Face	hallucination:	Theory	and	practice.	IJCV	(2007)

Yang
CVPR’13

Yang
CVPR’13

Yang
CVPR’13

Liu
IJCV’07

Liu
IJCV’07

Liu
IJCV’07

Wang
ICCV’15

Wang
ICCV’15

Wang
ICCV’15



Qualitative results

General Super Resolution Existing Face Hallucination



Bicubic	Interpolation Deep	Face	Hallucination



Bicubic	Interpolation Deep	Face	Hallucination



Bicubic	Interpolation Deep	Face	Hallucination



Over-synthesis

Ghosting	effect

Inaccurate	details



Lower	bound		



Low-res face alignment

• Face alignment at low-res as by
product
• iBUG dataset
• 5pxIOD input

Tzimiropoulos, G.: Project-out cascaded regression with an application to face alignment. In: CVPR. (2015) 



Low-res face verification

• Evaluate identity	preserving	property
• Joint	Bayesian	approach retrained
based on input resolution
• LFW	with	unrestricted	protocol	
• 5pxIOD input



Conclusion

• Hallucinating	 faces	under	substantial	shape	deformation	and	appearance	
variation

• Adaptively	refine	the	dense	correspondence	field	and	hallucinate	faces	in	an	
alternating	manner

• Guided	by	the	high-frequency	prior,	our	framework	can	leverage	spatial	cues	in	
the	hallucination	process



Low	Resolution	
Input



Low	Resolution	
Input

Thanks!
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