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Deep learning is not new
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branches networks
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Convolutional Network

Input layer (S1) 4 feature maps

1

1 (Cl) 4 feature maps (52) 6 feature maps (C2) 6 feature maps
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Deep learning timeline

Rumelhart, Hinton, and
Williams, Nature 1986
Neural network

back propagation

1986

* Solve general learning problems
* Tied with biological system
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But it was given up ...

tput layer e Hard to train

e |nsufficient computational resources
hidden layer 1 hidden layer 2 * Small training sets
* Does not work well
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Deep learning timeline

Rumelhart, Hinton, and

Williams, Nature 1986

Neural network SVM, Boosting, Decision
back propagation tree, KNN

Dark Age of Neural Network 2006

* Loose tie with biological systems
e Flat structures
» Specific methods for specific tasks
 Hand-crafted features (GMM-HMM, SIFT, LBP,
HOG)



Hand-crafted features

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.
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Deep learning timeline

Rumelhart, Hinton, and

Williams, Nature 1986

Neural network SVM, Boosting, Decision
back propagation tree, KNN

Dark Age of Neural Network 2006

Deep Hierarchy Flat Processing Scheme . . . .
* Loose tie with biological systems
zlelzlsllz s |2 |s * Flat structures
% |8 i 3 2|3 |E » Specific methods for specific tasks
dalalalolelm el < * Hand-crafted features (GMM-HMM, SIFT, LBP,
Level 5A Level 5B x|l fx | |55 ]5]=

Level 4 SRR R HOG)

Level 3

Level 2

Level 1 Some kind of Features

Kruger TPAMI’13



Deep learning timeline

Rumelhart, Hinton, and Hinton et al, Neural
Williams, Nature 1986 Computation 2006
Neural network SVM, Boosting, Decision Deep belief net
back propagation tree, KNN

Dark Age of Neural Network
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RBM e Stacking many hidden layers
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Deep learning timeline

Breakthroughin

Rumelhart, Hinton, and Hinton etal, Neural computer vision |
Williams, Nature 1986 Computation 2006

Neural network SVM, Boosting, Decision Deep belief net

back propagation tree, KNN Speech

Dark Age of Neural Network

deep learning results

task hours of DNN-HMM | GMM-HMM
training data with same data

Switchboard (test set 1) 309 18.5 274

Switchboard (test set 2) 309 16.1 236

English Broadcast News | 50 17.5 18.8

Bing Voice Search 24 30.4 36.2

(Sentence error rates)

Google Voice Input 5,870 12.3

Youtube 1.400 47.6 523

W
Deep Networks Advance State of Art in Speech /4
Deep Learning leads to breakthrough in speech recognition at MSR. M’C’OSO”



What made CV again respect neural nets?

* Completely destroying non-deep learning methods on a modern competitive
benchmark

* ImageNet benchmark by Fei-Fei Li et al.

* Feature learned from large-scale dataset can be well generalized to other tasks
and datasets!



What leads to the breakthrough?

* So, why indeed, did purely supervised learning with backpropagation not work
well in the past? Geoffrey Hinton summarized the findings up to today in these
four points:

Our labeled datasets were thousands of times too small.

Our computers were millions of times too slow.

We initialized the weights in a stupid way.

We used the wrong type of non-linearity.

> w N e



What leads to the breakthrough?

Li Fei-Fei Geoffrey Hinton

Algorithms

ImageNet with Network structuredesign
1 million images and New training strategies
labels

1 Titan X is 20x faster than
16-core Xeon CPUs




ImageNet Large Scale Visual Recognition Challenge (ILSVRC
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Represent the state-of-
the- art of computer
vision

1,200,000 Training

Images

100,000 Testing Images
1000 Classes




ImageNet Image Classification Challenge 2012

A W N -

U. Toronto 0.15315
U. Tokyo 0.26172
U. Oxford 0.26979
Xerox/INRIA  0.27058

Deep learning

Hand-crafted
features and
learning models.
Bottleneck.

Object recognition over 1,000,000 imagesand 1,000 categories (2 GPUs)



Deep networks for ImageNet

Year 2010 Year 2012 Year 2014 Year 2015
NEC-UIUC AlexNet GooglLeNet VGG MSRA ResNet
_‘ = image
ﬁ ] Eq? conv-64
conv-64
] ‘E“ maxpool
: e R conv-128
= » conv-128
‘ Dense grid descriptor: ’ L lep L 5 maxpool
HOG, LBP f; g = FIE conv-256
¢ 414 e e conv-256
Coding: local coordinate, A P E’Ef e : maxpoo!
super-vector < TE | 7 SN conv-512
¢ g = : ~__. : conv-512
[ s - maxpool
Pooling, SPM e | 5 e SR
.- € SE . conv-512
¢ & ~—_— " :E maxpool
Linear SVM > = , ' :zx:
~ - o e L8 FC-1000
: Convolution= 7 softmax
Pooling s
Other
[Lin CVPR 2011] [Krizhevsky NIPS 2012] [Szegedy arxiv 2014]  [Simonyan arxiv 2014]




Some observations

Prediction accuracy

Deep learning

Other machine learning tools

Size of training data



Why deep learning works so well?

* Local minima do not arise in very high dimensional space, so greedy-search
gradient optimization is not trapped in a "box”

e With distributed representations, it is possible to represent exponential
number of regions with a linear number of parameters. Multiple layers help to
implement complex functions more concisely.

Bengio et al., Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization, 2014

LeCun et. al., The Loss Surfaces of Multilayer Networks, 2015

Goodfellow et al., Qualitatively characterizing neural network optimization problems, 2015









Eternal topic on face recognition

Inter-personal variation

How to separate the two types of variations?



Learn identity features with verification signal

Convolutional Fully-
layer 1 Convolutional connected
9 layer 2 Convolutional layer
14 1 layer 3 Convolutional, Soft-max
;\ i layer 4 / layer
2t 2@{ﬁ§ PI A e— 1
18 ~ /16 - 3 || 4 e 312 / . )
20 80 -
40 50 60 A
50 40 40 . Max-pooling 80
20 Max-pooling Malé-pec;ozmg layer 3
Input layer layer 1 Y

Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc.ICCV, 2013.



DeeplD: Learn identity features with identification signal

Convolutional Solft-max
layer 1 Convolutional ayer

layer 2 Convolutional Convolutional -9

1 layer 3 layer 4 16‘0
40 60 el *

50 a0 40 i 60 Max- poollng a
1 Max-pooling al’;'peoroz'”g layer 3
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(DeeplD)

Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.
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@ Deep Super-Resolution

ECCV 2014
TPAMI 2015
ICCV 2015
ECCV 2016
/ v
@ Face Detection @ Face Alignment @ Deep Face Hallucination
ICCV 2015 ECCV 2014 ECCV 2016 I
CVPR 2016 TPAMI 2015
CVPR 2015
CVPR 2016

@ Face Attribute Recognition

ICCV 2015
CVPR 2016



Face Detection

WIDER FACE: A Face Detection Benchmark
S.Yang, P. Luo, C. C. Loy, X. Tang
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2016



WIDER FACE



Face Detection Dataset

' @" S9N = Basic information
" S -

= 1201images
= 507 faces

= Characteristic
= Gray-scale, mostly frontal

B " = Methods

= Viola-Jones detector. |JCV 2001.
= Assembly of part detector. In ECCV 2004.

MIT+CMU



Face Detection Dataset

1

= Basic information

= J8451mages
= 5171faces

= Characteristic
=  Mostly celebrity face.

= Methods

* Domain Adaptation of a Cascade of
Classifiers. CVPR 2011.

= Detecting and Aligning Faces by Image
Retrieval. CVPR 2013.

MIT+CMU FDDB



Face Detection Dataset

= Basic information
= 251 1images
= 1,335faces

= Characteristic
= Most of image has only one face.

= Methods
= Tree Parts Model. CVPR, 2012.

MIT+CMU FDDB PASCAL FACE



Face Detection Dataset

. = = Basicinformation

2 2 o images
| ,7 3, faces
. = Characteristic

Ve -

-

=  Backgroundis less clutter.

= Methods

" Boosted Exemplar. CVPR, 2014.
= Joint Cascade. ECCV. 2014.

MIT+CMU FDDB PASCALFACE AFW



Face Detection Dataset

= Basic information
= 5,7501images
= 11,931 faces

= Characteristic
= Most of facesin large or medium scale.

= Methods

= HeadHunter. ECCV. 2014.
=  Multi-view CNN. ICMR, 2015.

MIT+CMU FDDB PASCALFACE AFW MALF



Face Detection Dataset

= Basic information

INERES
faces

"J Characteristic

=" Large number of video frames, highly
redundant.

= Methods

=  Compact Cascade CNN. arXiv. 2015
= Faster R-CNN. arXiv. 2016

MIT+CMU FDDB PASCALFACE AFW MALF 1JB-A



Diversity

MIT+CMU FDDB WIDER FACE



Number of labeled faces

400000

350000

300000

250000

200000

150000

100000

50000

468

AFW

MIT+CMU

Data scale

PASCAL FDDB MALF
FACE

[JB-A

WIDER FACE



Number of annotations

2500000 -

2000000 A

1500000 -

1000000 -

500000 -

Richer annotations

507 1335 2808

MIT+CMU PASCAL AFW FDDB JB-A MALF
FACE

WIDER FACE



Detection Rate
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Detection Rate
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Occlusion

Pose

Expression
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WIDER FACE is more challenging
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WIDER FACE is more challenging
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WIDER FACE is more challenging
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WIDER FACE is more challenging
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WIDER FACE is more challenging
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Multi-scale two-stage cascade networks

10-30 Pixels

30-120 Pixels

Final results

Input image

120-240 Pixels

240-480 Pixels



Precision

WIDER FACE for testing

A face detector is trained using external data, and tested on the WIDER FACE test partition.

(a) Easy set

Recall

B Faceness

Precision

(b) Medium set

1 T 3
0_8 ...................................................................
0.6k XN ]

[ | ] ]}
0_4 ....................................................................
[} Yo SRR U, T I PR S ———

Oﬂ 1 i = 1 i a

0 0.2 0.4 0.6 0.8 i |

Recall
DPM B ACF

Precision

1 - ‘. 1
04f— i l .............................
I T e

1
0“ 1 i = i 1
0 0.2 0.4 0.6 0.8 1
Recall

(c) Hard set

. V)



WIDER FACE for training

A face detector is trained using WIDER FACE training/validation partitions, and tested on
FDDB dataset. " ,

Y o |
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False Positive



WIDER FACE for training

A face detector is trained using WIDER FACE training/validation partitions, and tested on
FDDB dataset. r

-

B Faceness-WIDER
B Faceness

ACF-WIDER
s ACF

0.65

0 500 10-00 1500 2000
False Positive



WIDER FACE: A Face Detection Benchmark

Multimedia Laboratory, Department of Information Engineering, The Chinese University of Hong Kong

IHlumination

« 2016-04-17 The face attribute labels i.e. pose and occlusion are available. i
» 2015-11-19 Results of four baseline methods: ACF, Faceness, Multiscale Cascade CNN, and Two-stage CNN are released.
« 2015-11-19 WIDER FACE v1.0 is released with images, face bounding box annotations, and event category annotations.

Webpage: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/




FacenessNet [ICCV'15]
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Input Image X

Hair CNN

Nose CNN

Mouth CNN

Facial Hair CNN

Conv7 Feature

Upsampling

Conv7 Feature

Upsampling

Conv7 Feature

Upsampling

Conv7 Feature

>

Upsampling

Conv7 Feature

Upsampling

Part
Localization

B Ground Truth
Prediction



Why using attributes?

(c) Fine-tuned by (d) Fine-tuned by (e) Fine-tuned by
image pre-trained  classifying face vs. classifying 25 classifying grouped
model non-face images  face attributes face attributes w.r.t
facial parts




Generating face proposal

Mouth Facial Hair

Face Proposal

uorRINSIJUOd
[eneds

uoneIN3IFuod [ e
[eneds

uoneINSIFuod
renedg

uoneIn3yuod
[enedg

uoneIn3yuod
renedg

Part Proposal



Partness Map

Mouth Beard



Results on FDDB

== Faceness—Net (0.909882)
==HeadHunter (0.880874)
Joint Cascade (0.866757)
Yan et al. (0.861535)
Acf—multiscale (0.860762)
Cascade CNN (0.856701)
Boosted Exampler (0.856507)
DDFD (0.848356)
SURF Cascade multiview (0.840843)
PEP—Adapt (0.819184)
XZJY (0.802553)
==7Zhu et al. (0.774318)
==Segui et al. (0.769097)
==Li et al. (0.768130)
==Jain et al. (0.695417)
==Subburaman et al. (0.671050)
==Viola Jones (0.659254)
1500 2000|—Mikolajczyk et al. (0.595243)

Recall

0-2 500 1000

False Positive




Face Attribute Recognition

Learning Deep Representation for Imbalanced Classification
C. Huang, Y. Li, C. C. Loy, X. Tang
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2016

Code available: http://mmlab.ie.cuhk.edu.hk/projects/LMLE.html



CelebA face attributes dataset
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CelebA face attributes dataset

Wearing

Eyeglasses
yee Hat

Bangs

Mustache

Oval Face



Previous work

(b) LNet,

Wavy Hair
No Beard
High Cheekbones
Smiling

(d) Extracting features to predict attributes

Liu et al. “Deep Learning Face Attributes in the Wild”, ICCV 2015



Previous work

 Classification accuracy biased to the majority class

tp+tn)
Np + Nn

* accuracy = (

 We adopt a balance accuracy

1(t tn
* accuracy = (NI; + Nn)

Np and Nn are the numbers of positive and negative samples, while tp and tn are the
numbers of true positive and true negative.



A more fundamental problem

1 CelebA positive/negative distribution

* Without handling 0 x 10
i m b a |a n Ce d C | a SS * The number on top of each bar denotes the positive percentage (%) -
Issue

* Prediction biases
toward the majority
class

* Poor accuracy for
the minority class k]
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Existing solutions

* Class re-sampling [Drummond & Holte, ICML 03]

 Random under-sampling of majority class
Remove valuable information

* Random over-sampling of minority class
Introduce artificial noise

e Cost-sensitive learning [Zadrozny et al., ICDM’03]

* Assigns higher misclassification costs to the minority class
How to design costs?



Motivation

* Is there a better way apart from sampling and cost learning?

Can we introduce tighter
constrains to ameliorate

such invasion? N ’
O

Minority class: very few
instances with high degree of
visual variability

The genuine neighborhood h S
of these instances is easy to

be invaded by other imposter

nearest neighbors



Triplet loss helps to a certain extent

* Class-level constraint Class 2
majort
* x; —an anchor jortty
» x” - a positiveinst fth | 4 A
i positiveinstance (of the same class) Class 1
° xl?1 — a negative instance (different class) Minority

Wearing hat Not wearing hat



Triplet loss helps to a certain extent

2D feature embedding of one imbalanced binary face attribute

4 1
T L
— Class 1:cluster I | | ++:£i++ e, 4.“-'? © 4+
— Class 1:cluster2 | - f.“@ f‘; 'f.*‘:.j + -
® Class 2: cluster 1 | °,ﬁ¢%ﬁ jjﬁ:}..ﬁ%i S
: . HHT Ly ++#,
® Class 2: cluster 2 | e T L4 N
® Class 2:cluster 3 |} . °* N HE } #f* %4.‘5 ﬁ‘:
+ + 0 0®
® Class 2: cluster 4 | N | ++++**++, &
Class 2: cluster 5 | :. o +ﬁi+++’:*"4 ..
: °.oo. ke
. -
° . ® 1

Features extracted from DeeplD2 model Triplet embedding



Contributions

* Learning deep feature embedding for imbalanced data classification

* A new method that preserveslocality across clusters and discrimination
between classes

* Large margin classification via fast cluster-wise kNN search



Our solution compared to triplet loss

—+ Class 1:
—|— Class 1:

® C(lass 2:
® Class 2:
® Class 2:
® Class 2:

Class 2:

cluster 1
cluster 2
cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

2D feature embedding of one imbalanced binary face attribute

4

Features extracted from
DeeplD2 model

Triplet embedding

Our solution




Large Margin Local Embedding

e Qur goal:

Learn a Euclidean embedding f (x) from an image x into a feature space R%, such that the
embedded features are discriminative with minimal possible local class imbalance.

* Main idea:
1. Find patterns (clusters) in each class

2. Draw classification boundary locally only between marginal clusters, so not depends
on class size

3. Learn deep features to reduce class imbalance in any local neighborhood



Large Margin Local Embedding

Shared parameters

SSO[ d3ury Iopeay-orduiy,

Quintuplet Embedding



Quintuplet sampling

e Cluster- and class-level

; —an anchor

xlp+ —the anchor’s most distant within-

cluster neighbor
Class 1 minority

Class 2 majority

-

xlp_ —the nearest within-class neighbor of e ~
the anchor, but from a different cluster 7~ Cluster 2
xlp" —the most distant within-class P

neighbor of the anchor Y
x;* — the nearest between-class neighbor xi
of the anchor \Clus“’” i)

Cluster j

~

Cluster 1 /




Quintuplet sampling

* Ensure the following relationship

Class 2 majority

D(f(x1)7 f(il??)) > Class 1 minority /Clusterj \
D(f (), f(a™7)) > G Q
D(f(xi), f(z; ) > < \\i

D(f(CEZ), f(gjf+)) \Clusterl T //\ Cluster 1/




Advantages

* Richer information and a stronger constraint than the conventional class-level
image similarity

* No information loss unlike under-sampling

* No artificial noise unlike over-sampling



How to obtain the clusters?

e Obtain the initial clusters for each class by applying k-means on some prior
features

* Face attribute recognition, we use pre-trained DeeplID2 features

e Alternating scheme

* Refine the clusters using features extracted from the proposed model itself every n
iterations



Triple-header hinge loss

* To constrain three margins between the four distances

min Y (g + 7 + 05) + W3
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Triple-header hinge loss

* To constrain three margins between the four distances

min Y (g + 7 + 03) + AW|3

D(f(z:), f(z) > o
D(f (@), f(z7 7)) > max (0, g1 + D(f (), f(2T)) — D(f(w:), f(z07))) < e
D(f(zs), f(2P7)) > max (0, g2 + D(f(x:), f(x} 7)) = D(f(xs), f(x} 7)) <
D(f(z:), f(z2)) max (0,5 + D(f(x:), f(a0 7)) = D(f (), f(2}))) < o4

\V/ia giZOJ 7'7;207 O-ZZO



Triple-header hinge loss

RZspace 1 min Z(si + 7+ 03) + A[W|3
Class 1 \  max (0,91 + D(f (), f(z2T)) = D(f (), f(27))) < &y
,,@/ max (0,g> + D(F(x), f(z7)) = D(f (i), f(a? 7)) <
max (0, g3 + D(f (i), f(z} 7)) — D(f(z:), f(2}))) < o3
Class 2

\V/ia giZOJ 7'7;207 O-ZZO
OO clusters



Network architecture (learning)

SSO[ 93u1y Jopeay-orduiy,

Quintuplet Embedding



Summary of steps

Every 5000 iterations

Feature-based clustering

® C(Clusteringbyk-means

® Generatequintupletsfrom
cluster & class membership

Feature learning/updating

Re-sample batches equally
from each class

Forward their quintuplets to
CNN to computeloss

Back-propagation



Why is it effective?

* Triplet loss
* The similarity information is only extracted at the class-level
* Homogeneously collapse each class irrespective of their different degrees of variation
* When a class has high data variability, it is also hard to maintain the class-wise margin

* Triple-header hinge loss
* Generates diverse quintupletsthat differ in the membership of both clusters and classes
* Capturesthe considerable data variability within each class
* Can easily enforce the local margin



Nearest neighbor imbalanced classification

* We modified kNN in two ways:
1. Inthe well-clustered embedding space LMLE, we treat each cluster as a class-specific
exemplar, and perform a fast cluster-wise kNN search.
2. Use a large margin decision

Let @ (q) be query g's local neighborhood
defined by its kNN cluster centroids {mi}{-‘_l

yg = argmax | min D(f(q), f(m;)) — max D(f(q), f(mi))
c=1,...,C mjei(Q) m;ﬁgﬁ(Q)
Yj;7¢ 1=



CelebA dataset (100k train,10k test)

g Z 8
_ < | 2 =) z - Q| %
S = | 2 = 212 |, 2|l 5|5 |.E
) o, & - = - 0 - = ) — = | 2 E -
21O L] &2 Z |2 2|2 |82 &) 2 - ||| 3| 5
sl |28l Ll =2l2B3B|l2(5l2|l2|E|s|2|2]2]s
< |2 |v|Z2|Z |2z |z|Cc|la|l<|le|la|la|F|la|lale|Z2|Zz|a
Imbalance level 1 2 |2 (3 |58 |11 (18222223 |26|26|27 (2829 |30]| 30|31 |33]35
TriplecKNN [54] [ 83 192 (92 |91 | 86 |91 [ 88 |77 |61 |61 |73 |82 |55|68|75|63 76|63 |69 82| 8l
PANDA [+7] 85 |93 |98 |97 | 89 |99 |95 |78 |66 | 67 |77 | 8 | 56|72 |78 |66 |85 (67|77 | 87|92
ANet [ V] 87 196 |97 |95 |89 [99 |9 | 81 |67 |69 76|19 |57 |78 |84 |69 |83 |70 | 83|93 9
LMLE-KNN 88 196 199 |99 |92 199 |98 | 83 |68 | 72 [ 79 192|160 | 80 |87 | 73 |87 |73 |83 |96 | 98
z | 2
Slal2|D|=|2|2|2|28 519|552 .
Sl =% 2|25 |4|2|9Q|g|l2|E2|a|T|2|F|T| 8 it
sl S| sleE|l~|8|&5|2|2| 2|2 |2|E|E&8|3|lalzz2|= =
S|l |le|ls|l2|2|é8|2|Z2|=|2|l2|2|3|88|22|= >
@ |Z|Z |||l | m|Z | Q|0 |le|(lalz|Q|la|0C| 2|2 <
Imbalance level 35136 | 38|38 |39 |42 |43 |44 |44 |44 |44 | 44 (45145 |45 |46 | 46| 46| 48
Triplet-KNN [4] | 81 | 68 | SO [ 47 | 66 | 60 | 73 | 82 | 64 | 73 | 64 | 71 |43 | 84 [ 60 [ 63 | 72|57 |75 72
PANDA [ 1] 91 [ 74 | 51 | 51 |76 | 67 | 85 | 88 | 68 | 84 | 65 |81 | 50190 |64 |69 |79 |63 | 74 77
ANet [ Y] 90 | 82 |59 | 57|81 [T70179195|76 |8 |70 |79 |56 |90 | 68|77 | 85| 6l 3 80
LMLE-KNN 90 | 82 |59 |59 |82 ([76[19 |98 | 78 195 |79 |88 (59199 |74 |80 ]91 )| 73] 9 84

Class imbalance level (= |positive class rate-50|%)

Anet
classification accuracy =
87.24%,

balance accuracy =
80.02%

Ours

classification accuracy =
90.35%,

balance accuracy =
84.25%



CelebA dataset (100k train,10k test)

Ao * Code available
B Over Anet R . :
OXZﬁpﬁ?\IDA hjctp.//mmlab.le.cuhk.edu.hk/pr
301 |M Over Triplet-KNN [ 5 OJECtS/LM LE.html
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Class imbalance level (%) Relative accuracy gain (%)

40



Face Hallucination

Deep Cascaded Bi-Network for Face Hallucination

S. Zhu, S. Liu, C. C. Loy, X. Tang
in Proceedings of European Conference on Computer Vision,
2016

Code available: https://github.com/zhusz/ECCV16-CBN
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I
@ Deep Super-Resolution

ECCV 2014
TPAMI 2015
ICCV 2015
ECCV 2016
/ v
@ Face Detection @ Face Alignment @ Deep Face Hallucination
ICCV 2015 ECCV 2014 ECCV 2016 I
CVPR 2016 TPAMI 2015
CVPR 2015
CVPR 2016

@ Face Attribute Recognition

ICCV 2015
CVPR 2016



Face Alignment by Coarse-to-Fine Shape Searching

40 ms per-frame on MATLAB

Full version code available: https://github.com/zhusz/CVPR15-CFSS
S. Zhu, C. Li, C. C. Loy, X. Tang, Face Alignment by Coarse-to-Fine Shape Searching, CVPR 2015




Super-resolution CNN (SRCNN)

n, feature maps ng feature maps
of low-resolution image of high-resolution image

Jf2 X fo fa X [3

=i -

—

Bicubically
upsampled low-
resolution image

(input)

e —

/

Feature extraction Non-linear Mapping Reconstruction

Put together operations that were traditionally treated individually
Full version code available: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
C. Dong, C.C. Loy, K. He, X. Tang, Image Super-Resolution Using Deep Convolutional Networks, TPAMI 2015



Fast Super-resolution CNN (FSRCNN)

High-resolution
image (input)

Low-resolution
image (input)

=" A
y

Feature extraction Shrinking Non-linear Mapping Expanding Deconvolution

40x faster than SRCNN, real-time on CPU, with no performance degradation
Full version code available: http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
C. Dong, C.C. Loy, X. Tang, Accelerating the Super-Resolution Convolutional Neural Network, ECCV 2016



Low Resolution SRCNN Existing Hallucination High-Resolution

OUR METHOD

Input Methods Image




General Super-Resolution

* Recovering without synthesizing

e Cannot cope with very low-
resolution faces

-
. . ‘ ‘
* Not using face structural priors
é :

Dong TPAMI’15 Salvador ICCV’15 Wang ICCV’15

Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. In: PAMI. (2015)

Salvador, J., Perez-Pellitero, E.: Naive bayes super-resolution forest. In: ICCV. (2015)
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image superresolution with sparse prior. In: ICCV. (2015)



Existing Face Hallucination Approaches

* Visually dissimilar
* Assumes correct alighments
* Exemplar based, slow

Yang CVPR’13 Tappen ECCV’12 Jin CVPR’15

Yang, C.Y., Liu, S., Yang, M.H.: Structured face hallucination. In: CVPR. (2013)
Tappen, M.F,, Liu, C.: A bayesian approach to alignment-based image hallucination. In: ECCV. (2012)
Jin, Y., Bouganis, C.S.: Robust multi-image based blind face hallucination. In: CVPR. (2015)



The hallucination problem

Two desired capabilities

Existing face hallucination
approaches

General super-resolution
approaches

Two information sources

Existing face hallucination
approaches

General super-resolution
approaches

No

Yes

Information not
effectively used

Yes

Yes

No

Yes

Neglected



How to enforce spatial cues?

* The chicken-and-egg dilemma
* Face hallucinationvs. dense face correspondence field

* Cascaded frameworks
* General super-resolution
* Face alignment



Contributions

* Task-alternating cascade framework
* Between face hallucination or dense face correspondence field

* A gated deep bi-network
 Effectively exploits face spatial prior

Code available: https://github.com/zhusz/ECCV16-CBN



Task-alternating cascade framework

The dense correspondence field prediction step

The face hallucination step



Gated Bi-Network

Common Branch

ok

i~a—®

N

Gate

{11}, EV}

v
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High-Frequency Branch
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The face hallucination step



The response of each branch

(133 EVj—

Gy

(a) Bicubic (b) Common (c) High-Freq. (d) CBN (e) Original



Face structural prior




Synthesis guided by face structural prior




Face prior warping




High-frequency face prior

* Preliminary high-frequency map
* Residual image between the original image and bicubicinterpolation oflow-res
* Warp the residual map intothe mean face template domain
* Average the magnitude of the warped residual maps over all training images

E W(g:E ()

{ >
’;,‘g"nm S 0
VAN
"“"‘1"1'9
o\ ~
<
1) RS ’
x,=W(z,) =X
A EM(x,)=E

(a) Mean Face M (b) Face image 1 (c¢) High-Frequency Prior E  (d) Warped Prior E"




Learning the gated bi-network

1| La=|Tpi—tTx_y — GAl%

Common Branch

High-Frequency Branch G,

2| Lp = Z I(EY). ® Te— e—1 — GB)||F

1
S

{TIk-1; EV}

—o[w




Quantitative results

(I) General super-resolution

(IT) Face hallucination

Dataset Igf“t Bicubic | A+ | SRCNN | CSCN | NBF | PCA o o CBN
“e [50] [14] [15] no] | 51,121 | 192 8]

MultiPIE | 4x 33.66 | 34.53 | 34.75 | 35.10 | 34.73 | 33.98 | 34.07 | 34.31 | 35.65

(.900) | (.910) | (.913) | (.920) | (.912) | (.904) | (.907) | (.903) | (.926)

2% 34.78 | 35.89 | 36.12 | 36.47 | 35.08 3 : : 36.66

PubFig | 3x 31.52 | 32.02 | 32.13 | 32.88 | 32.09 _ _ ; 33.17

4% 20.61 | 30.02 | 30.15 | 30.79 | 30.16 _ ] ; 31.28

2% 41.96 | 42.77 | 42.95 | 43.37 | 43.01 : : : 43.51

HELEN | 3x 38.52 | 38.89 | 39.10 | 39.57 | 39.15 ; ] ] 39.78

4% 36.59 | 36.81 | 36.87 | 37.61 | 36.89 ; ] ] 37.94

MUltiPIE | 5px | 2039 | 25.63 [ 25.72 [ 25.93 [25.75 [ 25.62 | 25.83 | 25.72 | 27.14

(.752) | (.767) | (.771) | (.773) | (.769) | (.767) | (.774) | (.769) | (.808)

PubFig | SPX | 22.32 | 22.79 | 2298 [ 2325 [23.08 | 2337 | 2357 | 23.10 | 26.83

5px | 20.63 | 20.96 | 21.07 | 21.33 | 21.04 | 21.42 | 21.58 | 21.19 | 25.31

HELEN | 8P | 21.86 | 2224 | 2247 | 22.69 | 22.53 | 22.95 | 23.01 | 22.62 | 26.36

5px | 20.28 | 20.50 | 20.59 | 20.84 | 20.57 | 21.09 | 21.13 | 20.64 | 25.09




Ablation study

Common Branch

ooy

L

—
~

(110 EM 'y
High-Frequency Branch G, G,
9

Dataset la. Only Common Branch | 1b. Only High- 2. Fixed 3. Single Full
atase i.e. Vanilla Cascaded CNN | Freq. Branch | Correspondence | Cascade | Model
PubFig 23.76 24.66 23.85 22.09 25.31
HELEN 23.57 24.53 23.77 21.83 25.09
PubFig83 28.06 29.31 28.34 26.70 29.83




Qualitative results (large pose)

Yang Wang Yang Wang Yang Wang
Bicubic  CVPR’13 ICCV’15 Bicubic CVPR’13 ICCV’15 Bicubic CVPR’13 ICCV’15

Original T.ju Original 1y CBN Original Lju
JCV’°07 LJCV’07 CV°07

Yang, CY.,Liu, S., Yang, M.H.: Structured face hallucination. In: CVPR. (2013)
Liu, C., Shum, H.Y., Freeman, W.T.: Face hallucination: Theory and practice. [JCV (2007)



Qualitative results




Bicubic Interpolation Deep Face Hallucination



Bicubic Interpolation Deep Face Hallucination



Bicubic Interpolation Deep Face Hallucination



Over-synthesis

Ghosting effect

Inaccurate details
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Low-res face alignment

—

* Face alignment at low-res as by

gl
product 0.
: 0.8
* iBUG dataset ?
(@) i
» 5pxIOD input g
PX inpu £
"6 0.6 .
q) 05 ................................................................. -
S ;
e 04 SEREY ¥ EETEREERY [ = PO-CR high-res (Upper bound)}
o, | s CBN
S o3t : J & PO-CR low-res
gj : Detector
0.2r .
0.1F
OO 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Pt—Pt error normalized by face size

Tzimiropoulos, G.: Project-out cascaded regression with an application to face alignment. In: CVPR. (2015)



Low-res face verification

* Evaluate identity preserving property 1
* Joint Bayesian approach retrained
based on input resolution 0.9}
* LFW with unrestricted protocol 2
=~ 0.8}
* 5pxIOD input 2
3
q) 0.7 -
3 Joint Bayesian (low-res face)
- === Joint Bayesian (hallucinated face)
: = Joint Bayesian (original high-res face
0.6 ' i
0.5 ' : ' :
0 0.1 0.2 0.3 0.4 0.5

false positive rate



Conclusion

* Hallucinating faces under substantial shape deformation and appearance
variation

* Adaptively refine the dense correspondence field and hallucinate faces in an
alternating manner

* Guided by the high-frequency prior, our framework can leverage spatial cues in
the hallucination process
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Warping function

The dense face correspondence field defines a pixel-wise correspondence map-
ping from M C R? (the 2D face region in the mean face template) to the face
region in image I. We represent the dense field with a warping function [38],
x = W(z) : M — R?, which maps the coordinates z € M from the mean shape
template domain to the target coordinates x € R?. See Fig. 3(a,b) for a clear
illustration. Following [39], we model the warping residual W(z) — z as a linear
combination of the dense facial deformation bases, i.e.

W(z) =z+ B(z)p (1)

where p = [p; ...pn]' € RV*! denotes the deformation coefficients and B(z) =
[bi(z)...byx(z)] € R2*Y denotes the deformation bases. The N bases are chosen
in the AAMs manner [40], that 4 out of N correspond to the similarity transform
and the remaining for non-rigid deformations. Note that the bases are pre-defined
and shared by all samples. Hence the dense field is actually controlled by the
deformation coefficients p for each sample. When p = 0, the dense field equals
to the mean face template.

[38]. Alabort-i Medina, J., Zafeiriou, S.: Unifying holistic and parts-based deformable model fitting. In: CVPR. (2015)
[39]. Snape, P., Roussos, A., Panagakis, Y., Zafeiriou, S.: Face flow. In: ICCV. (2015)



High-frequency prior

High-frequency prior. We define high-frequency prior as the indication for
location with high-frequency details. In this work, we generate high-frequency
prior maps to enforce spatial guidance for hallucination. The prior maps are
obtained from the mean face template domain. More precisely, for each training
image, we compute the residual image between the original image I and the
bicubic interpolation of Iy, and then warp the residual map into the mean face
template domain. We average the magnitude of the warped residual maps over
all training images and form the preliminary high-frequency map. To suppress
the noise and provide a semantically meaningful prior, we cluster the preliminary
high-frequency map into C' continuous contours (10 in our implementation). We
form a C-channel maps, with each channel carrying one contour. We refer this
C'-channel maps as our high-frequency prior, and denote it as Fx(z) : My — RC.

We use E, to represent Ey(z) for all z € Mj. An illustration of the prior is shown
in Fig. 3(c).



Network

Table 1. The architecture of the bi-network in the first cascade.

Layer Index |Kernel . Output . Learining Rate|Learning Rate

Network (Depth) Size Stride| Pad Channels Rectifier (Pre-train) (End-to-end)
Common 1-4 3x3| 1 |1 64 ReLU 102 1070
5-20 3x3| 1 1 128 ReLU 10~* 1073
Sub-net a .
(24 layers) 21-23 3 X 3 1 1 32 ReLU 10 . 10 .
24 3 x 3 1 1 1 / 10~ 10~
High-frequenc 1-4 3x3 1 1 64 ReLU 1074 107°
gSub-?let Y 5-20 3x3| 1 1 128 ReLU 1074 10~5
—4 -5

(24 layers) 21-23 3 x3 1 1 32 ReLU 10 10

24 3x3| 1 1 1 / 1075 1076
Gate Network 1-5 3x3| 1 1 64 ReLU / 1074
(6 layers) 6 3x3| 1 |1 1 / / 10~

Table 2. The architecture of the bi-network in the subsequent cascades.

Layer Index

Kernel

Output

Learining Rate

Learning Rate

Network (Depth) Size |otride|Pad|qy .y els| Rectifier (Pre-train) | (End-to-end)
Common 1-4 3x3| 1 1 64 ReLU 10=° 10~
Sub-net 5-8 3x3| 1 1 128 ReLU 107° 10-°
(12 layers) 9-11 3x3| 1 |1 32 ReLU 107° 107°
12 3x3| 1 1 1 / 10~° 1077
Hich-frequenc 1-4 3x3[ 1 |1 64 ReLU 107° 10-°
b Y 58 3x3| 1 | 1| 128 | ReLU 10-° 10-¢
(12 layers) 9-11 3x3| 1 |1 32 ReLU 1075 10°
12 3x3| 1 1 1 / 10~° 1077
Gate Network 1-5 3x3| 1 1 64 ReLU / 10=°
(6 layers) 6 3x3| 1 1 1 / / 1076




