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Face recognition

I. What happened in 20+ years of
research in face recognition?

I1. What can we learn?

II1.What is still to be done?



TV

Why face recognit

Most natural for humans

Highly acceptable and non-intrusive

Highly applicable:
= Static 1dentity verification

s Uncontrolled face detection and
1dentification from video

Medium to Low performances
Not unique (twins)

Aging and time effects




How face recognition?
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Fundamentals
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Must Read!

D.H. Ballard and C.M. Brown Computer Vision

W.K. Pratt Digital Image Processing

B.K.P. Horn Robot Vision

A.K. Jain and S. L1 Handbook of Face Recognition

E. Trucco and A. Verri Introductory Techniques for 3D Computer Vision
J. Bigun Vision with direction

M. Tistarelli, R. Chellappa, S. Z. L1 Handbook of Remote Biometrics

C. M. Bishop Pattern Recognition and Machine Learning

Others ...



An a/mOSI. <(fair>> comparison (from Jain et al 1997.)

BIOMETRICS Universality Uniqueness Permanence | Collectability Performance | Acceptability Circumvention

Face Low?? High Low??

Hand Medium Medium Medium Medium

Geometry

Facial Medium High
Thermogram



Biometrics evaluations..:

False False
Modality Test Label Test Parameter Reject Accept

Rate

FpVTE 2003 | U Government 0.1%
operational data

Heterogeneous
FVC 2006 population (young, 2.2%

elderly)

Controlled Illumination, 1 co
Face FRGC 2006 high-resolution images 0.8-1.6%

Text independent, 5-10%

multi-lingual

Indoor environment 0.99%

Controlled Illumination, 1.1-1.4%

broad quality range




Vision Lab
S

Genotypic vs phenotipic trait

Biometric traits develop:

1. through genetics:
Genotypic

2. through random
variations in the early
phases of an embryo's
development:
Phenotypic

3. through training:
Behavioral

Source: http://www.bromba.com/fag/biofage.htm#entstehen
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Identification of human faces

A class (identity) separation problem:

* Choice of optimal representation

* Inter-class similarity vs intra-class variability




False match and false non-=
match

Faces that look similar Faces that look different
FALSE ACCEPTANCE FALSE REJECTION




Inter-class similarity

Two different people may have very similar appearance

FALSE MATCH




Intra-class variability

The same person may present very different
biometric samples

FALSE NON-MATCH




Face shape and texture

A. Savran, N. Alyliz, H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, L. Akarun, “Bosphorus Database for 3D Face Analysis”, The First
COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008) Roskilde University, Denmark, May 2008.
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Face surgery




Face spoofing




An ill-posed problem

Do they look at all similar... ?



FACE RECOGNITION
TECHNOLOGIES




Face recognition operation

Face detection and
selection +
Normalization

Facial features - Registration/
locahzatlon Representatio

eancaion
T
S
v
it
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Taxonomy of face recognition

Algorithms

Pose-dependency

Pose-dependent Pose-invariant

Viewer-centered Object-centered Face
Images Models representation

Matching features

Gordon et al., 1995 3D from 2D

-  Feature- Hybrid
i?pp(celarance based y Lengagne et al., 1996 3D from stereo
Iz{nsel. ) (Amalytic Iélcz;pé — Atick et al., 1996 LFA
( Olis lc) y AAM Yan et al., 1996 Geometric modeling
PCA, LDA Gabor sets T
ICh ,LPP ,SRC SIFT. SURF Blanz & Vetter, 1999 Morph. models
Ker;1el _’_ _ LBp:XX N _’ Zhao et al., 2000 Shape from Shading

Zhang et al., 2000 3D from video

Deep Learning...



Holistic face recognition

@ The basic idea of many similar approaches 1s to define a
basis of vectors to describe any face in the “universal
space’ of all existing faces...

@ The basic tool is the Singular Values Decomposition:

A=U-2-W

@ The eigenvectors (» columns of U) of the decomposition
define the basis of vectors and the eigenvalues o, define
the “relevance” of each eigenvector (eigenface)



Holistic face recognition

Mean MEF1 MEF2 MEF3 MEF4 MEF5 MEF6§ MEF7 MEFS - & '1
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Mean MDF1 MDF2 MDF3 MDF4 MDF5 MDF§ M]]F'F M]]FB -k 1 e
\‘\\\\\\ = \ 4 'P\\\k o .
T h o) By
- LB [t SR WS

Both PCA and LDA produce a set of orthogonal ba31s 1mages

Both provide a compact and global representation of face images.

LDA explicitly attempts to model the difference between the classes of data.

PCA does not take into account any difference in class.
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Holistic face recognition

ICA

* The Independent Component Analysis (ICA) 1s based on higher
order optimization to find independent (orthonormal) components
for the face sub-spaces

 Better description of the inter-class variability
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Holistic face recognition
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Face recognition via Sparse
Representations jonn wrigh e at pami 2000

E Automatic face recognition algorithm robust to
occlusion, expressions and disguise.

Represent the test face as a sparse linear combination of the
training faces.

Estimate the class of the test image from the sparse
coefficients.

= Can identify and reject “non face” images.

® ...Performance can be atfected by illumination
variations and mis-alignment.



Formulation

Let , be the i training image in the i class.

A is the dictionary of the training faces.

;"-]_I:[Al,.r"'lg, o :.-r'r']-.[;] — [Hl,lz-ul,ﬁr- . » :-Hl[.'.ﬂi-]

The test image yis a linear combination of all
instances from the correct face class.

ith class:

= if ybelongs to the

Dictionary

I . . matrix A
Y= g1 —gathe— 7 Ui athx

| | N |
|



Formulation

This can be rewritten as: . S m m

Iy = [“:. ' “:.“:.f-"'i,:l:.ﬁi,ﬁg. .o :nﬁi,?li:-ﬂ:n e a[]]T

As the number of classes is high, the coetficient vector is sparse.

It can be recovered by solving the Basis Pursuit problem:
T; = argmin ||x|; subject to Az =y.

The non-zero coeftficients in the sparse coetficient vector will
correspond to the true class.



Sparse Representation vs
Principal Component Analysis

Similar formulation, different objectives
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Understanding Facial features

@ Gray level oriented patterns/photometric properties

@ Physical Landmarks




How to define facial landmarks?
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Facial features as 2D/3D
landmarks

« 2D landmarks can be defined
and tracked on face images oA

* Simple 2D vs complex 3D
representations




Facial features as 2D/3D
landmarks

A b c d e

Marked average *Five topographic kernels are shown in the top row
face image

*Five corresponding residual correlations (response)
in the bottom row.

The LFA-based approach (Local Feature Analyisis) uses localized kernels,
which are constructed from PCA-based eigenvectors, for extracting
topographic facial features (e.g., eyebrows, cheek, mouth, etc.)

Arca, Stefano, Paola Campadelli, and Raffaella Lanzarotti. "A face recognition system based on local feature analysis."
In International Conference on Audio-and Video-based Biometric Person Authentication, pp. 182-189. Springer, 2003.
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Facial features as 2D patterns

Gabor wavelets ........
* Provide a description of the local ...."..

structure of the facial patterns ...'H-..
PRl s e
HECRINION

T TP
NoEEEEND
® MuZEEENN
MZZEESNN
NZZZESNN
* Convolution with a bank of
frequency-tuned filters

J.H. Henderson et al. “Gaze Control for Face Learning and Recognition

by Humans and Machine”; in T. Shipley and P. Kellman (Eds.), From
Fragments to Objects: Segmentation and Grouping in Vision
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Facial features as 2D patterns
Local Binary Patterns (LBP)

180
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o |
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m——  (10000011); =131

Pattern

Pixels are labeled by thresholding the 3x3neighbourhood with the
center value and considering the result as a binary number.

The histogram of the labels 1s used as a texture descriptor.

T. Ahonen et al. “Face Description with Local Binary Patterns: Application to Face Recognition”; in IEEE
Trans. On PAMI 28(12):2037-2041.
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Facial features as 2D patterns

The valie of the LBP code of a pixel (@, 1) 15 given by

P-1 . - .
LBPp g = Z (g — 9.)2" slz) = { l.if = = D

00, o heruise,

1. Sample 2 Difference 3. Threshald

I 194 1924 190 + 1°8 + 016 + 0°32 + 064 + 0°128 = . |

4, Multiply by powers of two and sum

[EBP

W s

A face image The image is divided into  LBP histogram Feature
{144x112 pixels) 24 blocks of 24728 pixels from each block histogram



Scale Invariant Features
D(x, y,0, k) = (G(x, y, ko) - G(x, y, 0)) * I(x, y)
D(x, v, 0, k) = L(x, y, ko) - L(x, y, 0)
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G. Lowe, “Object recognition from local scale invariant features”, International Conference on Computer Vision , 1999



Scale Invariant Features
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Scale Invariant Features

7.6

9.7

First Face Image Second Face Image




Kernel methods

K-PCA; K-ICA; K-LDA... (B. Scholkopf et al. 1998)

Are all variations of existing face-space representations. The
transformation to the lower space 1s mediated by a kernel
function such as Gaussian, polinomial, sigmoid and Radial
Basis Functions

More robust to noise and discretization
Better separation of classes

General Learning Theory



Kernel methods

Data Embed data Linear algorithm

SVM, MPM, PCA, CCA, FDA...

If data is described by numerical vectors: embedding ~
(non-linear) transformation



Support Vector Machines

Support Vector Machines are binary classifiers

\‘.-

“Class 2 |

V. Vapnik, S.E. Golowich, A.J. Smola:
Support Vector Method for Function
Approximation, Regression Estimation and
Signal Processing. Neural Information
Processing Systems 1996: 281-287




One-Class *
Support Vector Machines

One-Class Support Vector Machines are unary
classifiers

Impostors

Ben-Hur, A., Horn, D., Siegelmann,
H., , Vapnik, V.: « Support vector
clustering ». Journal of Machine Learning
Research 2 (2001) 125-137




One-Class ”
Support Vector Machines

The separating surface 1s
a hyperspehere

0 S
. Fk 1
Selectivity can be g o 0®
- C e o
adjusted by two 0o %o
o @
parameters ® 00,
%% xR
No need for direct 0g 0o Y0 &8 .s‘.
“Impostor” training ode '. O ."0.0.
o0 o,
® o
*F
Y h

2 . .,’
x,-a| <R’ 1=1...Il e
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Convolutional Neural Networks

7 °
Convolutional

Neural
Network




Convolutional Neural Networks

T S T T
'\ feature maps featund bqai'ﬂ
C 5 . b m H
\ imput  feature maps  feature maps A n;
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feature extraction classification
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Convolutional Neural Networks
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Spatial Pooling

ConVOlution Let m be the size of pooling region, x be the input, and y be the output of the pooling layer.
subsample(f, g)[n] denotes the n-th element of subsample(f, g).

Single kernel Multiple kernels

Convolution

v, = subsample (x, g)[n]= _cf.rm ,,w_:l

Net input Activation
Poaling

Inputs  Weights
v =subsample(x,g) =[_|.'n ]

o

function function X
e
e == mean pooling I ’ g '"

L‘I)‘
| =

=
=

@ output m Ix "
3/

max x).

dg {I if x, = max( x) max pooling

&lx)=1 dx, |0 otherwise

i Hp=1
C ] dy c I I .
M, =(Zhr ) 2 =(Shal ) W L pooting
k=l i | L=l

or any other differentiable R — R functions




Convolutional Neural Networks
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Convolutional Neural Networks

Convolutional Solft-max
layer 1 Convolutional ayer
layer 2 Convolutional Convolutional -9
layer 3 layerd 160~
1w
= -f J-.. 2 o S
18 B R <D
40 B0, w8 (|25 &
20 10 (1o 20 fing 00 Max-pooling - 1
1 Max-pooling alg-%?ozlng layer 3 ~la]
Input layer layer 1 y De?j) hidden
identity ;
features n
(DeeplD)

A deep CNN is used to extract a feature vector with relatively high dimension. The
network can be supervised by multiclass loss and verification loss

PCA, Joint Bayesian or metric-learning methods are used to learn a more efficient
low dimensional representation

The amount of training data can range from 100K up to 260M
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Convolutional Neural Networks

Convolutional Soft-max
1

Convolutional Iar\_.rer

: layer 2 Convolutional Convolutional ]=

* DeeplD (Y. Sun, X.Wang, X. Tang -~ CVPR 2014) # @ | d e
* DeeplD?2 (Y. Sun, X.Wang, X. Tang - NIPS 2014) s | T v B ™ M pooting 1
Input laver al):aypeeolmg layer 2 M De?ﬂa rligt:ﬁn&

D e epID 2 + Convolutlonal (fgglé%rl%s) )
DeepID3

Convolut\onal
Convolutional Pe

60
60 max- poollng
layer 3

40
Max p00| ng
layer 2

Convolutional
layer 4

DeepFace (Y. Taigman, M. Yang, M. Ranzato, e Ma’év"e?""”g
L. Wolf - CVPR 2015) \
Face++

FaceNet

Baidu (J.Liu, Y.Deng, T.Bai, Z.Wei, C.Huang #
CVPR 2015)

..What’s next?

E. Learned-Miller, G. Huang, A. RoyChowdhury, H. Li, G. Hua, “Labeled Faces in the Wild: @_f l—.—-‘ = - I<I

A Survey”, Advances in Face Detection and Facial Image Analysis, pp 189-248, Springer } i v Coi G Caas Convd FC Sof tmax
2016. :

i

SFC labels
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Convolutional Neural Networks

Soft-max
layer
A9
layer4 160" |
s

’ =ﬁ .: ’:\
0 L B0
Max-pooling .0

layer 3 ]
Deep hidden
icﬁantitv"»i

Convolutional
Convolutional
layer 2 Convolutional Convolutional

40
Max-pooling
layer 2

20 40
20 Max-pooling

Input layer layer 1
(Seapio) "
Method Net. Loss |Outside data|# models|Aligned| Verif. metric|Layers| Accu.

DeepFace [97] ident. 4M 4 3D wt. chi-sq. 8 197.354+0.25
Canon. view CNN [115] ident. 203K 60 2D Jt. Bayes 7 96.4540.25
DeeplD [92] ident. 203K 60 2D Jt. Bayes 7 197.454+0.26
DeeplD2 [88] ident. + verif. 203K 25 2D Jt. Bayes 7 199.15+0.13
DeeplD2+ [93] ident. + verif. 290K 25 2D Jt. Bayes 7 1994740.12
DeepID3 [89] ident. + verif. 290K 25 2D Jt. Bayes | 10-15 (99.531+0.10
Face++ [113] ident. SM | 2D L2 10 [99.5040.36

| FaceNet [82] veni. (triplet) 260M no 1 22 199604009
Tencent [8] - IM 20 yes Jt. Bayes 12 [99.65£0.25

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering
on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate
feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95%
come from the local and fully connected layers.



Convolutional Neural Networks

[layer | size-in | size-out | Kkernel |param|FLPS
convl | 2202 220=3 110110 64| T=7=x3,2 | 9K |115M
pooll |110x110x64| 55x55x64 | 3x3x64.2( 0

morml| 55x55x64 | 55x55x64 0

conv2a| Box5Hx64 | H5HxBHxG4 [ 1x1x64,1| 4K | 13M

conv2 | BEx55x64 | BEx55x 192 [ 3x3x64,1 | 111K |335M
rmorm?2| 55x 55x 192 | 55x 55x 192 0

pool2 | 55x55x 192 | 28 28x 192 (3= 3x102,2( 0

convia| 28x 28102 | 28x 28x 102 [1x1x192, 1| 37K | 29M

convd | 28x28x 192 | 28x 28x 384 [3x3x192, 1| 664K |521M
pool3d | 28x28x 384 | 14=14x 384 [3=3=384.2( 0

convda | 14dx 14= 384 | 14x 14 = 384 (1= 1x384, 1| 148K | 29M

convd | 1Tdx 14 =384 | 1dx 14x 256 [3x3x384, 1| 885K |173M
convia| 14x 14= 256 | 14 14x 256 (1= 1x256, 1| 66K | 13M

convd | 14x 14x 256 | 14x 14 % 256 [3x3x256, 1| 590K |116M
convba | 1dx 142256 | 14dx 14x 256 [1x1x256, 1| 66K | 13M

convh | 14dx 14= 256 | 14x 14x 256 [3x3x256, 1| 590K |116M
poold | 1dx14x 256 | TxT=256 |[3=x3=256.2( 0

concat | T Tx256 TxTx 256 0

fel Tx Tx 256 1x32x128 [maxout p=2| 103M [103M
fc2 1x32x128 | 1x32x128 [maxoutp=2| 34M | 34M

fc7128 | 1=32x128 1x1x128 524K | 0.5M

L2 1x1x128 1x1x128 0

[otal | | | | 140M | 1.6B |

Convolutional Solft-max
layer 1 Convolutional ayer
3 g Convolutional Convolutional .19
/ layer 3 layer4 1g0"

Input layer

39 I
1 2

2
0

=y
k

20 40
Max-pooling

layer 1 layer 2

40 60
Max-pooling

De? hiddert
identity "

features p

F. Schroff, D. Kalenichenko, J. Philbin, “FaceNet: A Unified
Embedding for Face Recognition and Clustering”, CVPR 2015.

(DeeplD)
NN2
90.0% "
0% NNST @ .‘
" % ® N1
80.0% ®
# .. NN4
X70.0% NNS2
w [ ]
< 60.0% ‘
@50.0% °
§ @
40.0%
(] ° ®
30.0% °
o
0,
20.0% 10,000,000 100,000,000  1,000,000,000
Multi-Add (FLOPS)

FLOPS vs. Accuracy trade-off. Shown is the trade-off between
FLOPS and accuracy for a wide range of different model sizes
and architectures. Highlighted are the four models that we focus
on in our experiments.



Convolutional Neural Networks

Soft-max

Convolutional quer

layer 2 Convolutional Convolutional ‘:
ok

Convolutional
layer 1

40
20 Max-%%oling 40" Max-pooling

layer 2 LA
Input layer layer 1 De_? hidderi
roor jdeniy 8
099 L (DeeplD)
0.98 |
0.97
Q s
S 096 |
L)) L H
= oos . [ /. 7 3 5 : i 3 5
2 1 : : Human cropped (97.5%)
2 0.94 LR . - DeepFace-ensemble (97.35%)
3 0.03 ‘ DeepFace-single (97.00%)

" ——TL Joint Baysian (96.33%)
....—— High-dimensional LBP (95.17%)

- —— Tom-vs-Pete + Attribute (93.30%)
- —— combined Joint Baysian (92.42%)

" 1 L 1 L 1 L 1 " 1 " 1 L 1 1 J

false positive rate

“The performance of these systems is ironically matched by
our present ignorance of why they work as well as they do.”

F. Anselmi, L. Rosasco, C. Tan and T. Poggio - Deep Convolutional Networks are Hierarchical Kernel Machines



Data dimensionality

How many pixels to detect a face?

.. Not many ... (20x14)

It’s more a question of spatial distribution and ...
proper frequency tuning




A unique

Human retina

RECEPTOR DENSITY {mm=2x 107]
b
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The retina layout

A good approximation of the cones density over the
retina 1s given by the complex log-polar transform

periphery
AR i




Context analysis:
Visual attention

Eye movements while watching a girl’s face
(A.L. Yarbus, “Eye Movements and Vision”, Plenum Press, 1967)



Functional Magnetic Resonance
Imaging




Brain activation - fMRI maps’

FF-NL
O
O
S FF-FO Recognition of 50 Familiar Faces (FF) vs 50
7]
= =n | Newly Learned Faces (NL) and compared to
T NLFO kol rejection of 50 Foil (FO -False Objective) faces.
S <o Encoding (EN) session for learning new faces.
-l
NL-EN FF-NL FF-FO NL-FO
<.0001
X
FF>NL
FF>FO
FF-NL NL>FO
o
-qc) <.0001 < 005
Q. FF.FO NL>FF y=-13
L FO>FF
0>
GE) EN>:I"£ C. L. Leveroni et al. “Neural Systems Underlying the Recognition of
L NL-FO Familiar and Newly Learned Faces”, The Journal of Neuroscience,
= January 15, 2000, 20(2):878-886
2
o
NL-EN

= +50 +35 +20 +5
Figure 2. Areas of significantly increased (red—yellow scale) and decreased (blue—cyan scale) MR signal intensity from ¢ tests ( p = 0.005) comparing the

three conditions: FF minus NL, FF minus FO, and NL minus FO. Numbers below each image represent millimeters from the interhemispheric Assure
i —, left; +, right). Numbers adjacent to activated foci correspond to location numbers (first column) of Tables 1, 2, and 3.
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Bral tivati
C. L. Leveroni ct al. “Neural Table 1. Famons faces (FF) vs newly learned (NL) faces
Systems Underlying the Loc. # Brain region BA vol. (ml) x ¥ z
Recognition of Familiar and FF —- NL
Newly Learned Faces”, The Frontal Lobe
Journal of Neuroscience, January 1 L Superior Frontal 8 2.6 15 33 44
15,2000, 20(2):878-886 2 R Medial Frontal ] 24 10 47 25
3 R Superior Frontal 8 (] 2 40 45
4 L Medial Frontal 10 0.4 6 49 4
5 R Precentral f 0.4 49 1 13
[ L Superior Frontal 8 0.4 36 15 50
T R Inferior Frontal 47 0.3 32 32 T
8 R Anterior Cingulate 32 0.3 11 2 7
9 R Medial Frontal 11 0.3 *] 35 13
10 L Medial Frontal 11 0.3 6 39 14
Temporal Labe
11 L Middle Temporal 21 27 51 1 13
2 R Middle Temporal 21 .o 52 ] 18
13 L Middle Tempaoral 21 0.6 49 42 7
14 L Middle Temporal 39 0s 46 08 22
15 IR Superior Temporal 22 ns 54 52 15
Lt R Fusiform 20037 0.4 32 46 16
L7 R Middle Temporal 37 0.3 43 64 q
18 R Insula 0.3 37 3 11
19 IR Parahippocampal 35 0.2 30 14 23
20 IR Parahippocampal 36 0.2 2 43 7
21 L Hippocampus 2 0.2 19 12 20
Parietal /Occipilal Lobe
22 L Posterior Cingulate 23/30 1.7 4 57 15
23 R Inferior Parietal 40 ns 44 30 22
24 I Posterior Cingulate 31 0.3 2 57 29
25 L Extrastriate 18 0.3 20 a9 20
Subeortical
26 R Pons 0.4 11 43 34
27 L Pons 0.2 10 43 33
28 R Putamen 0.3 22 7 6
NL = FF
Parictal Lobe
29 L Inferior Parietal 40 (i 37 64 40
30 R Superior Parietal 7 (] 23 Gl 30
31 R Inferior Parietal 40 03 35 o7 42

Region is defined as center of mass, The first column refers o location numbers demarcated in Figures 2 and 3 (imlicized numbers indicate locations not shown in figures).
Coordinates represent distance in millimeters from anterior commissure: ¢ right (+yleft { —); v anterior (+ )/posterior( —). z superior {+ Yinferion —.



Face and motion perception

Z-score

Biological Motion

GENDER

Non Rigid Motion

Vaina, L.M., Solomon, J., Chowdhury, S., Sinha, P., Belliveau, J.W., “Functional Neuroanatomy of Biological Motion Perception in Humans”.
Proc. of the National Academy of Sciences of the United States of America, Vol. 98, No. 20 (Sep. 25, 2001) , pp. 11656-11661
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Brain models

Cunvolutilonal
3
S5
20 40
1 20 Max-pooling

lay Convolutional
Input layer layer 1

40 6
Max-pooling
layer 2

layer 3

De(-if hidde
identity "
features p
(DeeplD)

Categorical judgments,

decision making

S 120-160 m

C2b
S3
S2b

C2 Complex composite cells

S2 Composite feature cells

C1 Complex cells h ——
. e To finger muscie « e e——160-220 ma-
51 Simple cells 180-260 ms

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu

Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T.,
“Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.

[:7% Complex cetts () Simple celis
|
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Brain models

Ccnvoluti{)nal Soft-max
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007
Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T.,
“Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.
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Towards 3D: n
Morphable models

== Laser Scanner

Max Planck Institute
Biologische Kybernetik



Towards 3D: »
Morphable models

3D shape

surface reflectance




Towards 3D: ”
Morphable models

Jones, Poggio 98: Gradient Descent

Blanz, Vetter 99: Stochastic Gradient Descent
Pighin, Szeliski, Salesin 99: Levenberg-Marquardt
Romdhani, Blanz, Vetter 02: Non-linear fitting

Input Model Estimate




Biometrics evaluations..:

False False
Modality Test Label Test Parameter Reject Accept

Rate

FpVTE 2003 | U Government 0.1%
operational data

Heterogeneous
FVC 2006 population (young, 2.2%

elderly)

Controlled Illumination, 1 co
Face FRGC 2006 high-resolution images 0.8-1.6%

Text independent, 5-10%

multi-lingual

Indoor environment 0.99%

Controlled Illumination, 1.1-1.4%

broad quality range
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The 1Arpa JANUS project




The 1Arpa JANUS project

Dramatically improve face recognition performance in massive video Phase 2 — 18 months(3/16-9/17)
collections through novel approaches capable of leveraging the rich spatial ~~ datasets challenging for face
and temporal information available within the multiple views captured in detection, occlusion, aging
unconstrained video.

88 a&
AR

g BEST: Detection Janus: Identification Phase 3 — 36 months(10/17-9/20)

2000+subjects and hundreds of
hours of video

Accuracy: 85% TAR @ 0.1% FAR
Query time: sublinear

Intelligence analysts often rely on facial images to assist in establishing the 10000+subjects and thusands of
identity of an individual, but too often, just examining the sheer volume of hours of video

possibly relevant images and videos can be daunting.
Accuracy: 85% TAR @ 0.01% FAR

Query time: logarithmic



The USC JANUS team

- -

P. Natarajan, P} G. Medioni, Co-PI R. Nevatia, Fusion P. Debevec, HHlumination

”

W. AbdAlmageed J. Choi R. Wu H. Li L.P. Morency
Indexing, LSML Face Recognition FD, Systems Expression LM Detection

T. Hassner, A. Del Bimbo, Firenze U. Park, Sogang U. M. 'l;i;t‘é‘r:alll, UNISS M. Kilmer, Tufts U.
2D matching Tracking Aging, Distinctive Age and Expression  Tensor Approaches



2D Frontalization

* (a) Query photo; (b) facial features detection; (c) the same detector used to localize the same facial features in a
reference face photo, produced by rendering a textured 3D computer graphics model (d);

* (e) from the 2D coordinates on the query and their corresponding 3D coordinates on the model we estimate a
projection matrix which is then used to back-project query intensities to the reference coordinate system,;

* (f) estimated visibility due to non-frontal poses, overlaid on the frontalized result. Warmer colors reflect less
visible pixels. Facial appearance in these regions is produced by borrowing colors from corresponding symmetric
parts of the face; (g) final frontalized result.

Tal Hassner, Shai Harel, Eran Paz, Roee Enbar; “Effective Face Frontalization in Unconstrained Images” The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4295-4304



lO

Efficient CNN learning

Augmenting faces by using different generic 3D models for rendering.
Top: Ten generic 3D face shapes used for rendering. Bottom: Faces rendered with the generic model.
Different shapes induce subtle appearance variations yet do not change the perceived identity of the face in the image.

For training a CNN a single face image is rendered using different generic 3D models, at different poses and different
expressions.

lacopo Masi, Anh Tuan Tran, Jatuporn Toy Leksut, Tal Hassner, Gerard Medioni; “Do We Really Need to Collect Millions of Faces
for Effective Face Recognition?”” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. arXiv preprint
arXiv:1603.07057, 24 Mar 2016.

Int.]1 Winter School on Biometrics — 9-1-2017 Massimo Tistarelli
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Face recognition performances

— Mostly depends on the training data and
the acquisition scenario.

— Face recognition developments are often
related to applications (deployment).

— Testing on “standard” databases.

— Results are related to how the scores are
combined and selected:

5% EER may easily lead to 99% recognition



State-of-the-art in face recognition

Good marks:

* Optimal classifiers (SVM/NN/Bayesian/SRC/DL)

* Advanced face-space representation (ICA/LFA/KX)

« Best feature extraction methods (Gabor/LBP/MBLBP-
SIFT/SURF/etc.) and visual features

* Learning

Need for improvements:

* Video vs mugshots

* Subject-based analysis (familiarity)
* Registration

e Illumination

* Feature selection



[llumination compensation

Main techniques:

» Histogram-based adaptive techniques, applied
on 1mage patches

= Re-lighting techniques

= Synthesis of 1llumination-invariant
representations (for example the Hue
component in color space)



4

Modelling the face skin

Skin chromatcity map Diffuse light rendering

Reflectance map of the  Sub-surface reflectance Final face rendering
oily skin layer

Henrik Wann Jensen, “Digital face cloning”, SIGGRAPH'2003 Technical Sketch, San Diego, July 2003.
(http://graphics.ucsd.edu/~henrik/papers/face_cloning/)
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Image re-lighting

I(x,y) 2
1) = Rp) LD RExp) =) L(xy)
x,y

F(L) =[] pCe, »)(L(x, )= 1(x, y))dxdy+ A [ (L + L )dxdy

Anisotropic diffusion Isbtropic diffusic:m

(Lagrange solution of (1)) (Gaussian filtering)
R. Gross and V. Brajovic, “An Image Preprocessing Algorithm for D. Jobson, Z. Rahmann and G. Woodell, “A Multiscale Retinex for Bridging
lllumination Invariant Face Recognition”, International Conference on the Gap Between Color Images and the Human Observations of Scenes”,

Audio- and Video-Based Biometric Person Authentication, 2003. IEEE Transanctions on Image Processing, volume 6, Issue 7, 1997.



Face alignment

... But the data is sill there



The “registration” problem

In cognitive psychology it is called “perceptual
organization”




The “registration” problem

Face recognition on the XM2VTS

Los ~. o
© Ity -‘"g\"m
c e RO
o e S
ﬁ 08 . ?\:“- > -
8 P -~ .."“_'-\-‘.‘N-"“
o 0.4 I..“:"'-‘“-“‘.-_;h"-‘."\.x'x.
e -
TR TN TBe
03 TN T
. -*'-.-H_‘_ - e
l.‘?%-‘r-‘.‘“h\"‘-. T~ -
02 Arca et al. e e
. + srucfe PCA Eucl - :1"“"1-*-.:;. e
- PCA+LDA Eucl h"““”““*ﬁ-e
0.1 G == ] PCA MahAngle
PO - Bayesian MAP
; P —— + Bayesian ML | |
; 005 0.1 018

localization error

S. Arca, P. Campadelli, and R. Lanzarotti. A face recognition system based on automatically
determined facial fiducial points. Pattern Recognition, 39(3):432-443, 2006.

TV



Recent advances in
face recognition

Face recognition from video sequences
Subject-based template definition
3D shape and texture

Aging, gender, Kinship, expression, intention...

Spoofing/Camouflage
Face registration and Facial symmetry
Compensation of illumination

e Multispectral imaging

« Evaluation of illuminant components

* Face appearance-invariant models



Subject-specific representation

For localization and tracking
we are interested on what every
face has in common (to tell a
face from “non-faces”)

For identification we are not
interested on what faces have in
common but rather what
differentiate one face from
another.




Subject-specific representation

o Facel e Face?2

A 3 L]
Confusion: most  pjgtinctive patches

similar patches VEEREN
[ S [ O
I O N O o |

Fy

@

Di1tinctive patches

Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M. (2007) “Distinctiveness of faces: a computational approach”,
ACM Transactions on Applied Perception, Vol. 5, n. 2, 2008.



TV

Subject-specific representation

|

(A) perceptual and (B) computational results of saliency
of local facial features, demonstrate the relevance of

non-standard facial landmarks



Selective attention

@ Starting point: HMM based classification of faces
@ “Walking on the face” for obtaining HMM sequences

Attention
drives
face
scanning

Standard raster scan-path Saliency-based scan-path

A. A. Salah, M. Bicego, L. Akarun, E. Grosso, M. Tistarelli: ""Hidden Markov model-based face recognition using selective attention",
Human Vision and Electronic Imaging XII, Proc. of SPIE, vol. 6492, (2007)



Attention-based classification

@ Experiments on BANCA protocol MC
@ Gabor wavelets for saliency map construction

= Employed features: gray levels, DCT coefficients, Haar

wavelets
Window Size Average Acc. (std) Max Ace.
Biological Raster Biological Raster
7 87T.62%(2.28%) 91.92%(1.63%) | 91.15%  93.08%
9 80.31%(1.20%) 93.92%(0.92%) | 90.38%  95.00%
11 03.69%(1.58%) 04.46%(1.29%) | 05.77%  95.77%
13 05.23%(0.80%) 96.08%(0.74%) | 96.15%  97.31%

Table 2. Comparison between raster and biological scanning

A. A. Salah, M. Bicego, L. Akarun, E. Grosso, M. Tistarelli: "Hidden Markov model-based face recognition using selective
attention", Human Vision and Electronic Imaging XII, Proc. of SPIE, vol. 6492, (2007)



FACE FROM VIDEO
TECHNOLOGIES

C L TN T W T 1 ERCI TR, R ¥ | S T T L O | W] Wy 1 JE ] ISR HE R T T R S VAT 17 0 AT ) P B O
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M. Bicego, E.Grosso, M. Tistarelli. “Person authentication from video of faces: a behavioral and physiological approach using Pseudo
Hierarchical Hidden Markov Models”, Int.l Conference on Biometric Authentication 2006, Hong Kong, January 2006/IMAVIS 2009
Yi-Chen Chen; Patel, V.M. ; Chellappa, R. ; Phillips, P.J. “Adaptive representations for video-based face recognition across pose”,
2014 IEEE Winter Conference on Applications of Computer Vision (WACV), 984-991, 24-26 March 2014.



Face recognition from video

Dynamics in a video stream conveys far more
information than a collection of single snapshots




Video-Based Face
Recognition

@ General face recognition problem: Identifying faces in the query
(probe) given a stored database of ID-labeled faces (gallery).

@ Why videos?

» Video naturally arises in many applications

= Videos contain more information: Spatio-temporal patterns, evidence
accrual, 3D information etc.

Still to Video Video to Video



Video-Based Face
Recognition

Not just more data to be processed:

> Select the “best” sensory data (pose, expression,

illumination, noise...)
> Multiple-data fusion (decision/score/feature level)
> 3D reconstruction/virtual views
> Resolution enhancement
> Expression and emotion analysis
> Behavioral analysis

> Dynamic video templates...?



Representations

Linear subspaces: Discriminative canonical correlation [Kim et al. PAMI 2007]
Affine subspaces: Affine hull, convex hull [Cevikalp & Triggs CVPR 2010]
Manifolds: [Lee et al. CVIU 2005; Wang et al. CVPR 2008, CVPR 2009]
Probability distributions: [Zhou & Chellappa PAMI 2006]

Covariance matrices: [Wang et al. CVPR 2012]

Dictionaries: [Chen et al. ECCV 2012]

Temporal models: HMM [Liu & Chen CVPR 2003], PH-HMM [Bicego et al. ICBA
2006], ARMA [Aggarwal et al. ICPR 2004]

@ 3D models: [Park & Jain ICB 2007]

B FH FE EH & F E

[Chen et al. ECCV 2012] [Wang et al. CVPR
2012]
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Video preprocessing/partitioning
* (Given a video sequence, extract all frames from it, from which

the human face regions are then detected and cropped.

* Based on video summarized algorithm [1], partition cropped
face images into K partitions.
— Different partitions exhibit differeat pose/lighting
conditions.

Lk
LLLLL

(21 MBGC Matre Dame ronal Taee (b)) MBGC Notre Dame profile Gac
purtilises parlitivons fay FOCS UT-Dalls walking parti- (b} FOCS UT-Diallas activity pani-
tions tions

Figure 3, MBGC Notre Dame partizion results . .
Figure 9. I'OCS UT-Dallas partitions

0] ™. Sbedd, I Cumgga, wd K. Ghellappa, Y kv prects High Hgheegg dureese mpeet of viowim,"™ JEES Fnied eoloos oar AdanlziiieoTa, 2L
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Hidden Markov Models

Statistical analysis of sequences of patterns

= This idea can be extended to multi-dimensional patterns and
sequences ... in several ways



Hidden Markov Models

1. Each image 1s modeled as a single HMM and the
sequence of 1mages as a sequence of HMMs

A. Hadid and M. Pietikainen. “ An experimental investigation about the integration of facial dynamics in video-
based face recognition”. Electronic Letters on Computer Vision and Image Analysis, 5(1):1-13, 2005.

2. The entire video 1s modeled as a single HMM

X. Liu and T. Chen. “Video-based face recognition using adaptive hidden Markov models”. In Proc. Int. Conf.
on Computer Vision and Pattern Recognition, 2003.

3. The images and the sequence itself are modeled as a
complex, hierarchical HMM-based structure

M. Bicego, E.Grosso, M. Tistarelli. “Person authentication from video of faces: a behavioral and physiological
approach using Pseudo Hierarchical Hidden Markov Models”, Int.I Conference on Biometric Authentication
2006, Hong Kong, China, January 2006.



Pseudo Hyerarchical HMM

I features

Physiological and behaviora

Overlapping

H

PH-HMM

el e

t
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...ANOTHER WAY
OF USING MORE IMAGES:

COHORT NORMALIZATION

Y. Sun, M. Tistarelli, N. Poh (2013); “Picture-Specific Cohort Score Normalization for Face Pair Matching” Proc IEEE 6th Int.] Conference on
Biometrics: Theory, Applications and Systems - BTAS 2013 Washington DC, USA; September 29 - October 2, 2013.

M. Tistarelli, Y. Sun, N. Poh (2014) “On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition”, IEEE
Trans. on Information Forensic and Security, 9(12):2063-2075, 2014.




What is a Cohort?

- Ancient Roman military unit, comprising six centuries, equal
to one tenth of a legion. — — -

- A group of people banded together or treated as a group.

Greup of interast

i.l i ..% Follew i i i
i i gver tims ;t_l i
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What is a Cohort set?

- Cohort samples are non-matching samples of the same kind of
the test samples.

Fingerprint 1 |
(from subject A) =

Cohort samples:
fingerprints from external database

Fingerprint 2 7 An independent data set

(from subject A/B)4

/
i

E
NN

Two fingerprints being compared
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What is Cohort normalization?

- Cohort score normalization 1s a procedure, which aims to post-
process the matching score, using information from a set of
cohort samples.

Raw
matching
score

Fingerprint 1 i}
gerp Pre __y| [Feature > Matching

processing extraction

Normalized
matching score

< Cohort

normalization
A

Decision

Fingerprint 2

Pool of cohort samples



How Cohort modeling works?

Score normalization can map the raw
matching score to a domain where the
degradation effects caused by the sample
variations are reduced.

Cohort score normalization can exploit
the discriminative information by a pool
of non-matching samples.

This information can be used to
normalize the raw matching scores.




Existing literature

* Cohort models have been proposed to model language

processing and lexical retrieval.
Marslen-Wilson, W. (1987). "Functional parallelism in spoken word recognition" Cognition, 25, 71-102

 Initially adopted in biometrics for speaker verification.

A. E. Rosenberg, J. DelLong, C. H. Lee, B. Juang, and F. K. Soong (1992). “The use of cohort normalized
scores for speaker verication” In Int.I Conf. on Spoken Language Processing,1992.

« Afterwards applied for fingerprint verification and for multi-

biometrics.

G. Aggarwal, N. Ratha, R. M. Bolle, and R. Chellappa (2008). “Multibiometric cohort analysis for biometric
fusion”. In IEEE Int.I Conf. on Acoustics, Speech and Signal Processing, 5224—7, 2008.

* Two representative cohort normalization methods:
O T-norm (Test-norm ...with Gaussian assumption)

O Polynomial regression-based cohort normalization



Face pair matching

*  Only two 1mages are given, no other information 1s provided.

» Large variations may be found in the image pair.

Image A

-
01
_ 1T

Image B

13




Face verification

cohort scores

—Q_®)-

Cohort set
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Cohort set

Cohort set
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Picture-specific Cohort normalization

* Database: Labeled Faces in the Wild

* Protocol: image-restricted setting; 10-fold cross validation
* Feature extraction: Intensity, LBP, Gabor, SIFT

* Matching score: Euclidean or Hellinger distance

Intensity | Gabor | LBP SIFT
0.6502 | 0.6985 | 0.6500 | 0.7140

Euclidean
(no cohort)
Euclhidean
(with cohort)
Hellinger
(no cohort)
Hellinger
(with cohort)

0.6830 | 0.7560 | 0.7443 | 0.7703

0.6497 | 0.7100 | 0.7132 | 0.7183

0.6913 | 0.7680 | 0.7707 | 0.7738

Comparative verification accuracy with and without cohort normalization



FACE RECOGNITION
ACROSS
PLASTIC SURGERY

M. Nappi, S. Ricciardi, M. Tistarelli, (2013); “Deceiving Faces: When Plastic Surgery Challenges Face Recognition”
Image and Vision Computing, Vol. 54, pp. 71-82, 2016.

Y. Sun, M. Tistarelli, D. Maltoni (2013); “Structural Similarity based Image Quality Map for Face Recognition across Plastic Surgery” Proc IEEE
6th Int.I Conference on Biometrics: Theory, Applications and Systems - BTAS 2013 Washington DC, USA; September 29 - October 2, 2013.




S

Common cosmetic procedures

Dermoabrasion

i Eore

Dermal fillers



Common cosmetic procedures

2

Brw/Forehead --lift

Blepharoplasty




;ﬁ-.

Common cosmetic procedures

Mentoplasty



Common cosmetic procedures

Surgical Facial Spatial Extension of face Potential Relative
procedure region frequencies surface impact diffusion
Botulinum Forehead High Medium Low to 52%

toxine Medium

Dermal Periocular / . L . o

fillers smile lines High Limited Medium 19%
Chemical peel Whole face High Wide Low 9%
Dermoabrasion . . . Low to o
(Resurfacing) Whole face High/Medium Wide Medium 0,6%
Microdermoabrasion Whole face High Wide (very) Low 8%
Nose reshaping . . . o
(Rhinoplasty) Nose Low Limited Medium 1,8%
Eyelid surgery Periocular re- . o Low to )
(Blepharoplasty) gion Medium Limited Medium 1.8%
Facelift Whole face Low to High Wide High 1.1%
(Rhytidectomy) '
Brow lift . . . . o
(Forehead lift) Forehead Medium /High Limited Medium 0.4%
Chin surgery Lower face re- . . o
(Mentoplasty) gion Low Medium High 0.15%
Cheekbones Zygomatic re- Low Medium High 0.1%
reshaping gion
Ear surgery Ears Low Limted Low 0.2%

(Otoplasty)




Face recognition algorithms

Key Features
# Reference Dataset Algorithm
GLOBAL LOCAL TEX 3D RR%
1 Agearwal et al. Plastic Surgery - - - - o Part-wise and 7
[26] Face Database Sparse representation
Uniform Circular Local Bi-
Flastic Su r Patty UCLBP
2 Bhatt et al. [40] AStc Surgery e ¥ % ™ 786 nary Pattern ( )+
Face Database Speeded Up Robust Features
(SURF) + genetic alghorithm
3 Dre Marsico et al. Plastic Surgery ¥ e N ~ 0.0 PIFS + region-based
[20,21] Face Database correlation index
ical descriptors of
El id. Abol Plasti geometrica P
4 —said, Abol astic Surgery ™ 'Y ™N ™ 76.1 ROIs + minimum distance
Atta [39] Face Database L
classifiers
5 Ibrahim et al. [14 Plastic Surgery v N ¥ N 83.2 PCA KEA, Gab
5 rahim al. [14] Face Database I . L KPCA, . or
Extended Uniformm Circular
Faruppusamy L. 1 Binary Pattern
6 and Pomnnuthu- NA | A 'y ™ - oea h
_ (EUCLBP) + SIFT + Particle
ramalingam [44] L. -
Swarm Optimization (PSO)
Lakshmiprabha et Plastic Surgery Gabor /LBP + PCA + Euclid-
7 - ™ h Ay ™ T4.4
al. [34] Face Database : ean Distance
Plastic S Gabor Patch classifiers via
8 Liu et al. [29] I__"" 'E‘ "rf:'l" ¥ ¥ ¥ N 86.1 Rank-Order list Fusion
‘ace Database (GPROTF)
M d De Web awvailable Multimodal biometric fea-
9 un an oran Before/ After Y e 'y ™ - turesPCA (face)+LBP
kar [33] . N
Surgery photos (periocular region)
Singh, Vatsa and PCA, FDA, GF,
10 MNA Y 'y Y ™ 40
Noore [4] ’ LEA, LBP, GMNN
11 Singh et al. [11] Plastic Surgery v W W ™ 40 PCA, FDA, LEA,
Face Database CLBP, SURF, GNMN
P ic S Structural Similarity
12 Sun et al. [36] astic Surgery ¥ ¥ ¥ ™ 775 (SSIM) index
Face Database ) .
+weighted patch fusion
Evoluti 1 1,
Verghis et Bhu- Plastic Surgery volutionary granular aigo-
13 waneshwari [16] Face Dalal:nasé ¥ ¥ N ¥ 8.3 rithm -
SIFT and EUCLBP




Structural Similarity Map

Reference image JPEG compressed image S5IM quality map

(210 py + C1) (2044 + Cs)
(43 + 3 + C1) (02 +0F + C3)

SSIM (z,y) =
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Face recognition using SSIM

Image alignment I Image matching with SSIM index weighted multi-patch fusion —
age algrmt |
probe 1mage
(post-surgery) n patches
mean S5IM index
patch calculation for
division each patch

image
align

patch feature 5":? S 5
= cxtraction and §C~ = Z( W, X 5cC;

matching

SS8IM index
gallery image n patches welghted score
(pre-surgery)
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Face recognition using SSIM

N S8IM maps

IS F_

_ L ! N r'l'-;
probe image SSIM
(post-surgery) .'-. mﬂlput?uﬂfn ' ' '

matching with S5IM based multi-patch fusion

z':i'e.r:r:'.r_],:argmjax{sc“j}

N gallery images (pre-surgery) final classfication




SSIM examples




Experimental results

Plastic surgery database containing 576 images
of 784 subjects taken from the web.
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Component-based matching
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Identification Rate

Performance
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Comparison of the Cumulative Match Characteristic
curves computed from eleven different face
recognition algorithms applied to the same plastic
surgery database. Dashed lines refer to region-based
approaches, while solid lines refer to holistic
approaches. The CMC curves are those reported in
their original research papers.

|dentification Rate
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Identification error, as reported by eight different
recognition algorithms, categorized by eight different
surgical procedures. The six leftmost procedures are
local, while the two rightmost procedures are global.
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Comparison of overall vs. procedure-wise performance of eight different algorithms. The identification rate is
normalized to 1.



DEALING WITH AGE
PROGRESSION

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer
Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, (2009)




Aging effects

Time duration: 2 years

Time duration: several years




Aging ... over time

Living My
Life Faster

Oct 1 1998-2006
8 years of JK's
Daily Photo Project
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Aging ... over time
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Photometric effects

Time evolution of facial features over 4 years
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M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer
Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, (2009)



Photometric effects

Time evolution of facial features over 8 years
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M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer Vision
and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, (2009)



Photometric effects

Comparative time evolution of features for different subjects
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Face matching across age
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M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer Vision and
Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, (2009)



3D FACE RECOGNITION

Cadoni M., Grosso E., Lagorio A., “Large scale face identification by combined iconic features and 3D joint invariant signatures”,
Image and Vision Computing, Vo. 52, pp. 42-55, 2016.

Cadoni M., Grosso E., Lagorio A., Tistarelli M., “Blending 2D and 3D Face Recognition”, T. Bourlai Ed. Face Recognition Across
the Imaging Spectrum, pp. 305-331, Springer, 2016.

Cadoni M., Grosso E., Lagorio A., Tistarelli M., “From 3D Faces to Biometric Identities”, Proc. of Biold European Workshop, pp.
156-167, LNCS 6583, Springer, 2011.

Cadoni M., Bicego E., Grosso E., “3D Face Recognition Using Joint Differential Invariants”, Proc. of Third International
Conference on Biometrics, [CB 2009, pp. 279-288, LNCS 5558, Springer, 2009.




3D face recognition:
from ill-posed to well-posed




3D face matching

> Recognition of faces from 3D data can be achieved by
pairing a set of points from two individuals and measuring
the goodness of fit.

> This process requires to 1dentify anchor points on the faces




Texture:

Point clouds: - Fusion with shape

- ICP gives the dist
- Hausdorff
- Too many points

PCA

Surface normals:
- Too many ...

Range images:

- Benefit from 2D
literature

- Easy to fuse with
texture

- Applicable to 2.5D only

_ Curvature:
Face profile: . - Useful for landmarks
-Sparse detection

-Easy to compare
-Not fully descriptive

- Sensitive to noise and the
quality of data



3D shape matching

Author, year, reference Persons in dataset Images in dataset Image size 3D face data Core matching Reported
algorithm performance

Cartoux, 1989 [12] 5 18 Not available Profile, surface Minimum distance 1007

Lee, 1990 [26] 6 6 256 x 150 EGI Correlation None

Gordon, 1992 [21] 26 train 8 test 26 train 24 test Not available Feature vector Closest vector 10074

Nagamine, 1992 [39] 16 160 256 x 240 Multiple profiles Closest vector 10004

Achermann, 1997 [3] 24 240 75 % 150 Range image PCA, HMM 10074

Tanaka, 1998 [52] 37 37 256 % 256 EGI Correlation 10004

Achermann, 2000 [2] 24 240 75 % 150 Point set Hausdorfl distance  100%%

Chua, 2000 [17] 6 24 Not available Point set Point signature 10004

Hesher, 2003 [22 37 222 242 x 347 Range image PCA 97%

Lee, 2003 [27] 35 70 320 x 320 Feature vector Closest vector 94% at rank 5

Medioni, 2003 [34] 100 700 Not available Point set ICP 98%

Moreno, 2003 [38] 60 420 2.2K points  Feature vector Closest vector 78%

Pan, 2003 [42] 30 360 3K points Point set, range image HausdorflT and PCA  3-5% EER,

5-T% EER

Lee, 2004 28] 42 84 240 % 320 Range, curvature Weighted Hausdorft 98%

Lu, 2004 [30] 18 113 240 x 320 point set ICP 96%

Russ, 2004 [49] 200 FRGC vl 468 480 x 640 Range image Hausdorfl distance  98% verification

Xu, 2004 [57] 1200 (30) 720 Not available Point set + feature vector Minimum distance  96% on 30,

72% on 120

Bronstein, 2005 [11] 30 220 Not available Point set “canonical forms” 10074

Chang, 2005[16] 466 FRGC v2 4007 480 x 640 Point set multi-ICP 92%

Gdakberk, 2005 [20] 106 579 Not available Multiple Multiple 9%

Lee, 2005 [29] 100 200 Various Feature vector SVM 96%

Lu, 2005 [31] 100 196 probes 240 x 320 Surface mesh ICP, TPS 89%

Pan, 2005 [41] 276 FRGC vl 943 480 x 640 Range image PCA 95%, 3% EER

Passalis, 2005 [44] 466 FRGC v2 4007 480 x 640 Surface mesh Deformable model  90%

Russ, 2005 [50] 200 FRGC vl 398 480 x 640 Range image Hausdorfl distance  98.5%

Bowyer et al. CVIU 101: 1-15 (2006)



Fusing 3D shape and texture

Author, year, reference Persons in Images in Image size 3D face data Core matching Reported
dataset dataset algorithm performance
Lao, 2000 [25] 10 360 480 x 640 Surface mesh Minimum distance 91%
Beumier, 2001 [4] 27 gallery 81 gallery, Not available Multiple profiles Minimum distance 1.4% EER
29 probes 87 probes
Wang, 2002 [56] 50 300 128 x 512 Feature vector  SVM, DDAG =>90%
Bronstem, 2003 [10] 157 Not available 2250 points  Range, point set PCA Not reported
Chang, 2003 [14] 200 (275 train) 951 480 x 640 Range image PCA 99% 3D+ 2D, 93% 3D only
Tsalakanidou, 2003 [55] 40 80 100 x 80 Range image PCA 99% 3D+ 2D, 93% 3D only
Godil, 2004 [19] 200 400 128 x 128 Range image PCA 82% rank |
Papatheodorou, 2004 [43] 62 806 10,000 points  Point set ICP 100-66%
Tsalakanidou, 2004 [54] 50 3000 571 x752 Range image EHHM per mode 4% EER
Hiisken, 2005 [23] 466 4,007 FRGC v.2 480 x 640 hier. graph graph match 93% verification at 0.01 FAR
Lu, 2005 [32] 100 598 320 x 240 Point set ICP, LDA 91%
Maurer, 2005 [33] 466 4007 FRGC v.2 480 x 640 Surface mesh ICP, Neven 8 7% verification at 0.01 FAR

Bowyer et al. CVIU 101: 1-15 (2006)



3D Shape invariants

Multiscale features extracion
3D face registration using geometrical invariants

Compute the face similarity

Cadoni M., Grosso E., Lagorio A., “Large scale face identification by combined iconic features and 3D joint invariant signatures”,
Image and Vision Computing, Vo. 52, pp. 42-55, 2016.

Cadoni M., Bicego E., Grosso E., “3D Face Recognition Using Joint Differential Invariants”, Proc. of Third International
Conference on Biometrics, [CB 2009, pp. 279-288, LNCS 5558, Springer, 2009.



3D face registration

= For each triplet (p1, p2, p3) of features points a set of
nine invariants is computed:

l,1,,1,,J,,J,,J5,J,,J,,J5)

o 3 of differential order zero:

1, :sz _p1H
- 6 of differential order one:
1y = Py, ~ Py v = (pz_pl)/\(p3_p1)
”pz _p1|| t ”(pz _pl)/\(p3 _pl)ﬂ
J, = (vt AV)'Vk jk _ u-vy

V.-V, V.-V,



Results
--------

0.981 10920  0.9998
2 0 0.924 97 0 8 10920  0.9992
3 0 0.99 104 0 1 10920  0.9999

FR: Failed registration

AR: Authentication rate

TP: True positives

FP: False positives

FN: False negatives

TN: True negatives

Acc.: Accuracy = (TP + TN)/ (P + N)

* M. Cadoni, M. Bicego, E. Grosso, ""3D face recognition using joint differential invariants", Proc. Int. Conf. on Biometrics (ICB2009), pp. 279-

288, (2009)
* Marinella Cadoni, Enrico Grosso, Andrea Lagorio, Massimo Tistarelli: “From 3D Faces to Biometric Identities”. Proc. of BIOID 2011: 156-

167,2011



Results
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* M. Cadoni, M. Bicego, E. Grosso, ""3D face recognition using joint differential invariants", Proc. Int. Conf. on Biometrics (ICB2009), pp. 279-
288, (2009)

* Marinella Cadoni, Enrico Grosso, Andrea Lagorio, Massimo Tistarelli: “From 3D Faces to Biometric Identities”. Proc. of BIOID 2011: 156-
167, 2011






Biometrics and Forensic Science

Latent fingerprint
Latent palmprint

Fingerprint
Palmprint

2D Face
3D Face
Iris

Fibers
Explosive residue

Paint chips e Forensic

DNA vy
Tire marks " Science

Shoe prints %

Bite marks - % B Ik .
3 5
Scars Marks Tatoos SAY

Improve matching accuracy

Automated matching

Minimize human bias and sources of human error
Validate basis for evidence

Speech
Signature
Gait

Ear
Keystroke

Forensics: Use of “trace evidence” from the crime scene to identify objects or persons

Biometrics: Identification of living persons by their traits in “real-time”



Biometrics and Forensic Science
» Tippet plots

— Representation of the results proposed in the
field of interpretation of forensic DNA analysis
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Working environments




Working environments

Work far ua'- g

3



Videos & Sketches

First Composite Sketch Later Sketch which
Created in 1987 became widely circulated

The search for the Unabomber generated one of the most well known
composite sketches in recent history. The sketch is based on a single
1987 witness, who saw an individual drop off a package containing a
bomb. Although the identity is obscured by a hooded sweatshirt and
dark glasses, there are some very obvious differences between the
sketch and Ted Kaczynski, the man who was later arrested for the
crimes. The man in the sketch seams to have a very narrow nose, yat
Kacyknskl has a prominent, almost bulbous nose. Kaczynski also has
a broad chin and prominent age lines extending from above the flare of
his nose down. The basic shape of the face is different in the two
sketches, but neither accurately captures Kaczynski's likeness.



Face “Recognition”

Forensic face evaluation

52 Didier Meuwly |

Courtesy of Didier Meuwly NFI

The use of biometric information

in forensic practice
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Netherlands Forensic Institute
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Face “Reconstruction”

https:/ /www.youtube.com/watch?v=TOgGTgYXTys&list=PL1ptAvVZz1FL61 KtmPggKr-RiTMQiuw]5&feature=player detailpage




Face representation in the HVS

Table 1. Famous faces (FF) vs newly learned (NL) faces

Loc. # Brain region BA vaol. (ml) X ¥ z
FF = NL
BRAIN Total 1400 ml
1 L Superior Frontal 8 2.6
2 R Medial Frontal Q 24 L °
3 R Superior Frontal 8 (] 100 bllllon neurons
4 L Medial Frontal 10 0.4
5 R Precentral f 0.4 71 .5 MneuronS/ml
[ L Superior Frontal 8 0.4
T R Inferior Frontal 47 0.3
8 R Anterior Cingulate 32 0.3
9 R Medial Frontal 11 0.3
L0 L Medial Frontal 11 0.3 Maybe Wwe can Sketch

Temporal Labe

11 L Middle Temparal 21 27 h k s
2 R Middle Temporal 21 19 the network size

13 L Middle Tempaoral 21 0
14 L Middle Tempaoral 39 03 deVOted t() process
15 IR Superior Temporal 22 ns
Lt R Fusiform 20037 0.4 f
17 R Middle Temporal 37 03 aces eeee
18 R Insula 0.3
C. L. Leveroni et al. “Neural 19 R Parahippocampal 35 0.2
Systems Underlying the 20 R Parahippocampal 36 0.2
Recognition of Familiar and 21 L Hippocampus 2 0.2 0 7 o
Newly Learned Faces”, The Parietal /Occipilal Lobe
Journal of Neuroscience, 22 L Posterior Cingulate 23/30 1.7 4 57 15
January 15, 2000, 20(2):878— 33 R ]|'|lt:1'|u.r l-"nt'.mlﬂl 40 ns 4:: 30 22
386 24 R l_}mlcr m.r Cingulate 31 0.3 z 57 29
25 L Extrastriate 18 0.3 20 a9 20
Subeortical
26 R Pons 0.4 11 43 34
27 L Pons 0.2 10 43 33
28 R Putamen 0.3 22 7 6
NL = FF
Parictal Lobe
29 L Inferior Parietal 40 (i 37 64 40
30 R Superior Parietal 7 (] 23 Gl 30
31 R Inferior Parietal 40 03 35 o7 42

Region is defined as center of mass, The first column refers o location numbers demarcated in Figures 2 and 3 (imlicized numbers indicate locations not shown in figures).
Coordinates represent distance in millimeters from anterior commissure: ¢ right (+yleft { —); v anterior (+ )/posterior( —). z superior {+ Yinferion —.



Face representation in the HVS

wes (FF) vs newly learned (NL) faces

Brain region BA vol. {ml)
FF = NL
Frontal Lobe
L Superior Frontal 8 ikl
R Medial Frontal 9 24
R Supperior Frontal & 0.5
L Medial Frontal 10 0.4
R Precentral 6 04
L Superior Frontal 8 0.4
R Inferior Frontal 47 e
R Anterior Cingulate 32 03
R Medial Frontal 11 e
L Medial Frontal 11 e
Temporal Lobe
L Middle Tempaoral 21 41
R Middle Temporal 21 14
L Middle Temporal 21 (1.t
L Middle Temporal 39 5
R Superior Temporal 22 s
R Fusiform 20 4
R Middle Temporal 37 03
R Insula 03
R Parahippocampal 35 02
R Parahippocampal 36 .2
L Hippocampus 28 0.2
Parietal /Oceipital Lobe
L Posterior Cingulate 23 1.J
R Inferior Parietal 40 04
R Posterior Cingulate 31 0.3
L Extrastriate 18 e
Subcortical
R Pons 0.4
L Pons 02
R Putamen 0.3
NL = FF
Parietal Lobe
L Inferior Parictal 40 1.0
R Superior Parictal 7 5
R Inferior Parietal 40 03

The BRAIN mass is equal to 1400 ml
Composed of some 100 billion neurons
71.5 Mneurons/ml

Summing up the volumes of all active
areas, the total volume is 21,2 ml

or ... 1.5 Bneurons

... with 12K Synapses/neuron!

senter of mass. The first column refers o location numbers demarcated in Figures 2 and .
L distance in millimeters from anterior commissure: x right {+3/lell(

15 v anterior ()

= 18 trillion synapses!
= 2.3 trillion Bytes?

If we can learn, say 10,000 faces
this corresponds to

220 MB/face

(or a 7 sec. video stream of 1Kx1K images)




Face representation in the HVS
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Face recognition

I. What happened in 20+ years of
research in face recognition?

I1. What can we learn?

II1.What is still to be done?



Summary and Conclusion

Face recognition 1s one of the most appealing biometric modality
... and one of the most challenging,
sometimes beyond expectations

Several successful working systems

... still several drawbacks and limitations

Many directions for research to follow
Feature extraction and selection
Subject-based representation and classification
[1lumination and registration
Complex behaviors
Learn from external factors and expectations

Exploit contextual information
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DATASETS




Face databases

The appearance of a face is affected by many factors

= Identity - Age
= Face pose - Occlusion
= [llumination - Facial hair

= Facial expression

The development of algorithms robust to these
variations requires databases of sufficient size that
include carefully controlled variations of these
factors.

Common databases to comparatively evaluate
algorithms.

Collecting a high quality database is a resource-
intensive task



Face databases

T e e 0¢F
Gl
ﬂﬂl

(1) (13)

N
Y

: \ =%
) (10)

AR database. The conditions are (1) neutral, (2) smile, (3) anger, (4) scream, (5) left
light on, (6) right light on, (7) both lights on, (8) sun glasses, (9) sun glasses/left light
(10) sun glasses/right light, (11) scarf, (12) scarf/left light, (13) scarf/right light



Face databases

CAS-PEAL database. The images were recorded using separate cameras
triggered in close succession. The cameras are about 22.5° apart. Subjects were
asked to look up, to look straight ahead, and to look down. Shown here are seven
of the nine poses currently being distributed.



Face databases

Illumination variation in the CAS-PEAL database. The images were recorded
with constant ambient illumination and manually triggered fluorescent lamps.

Also the CMU PIE database has been designed to include illumination variations



Face databases

Equinox IR database The upper row contains visible images and the lower row long-wave
infrared images. The categories are (a) vowel (frontal illumination), (b) “smile” (right
illumination), (¢) “frown” (frontal illumination), (d) “surprise” (left illumination).



Face databases 3

fa fb duplicate | fc duplicate Il
Frontal image categories used in the FERET evaluations. For images in the fb category, a different facial
expression was requested. The fc images were recorded with a different camera and under different lighting
conditions. The duplicate images were recorded in a later session, with 0 and 1031 days (duplicate I) or 540

to 1031 days (duplicate II) between recordings.

i : e B P e MR BT T Bl e s
T = '&%s e ’%3 % %%‘ R e t%; % g - -g e
-

pr hr qr ql hl

+90° +67.5° +22.5° —22.5° —67.5°

Additional set of pose images from the FERET database: right and left profile (labeled pr and pl),
right and left quarter profile (qr, ql), and right and left half profile (hr, hl).



Notre Dame HumanlID database Example images of the “unstructured”
lighting condition recorded in the hallway outside of the laboratory.

University of Texas
Video Database
Example images for the
different recording
conditions of the
database. First row:
Facial speech. Second
row: Laughter. Third
row: Disgust.




Face databases

Nl:‘.l\. FOR umoaucn AND E-COMERCE

APPLICATIONS

g:;?;?;ﬁm The BANCA database is a new large, realistic and challenging nmlti-modal database intended for training and testing multi-modal
e verification systems. The BANCA database was captured in four European languages in two modalities (face and voice). For recording,
m:mction both high and low quality microphones and cameras were used. The subjects were recorded in three different scenarios, controlled,
m degraded and adverse over 12 different sessions spanning three months. In total 208 people were captured. half men and half women =
Specification Associated with the database is the BAWNCA protocol. The protocol defines which sets of data to use for training, evaluation and testing.
Protocol Performing experiments according to the protocol allows institutions to easily compare their results to others. Two face verification
competitions on the images from the BANCA database and associated protocol are being held in the vear 2004. The first is being held in
UG EEER G conjunction with I[CBA and the second in conjunction with [CPR 2004,

Available Datasets

Payment Methods Through this web-site portions of the BANCA database are being made available to the research commmmnity. As more of the data
R becomes available it will be released here. Presently, the complete set of English images is available.

m

. The BANCA database offers the research comnmumnity the opportunity to test their multi-modal verification algorithms on a large, realistic
CESUL LS UL nd challenging database. Tt is hoped that this database and protocol will become a standard. like the XM2VTS database, which enables
institutions to easilv compare the performance of their own alzorithms to others.

The BANCA and XM2VTS video databases distributed by the
University of Surrey




Face databases

A/ FOR NETWORKED AND E-COMERCE

/M\ APPLICATIONS

The BANCA
Protocol

An evaliation protocol defines a set of data, how it should be used by a system to perform a set of experiments and how the system
petformance should be computed.

In verification, two tvpes of protocols exist; closed-set and open-set. In closed-set verification the population of clients is fixed. This
means that the system design can be tuned to the clients in the set. Thus both the adopted representation (features) and the verification
algorithm applied in the feature space are based on some training data collected for this set of clients. Anvone who is not in the training set
is considered an impostor. The XM2VTS protocol is an example of this type of verffication problem formulation.

In open-set verification we wish to add new clients to the list without having to redesign the verification system_ In particular, we want to
use the same feature space and the same design parameters such as thresholds. In such a scenario the feature space and the verification
system parameters must be trained using completely independent data from that used for specifving client models. The BANCA protocol
is an example of an open-set verffication protocol.




Face detection databases

Face detection algorithms typically have to be trained
on face and non-faces images to build up an internal
representation of the human face.

Popular choices are the FERET, MIT, ORL, Harvard,
and AR public databases. Nonpublic databases are
often also employed.

These data sets should be representative of real-world
data containing faces of various orientations against a
complex background.

In recent years two public data sets emerged as quasi-
standard evaluation test sets:

The combined MIT/CMU test set for frontal face
detection

The CMU test set Il for frontal and non-frontal face
detection



Face detection databases

Example images from the Upright Test Set portion of the MIT/CMU test set.



Face detection databases

4 | - v v " Example images from the

Tilted Test Set portion of
the MIT/CMU test set

L ". .r":"\\ - P

CMU Test Set II. Most of the faces in this test set are in profile view.
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Cohn-Kanade AU-Coded
_ -5 Facial Expression

s v ARy o A o wan v agisRigy, = o database Examples of
emotion-specified
expressions from image
sequences.

1EAil v [ll.]li"!i!‘i‘jﬁ-x'.'ll

University of Maryland
database. The images
show peak frames taken
from an image sequence
in which the subjects
display a set of facial
expressions of their
choice.



References Elicitation method Size ANV Emotion description Labeling Acces-
sibility
Cohn-Kanade | Posed 210 adults, 3 races; v Category: 6 basic emotions, and FACS Y
(CK) "00 [71] AUs
Sebe etal. Matural: 5S¢ v Category: Neutral, happy, sur- Self-report | N
(SD) “04 [123] i prise, disgust
MMI ‘053 | Poscd: s@lic images, videos 1e- Posed; BT adulls v Category: 6 basic emotions, single | FACS, Y
[106], [98] corded simultaneously in frontal Natural: 11 children AU and multiple AUs activation Observers’
and profile view; and 18 adults. judgment
Matural: Children interacted with | Owerall: 3 races
a comedian. Adults watched emo- | Awvailable: 1250 vid-
tion-inducing videos eos, 600 static images
UT Dallas “06 729 adulis A Category: 6 basic emotions, puz- Observers® Y
[95] zle, laughter, boredom, disbelief judgment
BU-3DFE - e Tt TS v Category: 6 basic emotions. N/A Y
(BU)'06 [148] | 3DMD digitizer. Mixed races Four levels of intensity
FABO face Posed: two cameras to record 23 adults v Category: 6 basic emotions, neu- N/A Y
and body facial expressions and body ges- Mixed races tral, uncertainty, anxiety, boredom
gesture [63] tures respectively Available: 210 videos
Banse-Scherer | Posed 6 actors & 6 actresses A Category: hot/cold anger, panic Listeners” Y
96 [8] Available: 1344 audio fear, anxiety, despair, sadness, judgment
samples elation, happiness, interest, bore-
dom, shame, pride, disgust, con-
tempt.
Danish Emo- Posed 2 actors & 2 actresses; A Category: neutral, surprise, hap- Listeners” Y
tional Speech 2 words, 9 sentences, 2 piness, sadness, anger Jjudgment
Database '96> passages; 10 min of
audio data.
ISL meeting Natural: meeting corpus 18 meetings; A Category: Positive, neutral, nega- Listeners” Y
corpus ‘02 Available: tive [3], [90] Jjudgment
[15] data of 5 participants
per meeting averagely
CSC corpus Natural: subject was motivated to | 32 adults, 15.2 h, A Deceptive, non-deceptive speech Self-report N
[65] tell the truth and deceive the 3882 speaking turns,
interviewers in different tasks 9687 SUs
Automatic call | Natural: Human-computer dia- 1187 calls A Category: Negative, non-negative | listeners® N
center logue at a commercial call system | 7200 utterances Jjudgment
(ACC) 05
53]
Bank and Natural: human-human dialogue 350 dialogues, 10000 A Category: fear, anger, stress Listeners® N
Stock Service | at call center speaking turns Jjudgment
04 [34]
AIBO data- Natural: children and robot inter- 110 dialogues, A Category: joyful, emphatic, sur- Listeners’ N
base ‘04 [13] | action 29200 words prised, ironic, helpless, touchy, Jjudgment
angry, bored, motherese, repri-
manding, rest
Chen-Huang Posed 100 adults, 9900 visual | AV Category: 6 basic emotions, and 4 | N/A N
(CH) 00 [21] and AV expressions cognitive states (interest, puzzle,
bore, frustration)
Adult At- Natural: subjects were inter- &0 adults AV Category: 6 basic emotions, em- FACS N
tachment viewed to describe the childhood Each interview last 30- barrassment, contempt, shame,
Interview experience Hlimin general positive and negative.
(AALFO4[111]
RU-FACS AV Category: 33 AUs FACS N
(RU) "05 [10]
SAL ‘057 AV Dimensional labeling/categorical FEEL- Y
labeling TRACE
Belfast data- AV Dimensional labeling/categorical FEEL- Y
base (BE) ‘03 | sion and realistic intervi labeling TRACE

[38]

research team




Face actions databases

References Elicitation method Size AV Emotion description Labeling Acces-
sibility
Cohn-Kanade | Posed 210 adults, 3 races; Vv Category: 6 basic emotions, and FACS Y
(CK) ‘00 [71] Available: 480 videos AUs
Sebe et al. Natural: Subjects watched emo- 28 adults \ Category: Neutral, happy, sur- Self-report | N
(SD) ‘04 [123] prise, disgust
MMI ‘053 Posed: static images, videos re- Posed: 61 adults \% Category: 6 basic emotions, single | FACS, Y
[106], [98] corded simultaneously in frontal Natural: 11 children AU and multiple AUs activation Observers’
and profile view; and 18 adults. judgment
Natural: Children interacted with | Overall: 3 races
a comedian. Adults watched emo- | Available: 1250 vid-
tion-inducing videos eos, 600 static images
UT Dallas ‘06 | » I Sul atched emo- 229 adults Y% Category: 6 basic emotions, puz- Observers” | Y
[95] zle, laughter, boredom, disbelief judgment
BU-3DFE Posed: 3D range dafa by using T00 adulis \Y Category: 6 basic emotions, N/A Y
(BU)‘06 [148] | 3DMD digitizer. Mixed races Four levels of intensity
FABO face Posed: two cameras to record 23 adults A% Category: 6 basic emotions, neu- N/A Y
and body facial expressions and body ges- Mixed races tral, uncertainty, anxiety, boredom
gesture [63] tures respectively Available: 210 videos
Chen-Huang Posed 100 adults, 9900 visual | AV Category: 6 basic emotions, and 4 | N/A N
(CH) 00 [21] and AV expressions cognitive states (interest, puzzle,
bore, frustration)
Adult At- Natural: subjects were inter- 60 adults AV Category: 6 basic emotions, em- FACS N
tachment viewed to describe the childhood ach interview last 30- barrassment, contempt, shame,
Interview experience general positive and negative.
(AAD)04[111]
RU-FACS N AV Category: 33 AUs FACS N
(RU) 05 [10]
SAL ‘057 AV Dimensional labeling/categorical FEEL- Y
labeling TRACE
Belfast data- AV Dimensional labeling/categorical FEEL- Y
base (BE) ‘03 ces from labeling TRACE

[38]

research team

'V, 30 from interview




Face aging databases

FG-NET dataset: MORPH dataset:

images of about 100 images of 13,000
individuals with ages individuals collected over
varying from 5 to 69 four years

years of age



Face aging databases

IIIT-Delhi face aging database:2,618 images from 49 female
and 53 male Indian celebrities



3D Face Databases

= Features:
= Full 3D / 2.5D
» Single view / Multi-view
= [llumination changes
» Expressions changes
= Only shape or shape + texture
= Pre-processing
» Quality of data (sensors)



3D Face Databases

= UND database (University of Notre Dame)
= 953 facial scans (277 subjects)
» frontal scans (neutral expression)
= 2.5D shape + texture




3D Face Databases

= FRGC database (NIST)
= 4007 scans (465 subjects)
= nearly frontal
= different expressions
= 2.5D shape + texture




3D Face Databases

= USF database (University of South Florida)
= 100 scans
= full-view models
» neutral expression




3D Face Databases

= 3D_RMA database (Royal Military Academy of
Belgium)
= 120 subijects (2 sessions, 3 scans each)
» different (but limited) orientations

= 3D points




3D Face Databasks

= GavabDB database
(University Rey Juan Carlos
— Madrid)

s different orientations and
expressions

= 61 subjects (9 scans)
= Shape only




3D Face Databases

The Bosphorus database contains scans of 105 individuals: 61
male; 44 female

About 50 scans/subject. Each scan either presents a diffent
facial expression (anger, happiness, disgust), or a head rotation
along different axes.

A.Savran, N. Alyiiz, H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, L. Akarun,
Bosphorus Database for 3D Face Analysis, The First COST 2101 Workshop on Biometrics and Identity Management
(BIOID 2008) Roskilde University, Denmark, May 2008.



3D Mask Attack Dataset

76500 frames of 17 persons, recorded using Kinect for both real-
access and spoofing attacks. https://www.idiap.ch/dataset/3dmad




Face recognition challenges

After
‘FERET
‘FRVT
‘FRGC

2



LFW Home

MNew: Professor Learned-Miller will be running a workshop titled Faces in Real-Life Images at
the European Conference on Computer Vision with co-organizers Andras Ferencz and
Frederic Jurie.

Menu
* |FW Home

o Mailing
Explore
Download
Train/Test
Results

o g
il

o

Q

o

o Information

o

Q

o

Q

= ‘R
bl da |

Errata
Reference
Contact

Support ! Welcome to Labeled Faces in the Wild, a database of face photographs designed for
B Chan.gt_as ' studying the problem of unconstrained face recognition. The database contains more
* UMass Vision i than 13,000 images of faces collected from the web. Each face has been labeled
i with the name of the person pictured g=s il e, =
y distinct photos in the database. The quleconsirgint oo thege facag ig that thay I
! were detected by the Vicla-Jones face detector. More details can be found in the

technical report below.

last updated: 2007/11/21 1:30 PM EST
change log

Mailing list:
If you wish to receive announcements regarding any changes made to the LFW
database, please send email to majordomo@cs.umass.edu with the message body:
"subscribe Ifw" on a single line.

Explore the database:
# Alphabetically by first name:

[A)[AIf)[Ang)[B)[Bin)[C)[Che)[Col)[D)[Daw)[Don)[E)[Er)[F)[G)[Goe)[H) [1)[1)
[Jav)[Jes)[Joh)[Jos)[K)[Kim)[L)[Lil)[M)[Mark)[Mel)[Mik)[N)[O)[P) [Per)[Q)[R)[Ric)
[Rog)[s)Isha)lste)[T)[Tim)[LIVIIW)[X)Y)IZ)
# Alphabetically by first name, only people with more than one image:
[AJ[BILCI[DIEI[FI[GIHITI[AKI[LIIMIINI[OI[PI[QI[RI[SIITIVIVIIWILXI[YILZ]
s Alphabetically by last name:
[AJ[BILCIIDIEI[FI[GIHITI[ANKI[LIIMIINI[OI[PI[QI[RI[SI[TIVIVIIWILXI[YI[Z]

s By number of images per person:




Face recognition challenges

Image—RBestricted, best

1 (;;— T T T

Hybrid, aligned
Conbined b/g sanples based, aligned
Attribute and sinile classifiers
Hunan, funneled
Hultiple LE + conp
CSHL + 5VH, aligned
High=-Throughput Brain-Inspired Features
Associate-Predict
LARK supervised, aligned faces
DHL=-eig combined, aligned & funneled
Ton-vz-Pete
APEH {fusion}, funneled
conbined Joint Bayesian
high dinensional LBP
| SFED+FPHHL

B.ﬁ 1 1 1 1
g 8.1 a.2 a.3 8.4 a.5

falze poszitive rate

true positive rate

||:‘l|||

http:/Ivis-www.cs.umass.edu/lfw/results.html




Biometrics challenges

"
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Home

Call for Papers
Commitiee
Competitions
Keynote Speakers

Paper Submission

Demo Submission
Awards

Call for Tutorials
Conference Venue
Sponsors

Travel Information

Poster

1CB

The 3rd IAPR/IEEE Intermnational Conference on Biometrics

ICB2009 Competitions

Competitions Chairs
Bernadetie Dorizzi

Jonathon Phillips

Biosecure Foundation, France
NIST, USA

Face recognition from stills and video

This competition is performed under the supervision of Norman Poh from the University of
Surrey

Fingerprint
This competition is performed under the supervision of Raffaele Cappelli from the Liniversity

of Bologna

Multimodal Biometric Feature Selection Challenge

This competition is performed under the supervision of Krzysztof Kryszczuk from the Ecole
Politechnique Federale de Lausanne

Multiple Biometrics Grand Challenge

The Multiple Biometrics Grand Challenge is organized and supported by the National Institute
of Standards and Technology (NIST). The MBGC is sponsored by multiple .5, Government
Agencies. Dr Jonathon Phillips is the responsible for the NIST MBGC evaluation. Within the
framework of ICB program, submissions are encouraged to the MEGC evaluation. The
results of the MBGC, together with the other competitions, will be presenied at a special
conference session.

Signature verification

This competition is performed under the supervision of Sonia Garcia-Salicetti from the
institute TELECOM SudParis

IRPREY

{IEEE

Biometrics Cowncil



Home

Presentation
Instructions

Program / Schedule

Keynote Speakers

Organizing
Committee

Program Committee

Competitions

Doctoral Consortium

Tutorials
Registration
Visa Information

Accommodation

Related Events

Conference Venue

Snrial Proaram

The 6t IAPR International Conference on Biometrics
June 4 - 7, 2013 Madrid, Spain

Competitions

The availability of common benchmark databases, together with evaluation protocols has
been partly responsible for the significant gains made in biometrics in recent years. We
believe that such evaluations should be continued. Databases and, more importantly,
unbiased evaluation mechanisms should be spread across the scientific community,
making it possible for scientists to evaluate their progress.

The 6th IAPR International Conference on Biometrics (ICB 2013) is supporting the
organization of the following 8 evaluations:

» The 2nd competition on counter measures to 2D facial spoofing attacks

» Competition on face recognition in mobile environment using the MOBIO database

» Competition on speaker recognition in mobile environment using the MOBIO database

» The First ICB Competition on Face Recognition (ICFR2013)

» The First ICB Competition on Iris Recognition (ICIR2013)

» Competition on Secure Template Fingerprint Verification (STFV@ICB-2013)

» Competition on Fingerprint Indexing (FIDX@ICB-2013)

» Competition on Fingerprint Liveness Detection

Competitions will be running from January 7, 2013 to March 22, 2013, but database and
instructions will be available in late 2012. Each competition will have the opportunity to
submit for review a competition summary paper for possible publication into the official
proceedings.

Together with these 8 evaluations, an on-site spoofing challenge intended to evaluate
operational vulnerabilities of various biometric systems will be conducted:
» TABULA RASA Spoofing Challenge. [NEW!]
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Quality in Face and Iris Research =

Ensemble (Q-FIRE)

¢ Release 1

> 4TB of visible face and NIR face/iris video for 90 subjects
» Multiple distance up to 8.3 meters with controlled quality degradation

¢ Release 2

» An additional 83 subjects (currently sequestered)
¢ Available by Request to CITeR http://www.clarkson.edu/citer/research/collections

Out-of Focus Blur
5 ft 15 ft 25ft 5 ft 15 ft 25ft
Sharp T Sharp ; 7 E
No blur No blur = =
Low Low
blur | ’ : = blur
High < High
blur v blur

S. Schuckers, Claﬁcson Uhiversity, sschucke@clarkson.edu



Quality in Face and Iris Research =

Ensemble (Q-FIRE)

¢ Release 1
> 4TB of visible face and NIR face/iris video for 90 subjects
» Multiple distance up to 8.3 meters with controlled quality degradation

¢ Release 2

» An additional 83 subjects (currently sequestered)
¢ Available by Request to CITeR http://www.clarkson.edu/citer/research/collections

Angle Multiple Faces

g 3 =
-

S. Schuckers, Clarkson University, sschucke@clarkson.edu



Multimodal databases




VIDEO DATASETS




Natural Viewing Environment. .
Video

Courtesy of Jonathon Phillips, NIST
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Point & Shoot Challenge—Video




Multiple Biometric Grand Challenge
MBGC

* Walking footage: Subject walks towards camera.
e Activity/Conversation footage: Non-frontal footage of subject performing an A/C.

R0 Aty 5 s

& U of Notre Dame




Examples PaSC—Stills




PaSC

= Problem Defined
» 9,376 stills; 293 subjects
= 2,802 videos; 265 subjects
= Video-to-video
= Still-to-video
= Still-to-still
= http:/ /tace.nist.gov
m Release 11 June 2013

@ Design: Colorado State (CSU) and NIST
m Data collection: Notre Dame, NIST, and CSU



FOCUS UT-Dallas Dataset

FOCS videos: 510 walking (frontal face) and 506 activity (profile face) videos

J. O'Toole, P. J. Phillips, S. Weimer, D. A. Roark, J. Ayyad, R. Barwick, and J.Dunlop, “Recognizing people fromdynamicandstatic
faces and bodies:Dissectingidentity with a fusion approach,” Vision Research, vol.51, no.1, pp.74-83, 2011.
National Institute of Standards and Technology, "Face and Ocular Challenge Series (FOCS)”.



Face in Video Evaluation

NIST Time | NIST Home | About NIST | Contact Us | A-Z Site Index

Information Technology Laboratory Lo O s ‘ﬁ“‘:’f

About ITL ¥ Publications  Topic/Subject Areas ¥  Products/Services ¥  News/Multimedia  Programs/Projects

MNIST Home > ITL > Information Access Division = Image Group > Face in Video Evaluation (FIVE)

| Select Language T £ sHRRE EwE

Powered by Google Translate

@ S BN N SN EEEEE S EEEEEEEEEEEEEDS Other Links

Face In Video Evaluation (FIVE)

FRVT Homepage
face_nist.gowv
Image Group Publications Archive Homepage

2014-07-16 Program Announcement
Fingerprint Homepage

Scope: The Face in Video Evaluation (FIWE) is being conducted to assess the capability of Image Group Homepage

face recognition algorithms toe correctly identify or ignore persons appearing in video Biometrics Evaluations Homepage
sequences - i.e. the open-set identification problem. Both comparative and absolute ITL Biometrics Overview

accuracy measures are of interest, given the goals to determine which algorithms are most iris. nist.gowv

effective and whether any are viable for the following primary operational use-cases; 1.
High volume screening of persons in the crowded spaces (e.g. an airport); 2. Low volume
forensic examination of footage from a crime scene (e.g. a convenience store); 3. Persons
in business meetings (e.qg. for video-conferencing); and 4. Persons appearing in television
footage. These applications differ in their tolerance of false positives, whether a human

examiner will review outputs, the prior probabilities of mate vs. non-mate presence, and http://WWW nlSthV/ltI/iad/ig/flveCfm

the cost of recognition errors.

0Out of scope: Gait, iris and voice recognition; Recognition across multiple views (e.g. via
stereoscopic techniques); Tracking across sequential cameras (re-identification); anomaly
detection; detection of evasion.

Relationship to FRVT: The Face Recognition Vendor Tests of 2000, 2002, 2006, 2010, and
2013 gave quantitative statements of accuracy and speed of mostly still-image face
recognition algorithms. The last test included a video track [(FRWT class V) = results from
that work are being provided to participants. Our new FIVE program supersedes the FRWVT
work but proceeds in an almost identical manner.

Test progression: Software submitted to NIST will be evaluated on sequestered sets to
quantify accuracy and speed. Algorithms must be implemented behind the formal C++ API
to be published by NIST. This will be very similar to the API used in the prior FRVT
evaluation. The test will be conducted over at least three iterative cooperative
test-report-test phases engaging algorithm developers. This process will culminate in the
publication of reports on this website and in the open literature.




...ahd Beyond

* Female makeup Datasets
* Plastic Surgery Face Database
* YouTube Faces Database

e ChokePoint

* SCface - Surveillance Cameras Face Database
* Long Distance Heterogeneous Face Database (LDHF-DB)
* VADANA: Vims Appearance Dataset for facial ANAlysis
* MOBIO - Mobile Biometry Face and Speech Database




APPENDIX 2

KINSHIP

Lorusso L., Brelstaff G., Brodo L., Lagorio A., Grosso E., “Visual judgments of kinship: an alternative perspective”, Perception
40(11):1282-9, 2011




Faces and Kinship




Faces and Kinship
1 Kings 3:16-27

Raphael's oil painting The Judgement of Solomon - 1518



Face-based Kinship analysis:
the literature

Studies of kin recognition investigated the
relationship between KINSHIP and
SIMILARITY:

Maloney & Dal Martello , 2006, “Kin recognition and the
perceived facial similarity of children” Journal of Vision 6, pp. 1047-
1056.

Dal Martello & Maloney, 2006, “Where are kin recognition signals
in the human face?”, Journal of Vision 6, pp. 1356-1366.

DeBruine et al., 2009, “Kin recognition signals in adult faces”
Vision Research 49, pp. 38-43.

Alvergne et al., 2010, “ Are parents' perceptions of offspring facial
resemblance consistent with actual resemblance? Effects on
parental investment” Evolution and Human Behaviour 31, pp.7-15.



Face-based Kinship analysis:
the literature

Maloney and Dal Martello (2006) have
introduced a model for kin recognition -
Thresholded Similarity Observer (TSO)
model - in which kin recognition is
reduced to a similarity measure of
similarity cues.



The TSO Model

Similarity
" response
Similarity
Feature pool » measure
Relatedness
* response

The flow of visual information (visual pathway)

in similarity and kinship judgments
(Maloney and Dal Martello 2006).



The TSO Assumptions

Genetically-related people manifest in their faces “Kin
signals”.

“Kin signals” are represented by similarity features.

Kin recognition is a signal detection task.

Perception of similarity and kin recognition are based on
a common measure of similarity of features.

Kinship and similarity judgments are based on a common
flow of visual information from the stimulus to the
observer.

The model of perceived similarity between faces is a
“generalized” (vs an “individualized”) model.




The TSO Model Expanded




2

The TSO Assumptions

From such assumptions it follows that
judgments of similarity and kinship do not
require any kind of cognitive modulation, but
a visual flow of similarity information is
sufficient for the observer to make the
judgments.

In other words, bottom-up mechanisms are
sufficient to make kinship judgments.



Not considered in TSO

Top-down mechanisms: task-driven and
context-dependent strategies. Different tasks
and visual contexts may induce the observer to
follow different observational strategies.

Relations between concepts, may enhance or
undermine the belief that two persons are
similar or genetically related (i.e. priming
effects of a judgment over another).



Not considered in TSO

= Our past study on this topic (Lorusso et al.,
Perception 2011) investigates the possibility
that a judgment of kinship may not be
just a judgment of similarity and that
different strategies may be involved in
those judgments modulated by the tfask,
relations between concepts, and different
stimulus contexts.

Lorusso L., Brelstaff G., Brodo L., Lagorio A., Grosso E., “Visual judgments of kinship: an alternative
perspective”, Perception 40(11):1282-9, 2011



The TSO Model Expanded. .
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APPENDIX 2

INDUSTRIAL SYSTEMS
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Commercial FR systems

3M/Cogent (2D + 3D rectification)

Ad4Vision, Inc. (3D scanner) From: WWW.face-reC.org
AcSys Biometrics Corp.

Animetrics Inc. (3D shape)

Ayonix Inc. (2D ???)

Betaface (2D + hair & variable features)

Cognitec Systems GmbH (LFA)

Crossmatch Tech. (2D face capture)

Cybula Ltd. (3D shape/2D texture)

Face.com (2D mugshots)

DreamMirh Co., Ltd. (2D ???)

Geometrix, Inc. (3D shape)

Iconquest (2D Fractal-based ??? )

L-1/Identix Inc. / Safran-Morpho (2D Templates +LFA)
KeeSquare Srl (2D landmark-based)

Luxand (2D facial landmarks)

NeuroTechnology (2D ???)

Omniperception (2D + Quality measurements)
PittPatt/Google (Hi-Tech algorithms ???)
SensibleVision (2D Template matching ??7? )



- SAFRAN



The standard face
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Templates and standards '

Figure 2: Biomeftric Template Size

Source: Frost & Suliivan

Blometric Bytes Required

Finger-scan
Finger geometry
Hand geometry
Iris recognition
Vioice verification
Face recognition

signature verification

Fetina recognition

300-1200
14
9
512
1500
500-1000
500-1000
96

-

2y

Eurosmart white paper 2003

It is generally anticipated that any
single biometric template would fit
within 10 Kbytes of data memory in
the storage device (That includes
the template itself, the signature or
encryption overhead and any
additional data required to fulfill
the data file structure).



