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 Most natural for humans
 Highly acceptable and non-intrusive
 Highly applicable:

 Static identity verification
 Uncontrolled face detection and 

identification from video

 Medium to Low performances
 Not unique (twins)
 Aging and time effects
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SIGNAL PROCESSING

IMAGE PROCESSING

COMPUTER VISION

IMAGE UNDERSTANDING

Information Theory

Communication
and

Computer Science

Machine Learning

Pattern Recognition
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 D.H. Ballard and C.M. Brown Computer Vision

 W.K. Pratt Digital Image Processing

 B.K.P. Horn Robot Vision

 A.K. Jain and S. Li   Handbook of Face Recognition

 E. Trucco and A. Verri   Introductory Techniques for 3D Computer Vision

 J. Bigun Vision with direction

 M. Tistarelli, R. Chellappa, S. Z. Li   Handbook of Remote Biometrics

 C. M. Bishop Pattern Recognition and Machine Learning

 Others ...
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BIOMETRICS Universality Uniqueness Permanence Collectability Performance Acceptability Circumvention

Face High Low?? Medium High Low?? High Low??

Fingerprint Medium High High Medium High Medium Low

Hand 
Geometry

Medium Medium Medium High Medium Medium Medium

Iris High High High Medium High Low High

Retinal Scan High High Medium Low High Low High

Signature Low Low Low High Low High Low

Voice Medium Low Low Medium Low High Low

Facial 
Thermogram

High High Low High Medium High High
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Modality Test Label Test Parameter
False
Reject
Rate

False
Accept
Rate

Fingerprint FpVTE 2003 US Government 
operational data 0.1% 1%

Fingerprint FVC 2006
Heterogeneous 
population (young, 
elderly) 

2.2% 2.2%

Face FRGC 2006 Controlled Illumination, 
high-resolution images 0.8-1.6% 0.1%

Voice NIST 2004 Text independent, 
multi-lingual 5-10% 2-5%

Iris ITIRT 2005 Indoor environment 0.99% 0.94%

Iris ICE 2006 Controlled Illumination, 
broad quality range 1.1-1.4% 0.1%
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Biometric traits develop:

1. through genetics: 
Genotypic

2. through random
variations in the early
phases of an embryo's
development: 
Phenotypic

3. through training: 
Behavioral

Biometric Trait genotypic phenotypic behavioral

Fingerprint (only minutia) o ooo o

Signature (dynamic) oo o ooo

Facial geometry ooo o o
Iris pattern o ooo o

Retina (Vein structure) o ooo o

Hand geometry ooo o o

Finger geometry ooo o o

Vein structure of the back of
hand o ooo o

Ear form ooo o o

Voice (Tone) ooo o oo

DNA ooo o o

Odor ooo o o

Keyboard Strokes o o ooo

Comparison: Password (ooo)

Source: http://www.bromba.com/faq/biofaqe.htm#entstehen
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Fk

Fh

L1L1

L2L2
S1S1

S3S3

S2S2

= (Fh,Fk)

A class (identity) separation problem:

• Choice of optimal representation
• Inter-class similarity vs intra-class variability
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Faces that look different
FALSE REJECTION 

Faces that look similar
FALSE ACCEPTANCE

GO
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Two different people may have very similar appearance
FALSE MATCH

Two different people may have very similar appearance
FALSE MATCH

Twins Father and son 

www.marykateandashley.com news.bbc.co.uk/hi/english/in_depth/americas
/2000/us_elections
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The same person may present very different 
biometric samples

FALSE NON-MATCH

The same person may present very different 
biometric samples

FALSE NON-MATCH
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A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur, L. Akarun, “Bosphorus Database for 3D Face Analysis”, The First 
COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008) Roskilde University, Denmark, May 2008.
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Do they look at all similar… ?
Massimo Tistarelli 201° Int.l Winter School on Biometrics – 9-1-2017





ScoreClassification

Face database

Secure record

Face detection and 
selection + 

Normalization
Facial features

localization
Registration/

Representation
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Identification

Verification
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Pose-dependent

Algorithms

Pose-invariant

Pose-dependency

Matching features

Appearance-
based 
(Holistic)
PCA, LDA, 
ICA, LPP, SRC
Kernel  . . .

Feature-
based 
(Analytic)
Gabor sets
SIFT, SURF, 
LBP-XX . . .

Hybrid
LFA
EGBM/JETs
AAM . . .

Viewer-centered 
Images

Object-centered 
Models

Face 
representation

• Gordon et al., 1995  3D from 2D
• Lengagne et al., 1996 3D from stereo 
• Atick et al., 1996  LFA
• Yan et al., 1996  Geometric modeling
• Blanz & Vetter, 1999 Morph. models
• Zhao et al., 2000 Shape from Shading 
• Zhang et al., 2000 3D from video 
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Deep Learning…
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 The basic idea of many similar approaches is to define a 
basis of vectors to describe any face in the “universal
space” of all existing faces…

 The basic tool is the Singular Values Decomposition:

 The eigenvectors (r columns of U) of the decomposition
define the basis of vectors and the eigenvalues define
the “relevance” of each eigenvector (eigenface)

WUA 
i
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• Both PCA and LDA produce a set of orthogonal basis images.

• Both provide a compact and global representation of face images.

• LDA explicitly attempts to model the difference between the classes of data.

• PCA does not take into account any difference in class.

PCA

LDA
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• The Independent Component Analysis (ICA) is based on higher 
order optimization to find independent (orthonormal) components 
for the face sub-spaces

• Better description of the inter-class variability

ICA
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ICA

PCA

Orthonormality
vs

Maximal variance
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 Automatic face recognition algorithm robust to 
occlusion, expressions and disguise.

 Represent the test face as a sparse linear combination of  the 
training faces.

 Estimate the class of  the test image from the sparse 
coefficients. 

 Can identify and reject “non face” images.
 …Performance can be affected by illumination 

variations and mis-alignment.
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 Let vij be the jth training image in the ith class.
 A is the dictionary of  the training faces.

 The test image y is a linear combination of  all 
instances from  the correct face class.

 if  y belongs to the ith class:
Dictionary 
matrix A
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 This can be rewritten as:

 As the number of  classes is high, the coefficient vector is sparse.
 It can be recovered by solving the Basis Pursuit problem:

 The non-zero coefficients in the sparse coefficient vector will 
correspond to the true class. 
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Similar formulation, different objectives

 

 

1 +  2 +…+ n

 i,1 +  i,2 +…+ i,n
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 Gray level oriented patterns/photometric properties
 Physical Landmarks
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Mean percentage of times (averaged across viewers) 
that each facial region was fixated at least once.

J.H. Henderson et al. “Gaze Control for Face Learning and 
Recognition by Humans and Machine”; in T. Shipley and P. 
Kellman (Eds.), From Fragments to Objects: Segmentation and 
Grouping in Vision
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• 2D landmarks can be defined 
and tracked on face images

• Simple 2D vs complex 3D 
representations
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The LFA-based approach (Local Feature Analyisis) uses localized kernels, 
which are constructed from PCA-based eigenvectors, for extracting 
topographic facial features (e.g., eyebrows, cheek, mouth, etc.)

Marked average 
face image

•Five topographic kernels are shown in the top row
•Five corresponding residual correlations (response) 
in the bottom row.
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Arca, Stefano, Paola Campadelli, and Raffaella Lanzarotti. "A face recognition system based on local feature analysis." 
In International Conference on Audio-and Video-based Biometric Person Authentication, pp. 182-189. Springer, 2003.
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Gabor wavelets
• Provide a description of the local 

structure of the facial patterns

• Convolution with a bank of 
frequency-tuned filters

J.H. Henderson et al. “Gaze Control for Face Learning and Recognition 
by Humans and Machine”; in T. Shipley and P. Kellman (Eds.), From 
Fragments to Objects: Segmentation and Grouping in Vision
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Local Binary Patterns (LBP)

Pixels are labeled by thresholding the 3x3neighbourhood with the 
center value and considering the result as a binary number.

The histogram of the labels is used as a texture descriptor.
T. Ahonen et al. “Face Description with Local Binary Patterns: Application to Face Recognition”; in IEEE 
Trans. On PAMI 28(12):2037-2041.
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D(x, y,σ, k) = (G(x, y, kσ) - G( x, y, σ)) * I(x, y)

D(x, y, σ, k) = L(x, y, kσ) - L(x, y, σ)

G. Lowe, “Object recognition from local scale invariant features”, International Conference on Computer Vision , 1999.
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 K-PCA; K-ICA; K-LDA… (B. Schölkopf et al. 1998)

 Are all variations of existing face-space representations. The 
transformation to the lower space is mediated by a kernel
function such as Gaussian, polinomial, sigmoid and Radial
Basis Functions

 More robust to noise and discretization

 Better separation of classes

 General Learning Theory
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Linear algorithm

SVM, MPM, PCA, CCA, FDA…

Data Embed data
x1

xn

If data is described by numerical vectors: embedding ~ 
(non-linear) transformation
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Support Vector Machines are binary classifiers

Class 1

Class 2
V. Vapnik, S.E. Golowich, A.J. Smola: 
Support Vector Method for Function
Approximation, Regression Estimation and 
Signal Processing. Neural Information 
Processing Systems 1996: 281-287
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One-Class Support Vector Machines are unary
classifiers

Class 1

Impostors
Ben-Hur, A., Horn, D., Siegelmann, 
H., , Vapnik, V.: « Support vector
clustering ». Journal of Machine Learning 
Research 2 (2001) 125–137
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 The separating surface is 
a hyperspehere

 Selectivity can be 
adjusted by two 
parameters

 No need for direct 
“impostor” training

Fk

Fh

Sc
Si
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Convolutional
Neural

Network

A
P
P
L
E
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Single kernel
Convolution

Multiple kernels
Convolution

Spatial Pooling
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A deep CNN is used to extract a feature vector with relatively high dimension. The 
network can  be supervised by multiclass loss and verification loss

PCA, Joint Bayesian or metric-learning methods are used to learn a more efficient
low dimensional representation

The amount of training data can range from 100K up to 260M
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• DeepID (Y. Sun, X.Wang, X. Tang – CVPR 2014)

• DeepID2 (Y. Sun, X.Wang, X. Tang - NIPS 2014)

• DeepID2+

• DeepID3

• DeepFace (Y. Taigman, M. Yang, M. Ranzato,    
L. Wolf – CVPR 2015)

• Face++

• FaceNet

• Baidu (J.Liu, Y.Deng, T.Bai, Z.Wei, C.Huang
CVPR 2015)

• …What’s next?
E. Learned-Miller, G. Huang, A. RoyChowdhury, H. Li, G. Hua, “Labeled Faces in the Wild:   
A Survey”, Advances in Face Detection and Facial Image Analysis, pp 189-248, Springer
2016.
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Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering
on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate 
feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95% 
come from the local and fully connected layers.
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F. Schroff, D. Kalenichenko, J. Philbin, “FaceNet: A Unified
Embedding for Face Recognition and Clustering”, CVPR 2015.

FLOPS vs. Accuracy trade-off. Shown is the trade-off between
FLOPS and accuracy for a wide range of different model sizes
and architectures. Highlighted are the four models that we focus 
on in our experiments.
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“The performance of these systems is ironically matched by
our present ignorance of why they work as well as they do.”

F. Anselmi, L. Rosasco, C. Tan and T. Poggio - Deep Convolutional Networks are Hierarchical Kernel Machines
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... Not many ... (20x14)

It’s more a question of spatial distribution and …
proper frequency tuning

How many pixels to detect a face?

Massimo Tistarelli 561° Int.l Winter School on Biometrics – 9-1-2017



Massimo Tistarelli 571° Int.l Winter School on Biometrics – 9-1-2017



A good approximation of the cones density over the 
retina is given by the complex  log-polar transform
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Eye movements while watching a girl’s face 
(A.L. Yarbus, “Eye Movements and Vision”, Plenum Press, 1967)
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C. L. Leveroni et al. “Neural Systems Underlying the Recognition of
Familiar and Newly Learned Faces”, The Journal of Neuroscience, 
January 15, 2000, 20(2):878–886

Recognition of 50 Familiar Faces (FF) vs 50 
Newly Learned Faces (NL) and compared to 
rejection of 50 Foil (FO -False Objective) faces.
Encoding (EN) session for learning new faces.
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C. L. Leveroni et al. “Neural
Systems Underlying the 
Recognition of Familiar and 
Newly Learned Faces”, The 
Journal of Neuroscience, January
15, 2000, 20(2):878–886

62



Vaina, L.M., Solomon, J., Chowdhury, S., Sinha, P., Belliveau, J.W., “Functional Neuroanatomy of Biological Motion Perception in Humans”.  
Proc. of the National Academy of Sciences of the United States of America, Vol. 98, No. 20 (Sep. 25, 2001) , pp. 11656-11661

Biological Motion

Non Rigid Motion
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007
Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T., 
“Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.

Simple cells

Complex cells

Composite feature cells

Complex composite cells
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007
Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T., 
“Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.
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Laser Scanner

Max Planck Institute
Biologische Kybernetik

Summer School on Biometrics - June 7° 2010 Massimo Tistarelli 661° Int.l Winter School on Biometrics – 9-1-2017



3D shape

surface reflectance
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 Jones, Poggio 98: Gradient Descent
 Blanz, Vetter 99: Stochastic Gradient Descent
 Pighin, Szeliski, Salesin 99: Levenberg-Marquardt
 Romdhani, Blanz, Vetter 02: Non-linear fitting
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Modality Test Label Test Parameter
False
Reject
Rate

False
Accept
Rate

Fingerprint FpVTE 2003 US Government 
operational data 0.1% 1%

Fingerprint FVC 2006
Heterogeneous 
population (young, 
elderly) 

2.2% 2.2%

Face FRGC 2006 Controlled Illumination, 
high-resolution images 0.8-1.6% 0.1%

Voice NIST 2004 Text independent, 
multi-lingual 5-10% 2-5%

Iris ITIRT 2005 Indoor environment 0.99% 0.94%

Iris ICE 2006 Controlled Illumination, 
broad quality range 1.1-1.4% 0.1%
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Phase 2 – 18 months(3/16–9/17)
datasets challenging for face 
detection, occlusion, aging

2000+subjects and hundreds of
hours of video 

Accuracy: 85% TAR @ 0.1% FAR
Query time: sublinear

Phase 3 – 36 months(10/17–9/20)

10000+subjects and thusands of
hours of video 

Accuracy: 85% TAR @ 0.01% FAR
Query time: logarithmic
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P. Natarajan, PI G. Medioni, Co-PI

R. Wu
FD, Systems

W. AbdAlmageed
Indexing, LSML

R. Nevatia, Fusion

L.P. Morency
LM Detection

H. Li
Expression

P. Debevec, Illumination

J. Choi
Face Recognition

M. Kilmer, Tufts U.
Tensor Approaches

T. Hassner,
2D matching

U. Park, Sogang U.
Aging, Distinctive

A. Del Bimbo, Firenze
Tracking

M. Tistarelli, UNISS
Age and Expression
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• (a) Query photo; (b) facial features detection; (c) the same detector used to localize the same facial features in a 
reference face photo, produced by rendering a textured 3D computer graphics model (d);

• (e) from the 2D coordinates on the query and their corresponding 3D coordinates on the model we estimate a 
projection matrix which is then used to back-project query intensities to the reference coordinate system;

• (f) estimated visibility due to non-frontal poses, overlaid on the frontalized result. Warmer colors reflect less
visible pixels. Facial appearance in these regions is produced by borrowing colors from corresponding symmetric
parts of the face; (g) final frontalized result.

Tal Hassner, Shai Harel, Eran Paz, Roee Enbar; “Effective Face Frontalization in Unconstrained Images” The IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4295-4304
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Iacopo Masi, Anh Tuan Tran, Jatuporn Toy Leksut, Tal Hassner, Gerard Medioni; “Do We Really Need to Collect Millions of Faces
for Effective Face Recognition?” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. arXiv preprint
arXiv:1603.07057, 24 Mar 2016.

Augmenting faces by using different generic 3D models for rendering.
Top: Ten generic 3D face shapes used for rendering. Bottom: Faces rendered with the generic model.
Different shapes induce subtle appearance variations yet do not change the perceived identity of the face in the image.
For training a CNN a single face image is rendered using different generic 3D models, at different poses and different
expressions.
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This is a highly controversed subject
“… is ICA better than LFA?”

– Mostly depends on the training data and 
the acquisition scenario.

– Face recognition developments are often
related to applications (deployment).

– Testing on “standard” databases.
– Results are related to how the scores are   

combined and selected:

5% EER may easily lead to 99% recognition
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Good marks:
• Optimal classifiers (SVM/NN/Bayesian/SRC/DL)
• Advanced face-space representation (ICA/LFA/Kx)
• Best feature extraction methods (Gabor/LBP/MBLBP-

SIFT/SURF/etc.) and visual features

• Learning

Need for improvements:
• Video vs mugshots
• Subject-based analysis (familiarity)
• Registration
• Illumination
• Feature selection

Massimo Tistarelli 761° Int.l Winter School on Biometrics – 9-1-2017



 Main techniques:

 Histogram-based adaptive techniques, applied
on image patches

 Re-lighting techniques

 Synthesis of illumination-invariant
representations (for example the Hue
component in color space)
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Skin chromaticity map Diffuse light rendering

Reflectance map of the 
oily skin layer

Sub-surface reflectance Final face rendering

Henrik Wann Jensen, “Digital face cloning”, SIGGRAPH'2003 Technical Sketch, San Diego, July 2003. 
(http://graphics.ucsd.edu/~henrik/papers/face_cloning/)
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?

Isotropic diffusion 
(Gaussian filtering)

Anisotropic diffusion 
(Lagrange solution of (1))

R. Gross and V. Brajovic, “An Image Preprocessing Algorithm for 
Illumination Invariant Face Recognition”, International Conference on 
Audio- and Video-Based Biometric Person Authentication, 2003.

D. Jobson, Z. Rahmann and G. Woodell, “A Multiscale Retinex for Bridging 
the Gap Between Color Images and the Human Observations of Scenes”, 
IEEE Transanctions on Image Processing, volume 6, Issue 7, 1997.
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… But the data is still there
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In cognitive psychology it is called “perceptual
organization”
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S. Arca, P. Campadelli, and R. Lanzarotti. A face recognition system based on automatically 
determined facial fiducial points. Pattern Recognition, 39(3):432–443, 2006.

Massimo Tistarelli
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• Face recognition from video sequences
• Subject-based template definition
• 3D shape and texture
• Aging, gender, kinship, expression, intention…
• Spoofing/Camouflage
• Face registration and Facial symmetry
• Compensation of illumination

• Multispectral imaging
• Evaluation of illuminant components
• Face appearance-invariant models
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For identification we are not
interested on what faces have in 
common but rather what
differentiate one face from
another.

For identification we are not
interested on what faces have in 
common but rather what
differentiate one face from
another.

For localization and tracking
we are interested on what every
face has in common (to tell a 
face from “non-faces”)

For localization and tracking
we are interested on what every
face has in common (to tell a 
face from “non-faces”)
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Fk

Distinctive patchesDistinctive patchesConfusion: most
similar patches
Confusion: most
similar patches

Distinctive patchesDistinctive patches

Fh

Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M. (2007) “Distinctiveness of faces: a computational approach”, 
ACM Transactions on Applied Perception, Vol. 5, n. 2, 2008.

Feature 
space
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(A) perceptual and (B) computational results of saliency
of local facial features, demonstrate the relevance of

non-standard facial landmarks

(A) perceptual and (B) computational results of saliency
of local facial features, demonstrate the relevance of

non-standard facial landmarks

A

A B

B
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 Starting point: HMM based classification of faces
 “Walking on the face” for obtaining HMM  sequences

Standard raster scan-path Saliency-based scan-path

Attention 
drives 
face 

scanning

A. A. Salah, M. Bicego, L. Akarun, E. Grosso, M. Tistarelli: "Hidden Markov model-based face recognition using selective attention", 
Human Vision and Electronic Imaging XII, Proc. of SPIE, vol. 6492, (2007)
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 Experiments on BANCA protocol MC

 Gabor wavelets for saliency map construction

 Employed features: gray levels, DCT coefficients, Haar 
wavelets

A. A. Salah, M. Bicego, L. Akarun, E. Grosso, M. Tistarelli: "Hidden Markov model-based face recognition using selective 
attention", Human Vision and Electronic Imaging XII, Proc. of SPIE, vol. 6492, (2007)

Massimo Tistarelli 881° Int.l Winter School on Biometrics – 9-1-2017



M. Bicego, E.Grosso, M. Tistarelli. “Person authentication from video of faces: a behavioral and physiological approach using Pseudo 
Hierarchical Hidden Markov Models”, Int.l Conference on Biometric Authentication 2006, Hong Kong, January 2006/IMAVIS 2009
Yi-Chen Chen; Patel, V.M. ; Chellappa, R. ; Phillips, P.J. “Adaptive representations for video-based face recognition across pose”,
2014 IEEE Winter Conference on Applications of Computer Vision (WACV), 984-991, 24-26 March 2014.



Dynamics in a video stream conveys far more 
information than a collection of single snapshots
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 General face recognition problem: Identifying faces in the query 
(probe) given a stored database of ID-labeled faces (gallery).

 Why videos?
 Video naturally arises in many applications
 Videos contain more information: Spatio-temporal patterns, evidence 

accrual, 3D information etc.

Video to VideoStill to Video
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Not just more data to be processed:

 Select the “best” sensory data (pose, expression, 
illumination, noise…)

 Multiple-data fusion (decision/score/feature level)

 3D reconstruction/virtual views

 Resolution enhancement

 Expression and emotion analysis

 Behavioral analysis

 Dynamic video templates…?

Not just more data to be processed:

 Select the “best” sensory data (pose, expression, 
illumination, noise…)

 Multiple-data fusion (decision/score/feature level)

 3D reconstruction/virtual views

 Resolution enhancement

 Expression and emotion analysis

 Behavioral analysis

 Dynamic video templates…?
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 Linear subspaces: Discriminative canonical correlation  [Kim et al. PAMI 2007]
 Affine subspaces: Affine hull, convex hull [Cevikalp & Triggs CVPR 2010] 
 Manifolds: [Lee et al. CVIU 2005; Wang et al. CVPR 2008, CVPR 2009]
 Probability distributions: [Zhou & Chellappa PAMI 2006] 
 Covariance matrices: [Wang et al. CVPR 2012]
 Dictionaries: [Chen et al. ECCV 2012]
 Temporal models: HMM [Liu & Chen CVPR 2003], PH-HMM [Bicego et al. ICBA 

2006], ARMA [Aggarwal et al. ICPR 2004]
 3D models: [Park & Jain ICB 2007]

[Wang et al. CVPR 
2012]

[Chen et al. ECCV 2012]
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Statistical analysis of sequences of patterns

 This idea can be extended to multi-dimensional patterns and 
sequences … in several ways

… …
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1. Each image is modeled as a single HMM and the 
sequence of images as a sequence of HMMs
A. Hadid and M. Pietikainen. “An experimental investigation about the integration of facial dynamics in video-
based face recognition”. Electronic Letters on Computer Vision and Image Analysis, 5(1):1-13, 2005.

2. The entire video is modeled as a single HMM
X. Liu and T. Chen. “Video-based face recognition using adaptive hidden Markov models”. In Proc. Int. Conf. 
on Computer Vision and Pattern Recognition, 2003.

3. The images and the sequence itself are modeled as a 
complex, hierarchical HMM-based structure            
M. Bicego, E.Grosso, M. Tistarelli. “Person authentication from video of faces: a behavioral and physiological 
approach using Pseudo Hierarchical Hidden Markov Models”, Int.l Conference on Biometric Authentication 
2006, Hong Kong, China, January 2006.
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Physiological and behavioral features

HMM
PH-HMM
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Y. Sun, M. Tistarelli, N. Poh (2013); “Picture-Specific Cohort Score Normalization for Face Pair Matching” Proc IEEE 6th Int.l Conference on 
Biometrics: Theory, Applications and Systems - BTAS 2013 Washington DC, USA; September 29 - October 2, 2013.

M. Tistarelli, Y. Sun, N. Poh (2014) “On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition”, IEEE 
Trans. on Information Forensic and Security, 9(12):2063-2075, 2014.



• Ancient Roman military unit, comprising six centuries, equal
to one tenth of a legion.

• A group of people banded together or treated as a group.
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Fingerprint 1

(from subject A/B)
Fingerprint 2

(from subject A)

Two fingerprints being compared

Cohort samples:                  
fingerprints from external database

An independent data set

• Cohort samples are non-matching samples of the same kind of
the test samples.

Fingerprint 1

(from subject A/B)
Fingerprint 2

(from subject A)
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• Cohort score normalization is a procedure, which aims to post-
process the matching score, using information from a set of
cohort samples.

Pre-
processing

Feature 
extraction

Matching

Cohort
normalization

Raw   
matching 

score

Normalized 
matching scoreDecision

……

Pool of cohort samples

Fingerprint 1

Fingerprint 2
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Score normalization can map the raw 
matching score to a domain where the 

degradation effects caused by the sample 
variations are reduced.

Cohort score normalization can exploit 
the discriminative information by a pool 

of non-matching samples.
This information can be used to 

normalize the raw matching scores.
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• Cohort models have been proposed to model language    
processing and lexical retrieval.

Marslen-Wilson, W. (1987). "Functional parallelism in spoken word recognition" Cognition, 25, 71-102

• Initially adopted in biometrics for speaker verification.
A. E. Rosenberg, J. DeLong, C. H. Lee, B. Juang, and F. K. Soong (1992). “The use of cohort normalized

scores for speaker verication” In Int.l Conf. on Spoken Language Processing,1992.

• Afterwards applied for fingerprint verification and for multi-
biometrics.

G. Aggarwal, N. Ratha, R. M. Bolle, and R. Chellappa (2008). “Multibiometric cohort analysis for biometric
fusion”. In IEEE Int.l Conf. on Acoustics, Speech and Signal Processing, 5224–7, 2008.

• Two representative cohort normalization methods:
oT-norm (Test-norm …with Gaussian assumption)
oPolynomial regression-based cohort normalization
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• Only two images are given, no other information is provided.

• Large variations may be found in the image pair.

1 : 1
Match

0y

Image A

Image B
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Cohort set

1 : N
Match

N
orm

alization

1 : 1
Match

……

Template

Query

…
cohort scores

1
cy c

Ny

0y y
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Cohort set

1 : N
Match

N
orm

alization

……

1 : 1
Match

1 : N
Match

Cohort set

……

…
cohort scores B

1
cy c

Ny

…
cohort scores A

1
cy c

Ny

0y y

Image A

Image B
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Aw

1 2, , ...C C

AI

BI

1 2, , ...ac acy y

Bw

0y

polynomial regression cohort 
normalization

1 2, , ...bc bcy y

y = fusion (y0, wA, wB)
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Comparative verification accuracy with and without cohort normalization

• Database: Labeled Faces in the Wild
• Protocol: image-restricted setting; 10-fold cross validation
• Feature extraction: Intensity, LBP, Gabor, SIFT
• Matching score: Euclidean or Hellinger distance
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M. Nappi, S. Ricciardi, M. Tistarelli, (2013); “Deceiving Faces: When Plastic Surgery Challenges Face Recognition”
Image and Vision Computing, Vol. 54, pp. 71-82, 2016.

Y. Sun, M. Tistarelli, D. Maltoni (2013); “Structural Similarity based Image Quality Map for Face Recognition across Plastic Surgery” Proc IEEE 
6th Int.l Conference on Biometrics: Theory, Applications and Systems - BTAS 2013 Washington DC, USA; September 29 - October 2, 2013. 
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Botulinum toxin 

Dermal fillers

Chemical peel

Dermoabrasion
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Rhinoplasty

Blepharoplasty

Rhytidectomy (face lift)

Brow/Forehead lift
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Mentoplasty

Otoplasty Cheek bones reshaping
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Plastic surgery database containing 576 images
of 784 subjects taken from the web.
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Comparison of the Cumulative Match Characteristic 
curves computed from eleven different face 
recognition algorithms applied to the same plastic 
surgery database. Dashed lines refer to region-based 
approaches, while solid lines refer to holistic 
approaches. The CMC curves are those reported in 
their original research papers.

Identification error, as reported by eight different
recognition algorithms, categorized by eight different
surgical procedures. The six leftmost procedures are 
local, while the two rightmost procedures are global.



Massimo Tistarelli 1221° Int.l Winter School on Biometrics – 9-1-2017

Comparison of overall vs. procedure-wise performance of eight different algorithms. The identification rate is
normalized to 1.



M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer 
Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition Workshops, (2009)



Time duration: 2 years

Time duration: several years
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Time evolution of facial features over 4 years

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer 
Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition Workshops, (2009)
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Time evolution of facial features over 8 years

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer Vision 
and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, (2009)
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Comparative time evolution of features for different subjects
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M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,”, Proc. of IEEE Computer Vision and 
Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, (2009)
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3D FACE RECOGNITION
Cadoni M., Grosso E., Lagorio A., “Large scale face identification by combined iconic features and 3D joint invariant signatures”, 

Image and Vision Computing, Vo. 52, pp. 42-55, 2016.

Cadoni M., Grosso E., Lagorio A., Tistarelli M., “Blending 2D and 3D Face Recognition”, T. Bourlai Ed. Face Recognition Across
the Imaging Spectrum, pp. 305-331, Springer, 2016.

Cadoni M., Grosso E., Lagorio A., Tistarelli M., “From 3D Faces to Biometric Identities”, Proc. of BioId European Workshop, pp. 
156-167, LNCS 6583, Springer, 2011.

Cadoni M., Bicego E., Grosso E., “3D Face Recognition Using Joint Differential Invariants”, Proc. of Third International 
Conference on Biometrics, ICB 2009, pp. 279-288, LNCS 5558, Springer, 2009.
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 Recognition of faces from 3D data can be achieved by 
pairing a set of points from two individuals and measuring 
the goodness of fit.

 This process requires to identify anchor points on the faces
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PC

SN

PRO

CURV

RI

TEX

PCA

PCA

Gabor

Texture:
- Fusion with shape

Range images:
- Benefit from 2D 
literature
- Easy to fuse with 
texture
- Applicable to 2.5D only

Curvature:
- Useful for landmarks 
detection
- Sensitive to noise and the 

quality of data

Face profile:
-Sparse
-Easy to compare
-Not fully descriptive

Point clouds:
- ICP gives the distance
- Hausdorff
- Too many points

Surface normals:
- Too many …
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Bowyer et al. CVIU 101: 1-15 (2006)
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Bowyer et al. CVIU 101: 1-15 (2006)
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Multiscale features extracion

3D face registration using geometrical invariants

Compute the face similarity
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Cadoni M., Grosso E., Lagorio A., “Large scale face identification by combined iconic features and 3D joint invariant signatures”, 
Image and Vision Computing, Vo. 52, pp. 42-55, 2016.
Cadoni M., Bicego E., Grosso E., “3D Face Recognition Using Joint Differential Invariants”, Proc. of Third International 
Conference on Biometrics, ICB 2009, pp. 279-288, LNCS 5558, Springer, 2009.



 For each triplet (p1, p2, p3) of features points a set of 
nine invariants is computed:
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◦ 3 of differential order zero:◦ 3 of differential order zero:

◦ 6 of differential order one:◦ 6 of differential order one:

Massimo Tistarelli 1381° Int.l Winter School on Biometrics – 9-1-2017



Exp. FR AR TP FP FN TN Acc.

1 0 0.981 103 0 2 10920 0.9998

2 0 0.924 97 0 8 10920 0.9992

3 0 0.99 104 0 1 10920 0.9999

FR: Failed registration
AR: Authentication rate
TP: True positives
FP: False positives
FN: False negatives
TN: True negatives
Acc.: Accuracy = (TP + TN)/ (P + N)

• M. Cadoni, M. Bicego, E. Grosso, "3D face recognition using joint differential invariants", Proc. Int. Conf. on Biometrics (ICB2009), pp. 279-
288, (2009)

• Marinella Cadoni, Enrico Grosso, Andrea Lagorio, Massimo Tistarelli: “From 3D Faces to Biometric Identities”. Proc. of BIOID 2011: 156-
167, 2011
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Impostor and client distributions for experiment
1 (left), and 3 (right)

Massimo Tistarelli 140

• M. Cadoni, M. Bicego, E. Grosso, "3D face recognition using joint differential invariants", Proc. Int. Conf. on Biometrics (ICB2009), pp. 279-
288, (2009)

• Marinella Cadoni, Enrico Grosso, Andrea Lagorio, Massimo Tistarelli: “From 3D Faces to Biometric Identities”. Proc. of BIOID 2011: 156-
167, 2011
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Forensics: Use of “trace evidence” from the crime scene to identify objects or persons
Biometrics: Identification of living persons by their traits in “real-time”

Forensics: Use of “trace evidence” from the crime scene to identify objects or persons
Biometrics: Identification of living persons by their traits in “real-time”

• Latent fingerprint
• Latent palmprint
• Fibers
• Explosive residue
• Paint chips
• DNA
• Tire marks
• Shoe prints
• Bite marks
• Scars Marks Tatoos

• Fingerprint
• Palmprint
• 2D Face
• 3D Face
• Iris
• Speech
• Signature
• Gait
• Ear
• Keystroke

• Improve matching accuracy
• Automated matching
• Minimize human bias and sources of human error
• Validate basis for evidence
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Courtesy of Didier Meuwly NFI
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•https://www.youtube.com/watch?v=TOgGTgYXTys&list=PL1ptAvVz1FL61_KtmPgqKr-RjTMQiuwJ5&feature=player_detailpage
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C. L. Leveroni et al. “Neural
Systems Underlying the 
Recognition of Familiar and 
Newly Learned Faces”, The 
Journal of Neuroscience, 
January 15, 2000, 20(2):878–
886

BRAIN Total 1400 ml
100 billion neurons
71.5 Mneurons/ml

Maybe we can sketch 
the network size 

devoted to process 
faces….

149



The BRAIN mass is equal to 1400 ml
Composed of some 100 billion neurons

71.5 Mneurons/ml

Summing up the volumes of all active 
areas, the total volume is  21,2 ml

or … 1.5 Bneurons

… with 12K Synapses/neuron!

= 18 trillion synapses!
= 2.3 trillion Bytes?

If we can learn, say 10,000 faces
this corresponds to

220 MB/face
(or a 7 sec. video stream of 1Kx1K images)



J.V. Haxby, E.A. Hoffman, and M.I. Gobbini. “The distributed 
human neural system for face perception”. 
Trends in Cognitive Sciences, vol. 4, No. 6, 223--233, June 2000

Motion

Static
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 Face recognition is one of the most appealing biometric modality
… and one of the most challenging,
sometimes beyond expectations

 Several successful working systems
… still several drawbacks and limitations

 Many directions for research to follow
• Feature extraction and selection
• Subject-based representation and classification
• Illumination and registration
• Complex behaviors
• Learn from external factors and expectations
• Exploit contextual information
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The appearance of a face is affected by many factors
 Identity - Age
 Face pose - Occlusion
 Illumination - Facial hair
 Facial expression

The development of algorithms robust to these 
variations requires databases of sufficient size that 
include carefully controlled variations of these 
factors. 

Common databases to comparatively evaluate 
algorithms.

Collecting a high quality database is a resource-
intensive task. 
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AR database. The conditions are (1) neutral, (2) smile, (3) anger, (4) scream, (5) left 
light on, (6) right light on, (7) both lights on, (8) sun glasses, (9) sun glasses/left light 
(10) sun glasses/right light, (11) scarf, (12) scarf/left light, (13) scarf/right light
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Illumination variation in the CAS-PEAL database. The images were recorded 
with constant ambient illumination and manually triggered fluorescent lamps.

Also the CMU PIE database has been designed to include illumination variations
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Equinox IR database. The upper row contains visible images and the lower row long-wave 
infrared images. The categories are (a) vowel (frontal illumination), (b) “smile” (right 
illumination), (c) “frown” (frontal illumination), (d) “surprise” (left illumination).

Massimo Tistarelli 1601° Int.l Winter School on Biometrics – 9-1-2017



Frontal image categories used in the FERET evaluations. For images in the fb category, a different facial 
expression was requested. The fc images were recorded with a different camera and under different lighting 
conditions. The duplicate images were recorded in a later session, with 0 and 1031 days (duplicate I) or 540 
to 1031 days (duplicate II) between recordings.

Additional set of pose images from the FERET database: right and left profile (labeled pr and pl), 
right and left quarter profile (qr, ql), and right and left half profile (hr, hl).
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Notre Dame HumanID database. Example images of the “unstructured” 
lighting condition recorded in the hallway outside of the laboratory.

University of Texas 
Video Database. 
Example images for the 
different recording 
conditions of the 
database. First row: 
Facial speech. Second 
row: Laughter. Third 
row: Disgust.
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The BANCA and XM2VTS video databases distributed by the 
University of Surrey
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 Face detection algorithms typically have to be trained 
on face and non-faces images to build up an internal 
representation of the human face.

 Popular choices are the FERET, MIT, ORL, Harvard, 
and AR public databases. Nonpublic databases are 
often also employed. 

 These data sets should be representative of real-world 
data containing faces of various orientations against a 
complex background. 

 In recent years two public data sets emerged as quasi-
standard evaluation test sets: 
 The combined MIT/CMU test set for frontal face 

detection
 The CMU test set II for frontal and non-frontal face 

detection
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Example images from the Upright Test Set portion of the MIT/CMU test set.
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Example images from the 
Tilted Test Set portion of 
the MIT/CMU test set.

CMU Test Set II. Most of the faces in this test set are in profile view.
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Cohn-Kanade AU-Coded 
Facial Expression 
database. Examples of 
emotion-specified 
expressions from image 
sequences.

University of Maryland 
database. The images 
show peak frames taken 
from an image sequence 
in which the subjects 
display a set of facial 
expressions of their 
choice.
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MORPH dataset: 55,134 
images of 13,000 
individuals collected over
four years

FG-NET dataset: 1,002 
images of about 100 
individuals with ages
varying from 5 to 69 
years of age
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IIIT-Delhi face aging database:2,618 images from 49 female
and 53 male Indian celebrities
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 Features:
 Full 3D / 2.5D
 Single view / Multi-view
 Illumination changes
 Expressions changes
 Only shape or shape + texture
 Pre-processing
 Quality of data (sensors)
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 UND database (University of Notre Dame)
 953 facial scans (277 subjects)
 frontal scans (neutral expression)
 2.5D shape + texture
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 FRGC database (NIST)
 4007 scans (465 subjects)
 nearly frontal
 different expressions
 2.5D shape + texture
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 USF database (University of South Florida)
 100 scans
 full-view models
 neutral expression
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 3D_RMA database (Royal Military Academy of 
Belgium)
 120 subjects (2 sessions, 3 scans each)
 different (but limited) orientations 
 3D points
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 GavabDB database 
(University Rey Juan Carlos 
– Madrid)
 different orientations and 

expressions
 61 subjects (9 scans)
 Shape only
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A.Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur, L. Akarun,
Bosphorus Database for 3D Face Analysis, The First COST 2101 Workshop on Biometrics and Identity Management 
(BIOID 2008) Roskilde University, Denmark, May 2008.

The Bosphorus database contains scans of 105 individuals: 61 
male; 44 female

About 50 scans/subject. Each scan either presents a diffent
facial expression (anger, happiness, disgust), or a head rotation 
along different axes.

The Bosphorus database contains scans of 105 individuals: 61 
male; 44 female

About 50 scans/subject. Each scan either presents a diffent
facial expression (anger, happiness, disgust), or a head rotation 
along different axes.

Massimo Tistarelli 1791° Int.l Winter School on Biometrics – 9-1-2017



76500 frames of 17 persons, recorded using Kinect for both real-
access and spoofing attacks. https://www.idiap.ch/dataset/3dmad
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After
•FERET
•FRVT
•FRGC
•…
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http://vis-www.cs.umass.edu/lfw/results.html
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S. Schuckers, Clarkson University, sschucke@clarkson.edu

 Release 1 
 4TB of visible face and NIR face/iris video for 90 subjects
 Multiple distance up to 8.3 meters with controlled quality degradation

 Release 2 
 An additional 83 subjects (currently sequestered)  

 Available by Request to CITeR http://www.clarkson.edu/citer/research/collections

 Release 1 
 4TB of visible face and NIR face/iris video for 90 subjects
 Multiple distance up to 8.3 meters with controlled quality degradation

 Release 2 
 An additional 83 subjects (currently sequestered)  

 Available by Request to CITeR http://www.clarkson.edu/citer/research/collections

5 ft 15 ft             25ft 5 ft 15 ft             25ft

Low 
blur
Low 
blur

Massimo Tistarelli 1871° Int.l Winter School on Biometrics – 9-1-2017



Motion Blur AngleAngleIllumination

S. Schuckers, Clarkson University, sschucke@clarkson.edu

Multiple Faces

 Release 1 
 4TB of visible face and NIR face/iris video for 90 subjects
 Multiple distance up to 8.3 meters with controlled quality degradation

 Release 2 
 An additional 83 subjects (currently sequestered)  

 Available by Request to CITeR http://www.clarkson.edu/citer/research/collections

 Release 1 
 4TB of visible face and NIR face/iris video for 90 subjects
 Multiple distance up to 8.3 meters with controlled quality degradation

 Release 2 
 An additional 83 subjects (currently sequestered)  

 Available by Request to CITeR http://www.clarkson.edu/citer/research/collections
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Courtesy of Jonathon Phillips, NIST
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• Walking footage: Subject walks towards camera.
• Activity/Conversation footage: Non-frontal footage of subject performing an A/C.

U of Texas at Dallas   &   U of Notre Dame
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 Problem Defined
 9,376 stills; 293 subjects
 2,802 videos; 265 subjects
 Video-to-video
 Still-to-video
 Still-to-still

 http://face.nist.gov
 Release 11 June 2013

 Design: Colorado State (CSU) and NIST
 Data collection: Notre Dame, NIST, and CSU
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FOCS videos: 510 walking (frontal face) and 506 activity (profile face) videos

J. O'Toole, P. J. Phillips, S. Weimer, D. A. Roark, J. Ayyad, R. Barwick, and J.Dunlop, “Recognizing people fromdynamicandstatic
faces and bodies:Dissectingidentity with a fusion approach,” Vision Research, vol.51, no.1, pp.74-83, 2011.

National Institute of Standards and Technology, "Face and Ocular Challenge Series (FOCS)”.
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http://www.nist.gov/itl/iad/ig/five.cfm



• Female makeup Datasets

• Plastic Surgery Face Database

• YouTube Faces Database

• ChokePoint

• SCface - Surveillance Cameras Face Database

• Long Distance Heterogeneous Face Database (LDHF-DB)

• VADANA: Vims Appearance Dataset for facial ANAlysis

• MOBIO - Mobile Biometry Face and Speech Database
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Lorusso L., Brelstaff G., Brodo L., Lagorio A., Grosso E., “Visual judgments of kinship: an alternative perspective”, Perception
40(11):1282-9, 2011
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Raphael's oil painting The Judgement of Solomon – 1518
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Studies of kin recognition investigated the 
relationship between KINSHIP and 

SIMILARITY:

 Maloney & Dal Martello , 2006, “Kin recognition and the 
perceived facial similarity of children” Journal of Vision 6, pp. 1047-
1056.

 Dal Martello & Maloney, 2006, “Where are kin recognition signals
in the human face?”, Journal of Vision 6, pp. 1356-1366.

 DeBruine et al., 2009, “Kin recognition signals in adult faces” 
Vision Research 49, pp. 38-43.

 Alvergne et al., 2010, “Are parents' perceptions of offspring facial 
resemblance consistent with actual resemblance? Effects on 
parental investment” Evolution and Human Behaviour 31, pp.7-15.
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Maloney and Dal Martello (2006) have 
introduced a model for kin recognition -
Thresholded Similarity Observer (TSO) 
model - in which kin recognition is 
reduced to a similarity measure of 
similarity cues. 
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Feature	pool
Similarity	
measure

Similarity	
response

Relatedness	
response

The flow of visual information (visual pathway) 
in similarity and kinship judgments
(Maloney and Dal Martello 2006).
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1. Genetically-related people manifest in their faces “Kin 
signals”.

2. “Kin signals” are represented by similarity features.

3. Kin recognition is a signal detection task.

4. Perception of similarity and kin recognition are based on 
a common measure of similarity of features.

5. Kinship and similarity judgments are based on a common 
flow of visual information from the stimulus to the 
observer.

6. The model of perceived similarity between faces is a 
“generalized” (vs an “individualized”) model.

1. Genetically-related people manifest in their faces “Kin 
signals”.

2. “Kin signals” are represented by similarity features.

3. Kin recognition is a signal detection task.

4. Perception of similarity and kin recognition are based on 
a common measure of similarity of features.

5. Kinship and similarity judgments are based on a common 
flow of visual information from the stimulus to the 
observer.

6. The model of perceived similarity between faces is a 
“generalized” (vs an “individualized”) model.
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 From such assumptions it follows that 
judgments of similarity and kinship do not 
require any kind of cognitive modulation, but 
a visual flow of similarity information is 
sufficient for the observer to make the 
judgments. 

 In other words, bottom-up mechanisms are 
sufficient to make kinship judgments.

 From such assumptions it follows that 
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require any kind of cognitive modulation, but 
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 In other words, bottom-up mechanisms are 
sufficient to make kinship judgments.
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 Top-down mechanisms: task-driven and 
context-dependent strategies. Different tasks 
and visual contexts may induce the observer to 
follow different observational strategies.

 Relations between concepts, may enhance or 
undermine the belief that two persons are 
similar or genetically related (i.e. priming 
effects of a judgment over another).

 Top-down mechanisms: task-driven and 
context-dependent strategies. Different tasks 
and visual contexts may induce the observer to 
follow different observational strategies.

 Relations between concepts, may enhance or 
undermine the belief that two persons are 
similar or genetically related (i.e. priming 
effects of a judgment over another).

Massimo TistarelliMassimo Tistarelli 2081° Int.l Winter School on Biometrics – 9-1-2017



 Our past study on this topic (Lorusso et al., 
Perception 2011) investigates the possibility 
that a judgment of kinship may not be 
just a judgment of similarity and that 
different strategies may be involved in 
those judgments modulated by the task,
relations between concepts, and different 
stimulus contexts.

Lorusso L., Brelstaff G., Brodo L., Lagorio A., Grosso E., “Visual judgments of kinship: an alternative 
perspective”, Perception 40(11):1282-9, 2011
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 3M/Cogent (2D + 3D rectification)
 A4Vision, Inc.  (3D scanner)
 AcSys Biometrics Corp.
 Animetrics Inc.  (3D shape)
 Ayonix Inc. (2D ???)
 Betaface (2D + hair & variable features)
 Cognitec Systems GmbH (LFA)
 Crossmatch Tech. (2D face capture)
 Cybula Ltd. (3D shape/2D texture)
 Face.com (2D mugshots)
 DreamMirh Co., Ltd. (2D ???)
 Geometrix, Inc.  (3D shape)
 Iconquest (2D Fractal-based ??? )
 L-1/Identix Inc. / Safran-Morpho (2D Templates +LFA)
 KeeSquare Srl (2D  landmark-based)
 Luxand (2D facial landmarks)
 NeuroTechnology (2D ???)
 Omniperception (2D + Quality measurements)
 PittPatt/Google (Hi-Tech algorithms ???)
 SensibleVision (2D Template matching ??? )

From: www.face-rec.org
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Eurosmart white paper 2003

 It is generally anticipated that any 
single biometric template would fit 
within 10 Kbytes of data memory in 
the storage device (That includes 
the template itself, the signature or 
encryption overhead and any 
additional data required to fulfill 
the data file structure).
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