

Face Recognition

Massimo Tistarelli

Computer Vision Laboratory University of Sassari – Italy tista@uniss.it

Credits

• From the laboratory staff:

Linda Brodo Marinella Cadoni Massimo Gessa Enrico Grosso Andrea Lagorio Ludovica Lorusso Gianluca Masala Luca Pulina Ajita Rattani Elif Surer Yunlian Sun Daksha Yadav (past visiting) Yu Guan (past visiting) Marcos Ortega Hortas (past visiting) Albert Ali Salah (past visiting)

Credits

…and other labs:

Manuele Bicego – University of Verona Rama Chellappa – University of Maryland Anil Jain – Michigan State University Alice O'Toole – University of Texas at Dallas Jonathon Phillips – NIST Norman Poh – University of Surrey

Face recognition

I. What happened in 20+ years of research in face recognition?

II. What can we learn?

III.What is still to be done?

Why face recognition?

- Most natural for humans
- Highly acceptable and non-intrusive
- Highly applicable:
 - Static identity verification
 - Uncontrolled face detection and identification from video
- Medium to Low performances
- Not unique (twins)
- Aging and time effects

How face recognition?

Fundamentals

Must Read!

- D.H. Ballard and C.M. Brown *Computer Vision*
- W.K. Pratt Digital Image Processing
- **B.K.P.** Horn *Robot Vision*
- A.K. Jain and S. Li Handbook of Face Recognition
- E. Trucco and A. Verri Introductory Techniques for 3D Computer Vision
- □ J. Bigun Vision with direction
- M. Tistarelli, R. Chellappa, S. Z. Li Handbook of Remote Biometrics
- **C. M. Bishop** *Pattern Recognition and Machine Learning*
- Others ...

An *almost* «fair» comparison (from Jain et al 1997.)

BIOMETRICS	Universality	Uniqueness	Permanence	Collectability	Performance	Acceptability	Circumvention
Face	High	Low??	Medium	High	Low??	High	Low??
Fingerprint	Medium	High	High	Medium	High		Low
Hand Geometry	Medium	Medium	Medium	High	Medium		Medium
Iris	High	High	High	Medium	High	Low	High
Retinal Scan	High	High	Medium	Low	High	Low	High
Signature	Low	Low	Low	High	Low	High	Low
Voice	Medium	Low	Low	Medium	Low	High	Low
Facial Thermogram	High	High	Low	High	Medium	High	High

1° Int.l Winter School on Biometrics – 9-1-2017

Biometrics evaluations...Yision Lab

Modality	Test Label Test Parameter		False Reject Rate	False Accept Rate	
Fingerprint	FpVTE 2003	E 2003 US Government operational data		1%	
Fingerprint	FVC 2006	Heterogeneous population (young, elderly)	2.2%	2.2%	
Face	FRGC 2006	Controlled Illumination, high-resolution images	0.8-1.6%	0.1%	
Voice	NIST 2004	Text independent, multi-lingual	5-10%	2-5%	
Iris	ITIRT 2005	Indoor environment	0.99%	0.94%	
Iris	ICE 2006	Controlled Illumination, broad quality range	1.1-1.4%	0.1%	

1° Int.l Winter School on Biometrics – 9-1-2017

Genotypic vs phenotipic traits

Biometric traits develop:

- through genetics: 1. Genotypic
- through random 2. variations in the early phases of an embryo's development: Phenotypic
- through training: 3. **Behavioral**

Biometric Trait	genotypic	phenotypic	behavioral
Fingerprint (only minutia)	0	000	0
Signature (dynamic)	00	0	000
Facial geometry	000	0	0
Iris pattern	0	000	0
Retina (Vein structure)	0	000	0
Hand geometry	000	0	0
Finger geometry	000	0	0
Vein structure of the back of hand	0	000	0
Ear form	000	0	0
Voice (Tone)	000	0	00
DNA	000	0	0
Odor	000	0	0
Keyboard Strokes	0	0	000
Comparison: Password			(000)

Source: http://www.bromba.com/faq/biofaqe.htm#entstehen

Identification of human faces

A class (identity) separation problem:

- Choice of optimal representation
- Inter-class similarity vs intra-class variability

 $= \Psi(F_h, F_k)$

False match and false non-*Vision Lab* match

Faces that <u>look</u>similar FALSE ACCEPTANCE

Faces that <u>look</u> different FALSE REJECTION

Inter-class *similarity*

Two different people may have very similar appearance FALSE MATCH

Twins

Father and son

Intra-class variability

The same person may present very different biometric samples **FALSE NON-MATCH**

Face shape and texture Vision Lab

A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur, L. Akarun, "Bosphorus Database for 3D Face Analysis", The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008) Roskilde University, Denmark, May 2008.

Face makeup

Face surgery

Face spoofing

An ill-posed problem

Do they look at all similar...?

1° Int.l Winter School on Biometrics – 9-1-2017

FACE RECOGNITION TECHNOLOGIES

1° Int.l Winter School on Biometrics – 9-1-2017

1° Int.l Winter School on Biometrics – 9-1-2017

- The basic idea of many similar approaches is to define a basis of vectors to describe any face in the "*universal space*" of all existing faces...
- The basic tool is the *Singular Values Decomposition*:

$$\mathbf{A} = \mathbf{U} \cdot \boldsymbol{\Sigma} \cdot \mathbf{W}$$

■ The eigenvectors (*r* columns of U) of the decomposition define the basis of vectors and the eigenvalues σ_i define the "relevance" of each eigenvector (*eigenface*)

Holistic face recognition Vision Lab

- Both PCA and LDA produce a set of orthogonal basis images.
- Both provide a compact and global representation of face images.
- LDA explicitly attempts to model the difference between the classes of data.
- PCA does not take into account any difference in class.

1° Int.l Winter School on Biometrics – 9-1-2017 M

- The Independent Component Analysis (ICA) is based on higher order optimization to find independent (orthonormal) components for the face sub-spaces
- Better description of the inter-class variability

Face recognition via Sparse Lab Representations John Wright et al. PAMI 2009

- Automatic face recognition algorithm robust to occlusion, expressions and disguise.
- Represent the test face as a *sparse linear combination* of the training faces.
- Estimate the class of the test image from the sparse coefficients.
- □ Can identify and reject "non face" images.
- ...Performance can be affected by illumination variations and mis-alignment.

Formulation

- Let v_{ij} be the jth training image in the ith class.
- \square A is the dictionary of the training faces.

$$A \doteq [A_1, A_2, \dots, A_k] = [v_{1,1}, v_{1,2}, \dots, v_{k,n_k}]$$

- $\square The test image <math>y$ is a linear combination of all instances from the correct face class.
 - if *y* belongs to the ith class:

Dictionary matrix A

$$\boldsymbol{y} = \alpha_{i,1}\boldsymbol{v}_{i,1} + \alpha_{i,2}\boldsymbol{v}_{i,2} + \dots + \alpha_{i,n_i}\boldsymbol{v}_{i,n_i}$$

$$= \alpha_{i,1} + \alpha_{i,2} + \cdots + \alpha_{i,n_i}$$

Formulation

As the number of classes is high, the coefficient vector is sparse.It can be recovered by solving the Basis Pursuit problem:

$$\hat{x}_1 = \arg \min \|x\|_1$$
 subject to $Ax = y$.

The non-zero coefficients in the sparse coefficient vector will correspond to the true class.

Sparse Representation VS Vision Lab Principal Component Analysis

Similar formulation, different objectives

- □ Gray level oriented patterns/photometric properties
- Physical Landmarks

Facial features as 2D/3D Vision Lab landmarks

- 2D landmarks can be defined and tracked on face images
- Simple 2D vs complex 3D representations

Facial features as 2D/3D *landmarks*

Marked average face image •Five topographic kernels are shown in the top row

•Five corresponding residual correlations (response) in the bottom row.

The LFA-based approach (*Local Feature Analyisis*) uses localized kernels, which are constructed from PCA-based eigenvectors, for extracting topographic facial features (e.g., eyebrows, cheek, mouth, etc.)

Arca, Stefano, Paola Campadelli, and Raffaella Lanzarotti. "A face recognition system based on local feature analysis." In International Conference on Audio-and Video-based Biometric Person Authentication, pp. 182-189. Springer, 2003.

Gabor wavelets

• Provide a description of the local structure of the facial patterns

• Convolution with a bank of frequency-tuned filters

J.H. Henderson et al. "Gaze Control for Face Learning and Recognition by Humans and Machine"; in T. Shipley and P. Kellman (Eds.), *From Fragments to Objects: Segmentation and Grouping in Vision*

	1. 20 Carry	a tortany	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	Constant of the		1
in the second	-				1.8.20 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and a series
25	- 10 s 11 s - 10 s		1	12 (2) 	-91	1
25	14		1			
Ð						1

Local Binary Patterns (LBP)

Pixels are labeled by thresholding the 3x3neighbourhood with the center value and considering the result as a binary number.

The histogram of the labels is used as a texture descriptor.

T. Ahonen et al. "Face Description with Local Binary Patterns: Application to Face Recognition"; in IEEE Trans. On PAMI 28(12):2037-2041.

Facial features as 2D patterns^{Lab}

The value of the LBP code of a pixel (x_c, y_c) is given by:

Scale Invariant Features

$\mathbf{D}(x, y, \sigma, k) = (\mathbf{G}(x, y, k\sigma) - \mathbf{G}(x, y, \sigma)) * \mathbf{I}(x, y)$ $\mathbf{D}(x, y, \sigma, k) = \mathbf{L}(x, y, k\sigma) - \mathbf{L}(x, y, \sigma)$

G. Lowe, "Object recognition from local scale invariant features", International Conference on Computer Vision, 1999.

Scale Invariant Features

Scale Invariant Features

Kernel methods

- K-PCA; K-ICA; K-LDA... (B. Schölkopf et al. 1998)
- Are all variations of existing face-space representations. The transformation to the lower space is mediated by a kernel function such as Gaussian, polinomial, sigmoid and Radial Basis Functions
- More robust to noise and discretization
- Better separation of classes
- General *Learning Theory*

Kernel methods

SVM, MPM, PCA, CCA, FDA...

If data is described by numerical vectors: embedding ~ (non-linear) transformation

Support Vector Machines are binary classifiers

Massimo Tistarelli

V. Vapnik, S.E. Golowich, A.J. Smola: Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. Neural Information Processing Systems 1996: 281-287

One-Class Support Vector Machines

One-Class Support Vector Machines are <u>unary</u>

Impostors

Ben-Hur, A., Horn, D., Siegelmann, H., , Vapnik, V.: « Support vector clustering ». Journal of Machine Learning Research 2 (2001) 125–137

One-Class Support Vector Machines

- The separating surface is a hyperspehere
- Selectivity can be adjusted by two parameters
- No need for direct "impostor" training

 $||x_i - a||^2 \le R^2$

Convolutional Neural Networks

1°

Lab

A deep CNN is used to extract a feature vector with relatively high dimension. The network can be supervised by multiclass loss and verification loss

PCA, Joint Bayesian or metric-learning methods are used to learn a more efficient low dimensional representation

The amount of training data can range from 100K up to 260M

Soft-max

Convolutional Neural Networks

- DeepID (Y. Sun, X. Wang, X. Tang CVPR 2014)
- DeepID2 (Y. Sun, X.Wang, X. Tang NIPS 2014)
- DeepID2+
- DeepID3
- DeepFace (Y. Taigman, M. Yang, M. Ranzato, L. Wolf – CVPR 2015)
- Face++
- FaceNet
- Baidu (J.Liu, Y.Deng, T.Bai, Z.Wei, C.Huang CVPR 2015)
- ... What's next?

E. Learned-Miller, G. Huang, A. RoyChowdhury, H. Li, G. Hua, "Labeled Faces in the Wild: A Survey", Advances in Face Detection and Facial Image Analysis, pp 189-248, Springer 2016. Massimo Int.l Winter School on Biometrics – 9-1-2017

Vision Lab

Method	Net. Loss	Outside data	# models	Aligned	Verif. metric	Layers	Accu.
DeepFace [97]	ident.	4M	4	3D	wt. chi-sq.	8	97.35±0.25
Canon. view CNN [115]	ident.	203K	60	2D	Jt. Bayes	7	96.45 ± 0.25
DeepID [92]	ident.	203K	60	2D	Jt. Bayes	7	97.45 ± 0.26
DeepID2 [88]	ident. + verif.	203K	25	2D	Jt. Bayes	7	99.15±0.13
DeepID2+ [93]	ident. + verif.	290K	25	2D	Jt. Bayes	7	99.47±0.12
DeepID3 [89]	ident. + verif.	290K	25	2D	Jt. Bayes	10-15	$99.53 {\pm} 0.10$
Face++ [113]	ident.	5M	1	2D	L2	10	$99.50 {\pm} 0.36$
FaceNet [82]	verif. (triplet)	260M	1	no	L2	22	$99.60 {\pm} 0.09$
Tencent [8]	-	1M	20	yes	Jt. Bayes	12	99.65 ± 0.25

Figure 2. **Outline of the** *DeepFace* **architecture**. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. **The net includes more than 120 million parameters**, where more than 95% come from the local and fully connected layers.

layer	size-in	size-out	kernel	param	FLPS
conv1	$220 \times 220 \times 3$	$110{\times}110{\times}64$	$7 \times 7 \times 3, 2$	9K	115M
pool1	$110{\times}110{\times}64$	$55 \times 55 \times 64$	$3 \times 3 \times 64, 2$	0	
rnorm1	$55 \times 55 \times 64$	$55 \times 55 \times 64$		0	
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1 \times 1 \times 64, 1$	4K	13M
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$	$3 \times 3 \times 64, 1$	111K	335M
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0	
pool2	$55 \times 55 \times 192$	$28{\times}28{\times}192$	$3 \times 3 \times 192, 2$	0	
conv3a	$28 \times 28 \times 192$	$28{\times}28{\times}192$	$1 \times 1 \times 192, 1$	37K	29M
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$	$3 \times 3 \times 192, 1$	664K	521M
pool3	$28 \times 28 \times 384$	$14{\times}14{\times}384$	$3 \times 3 \times 384, 2$	0	
conv4a	$14 \times 14 \times 384$	$14{\times}14{\times}384$	$1 \times 1 \times 384, 1$	148K	29M
conv4	$14 \times 14 \times 384$	$14{\times}14{\times}256$	$3 \times 3 \times 384, 1$	885K	173M
conv5a	$14 \times 14 \times 256$	$14{\times}14{\times}256$	$1 \times 1 \times 256, 1$	66K	13M
conv5	$14 \times 14 \times 256$	$14{\times}14{\times}256$	$3 \times 3 \times 256, 1$	590K	116M
conv6a	$14 \times 14 \times 256$	$14{\times}14{\times}256$	$1 \times 1 \times 256, 1$	66K	13M
conv6	$14 \times 14 \times 256$	$14{\times}14{\times}256$	$3 \times 3 \times 256, 1$	590K	116M
pool4	$14 \times 14 \times 256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0	
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0	
fc1	$7 \times 7 \times 256$	$1 \times 32 \times 128$	maxout p=2	103M	103M
fc2	$1 \times 32 \times 128$	$1 \times 32 \times 128$	maxout p=2	34M	34M
fc7128	$1 \times 32 \times 128$	$1 \times 1 \times 128$		524K	0.5M
L2	$1 \times 1 \times 128$	$1 \times 1 \times 128$		0	
total				140M	1.6B

F. Schroff, D. Kalenichenko, J. Philbin, "FaceNet: A Unified Embedding for Face Recognition and Clustering", CVPR 2015.

FLOPS vs. Accuracy trade-off. Shown is the trade-off between FLOPS and accuracy for a wide range of different model sizes and architectures. Highlighted are the four models that we focus on in our experiments.

1°

0

"The performance of these systems is ironically matched by our present ignorance of why they work as well as they do."

F. Anselmi, L. Rosasco, C. Tan and T. Poggio - Deep Convolutional Networks are Hierarchical Kernel Machines

Data dimensionality Vision Lab How many pixels to detect a face?

... Not many ... (20x14)

It's more a question of <u>spatial distribution</u> and ... proper <u>frequency tuning</u>

1° Int.l Winter School on Biometrics – 9-1-2017

The retina layout

A good approximation of the cones density over the retina is given by the complex log-polar transform

1° Int.l Winter School on Biometrics – 9-1-2017

Context analysis: Visual attention

Eye movements while watching a girl's face (A.L. Yarbus, "Eye Movements and Vision", Plenum Press, 1967)

Functional Magnetic Resonance Imaging

Brain activation - fMRI maps

Recognition of 50 Familiar Faces (**FF**) vs 50 Newly Learned Faces (**NL**) and compared to rejection of 50 Foil (**FO** -False Objective) faces. Encoding (**EN**) session for learning new faces.

C. L. Leveroni et al. "Neural Systems Underlying the Recognition of Familiar and Newly Learned Faces", The Journal of Neuroscience, January 15, 2000, *20*(2):878–886

Figure 2. Areas of significantly increased (*red-yellow* scale) and decreased (*blue-cyan* scale) MR signal intensity from t tests (p < 0.005) comparing the three conditions: FF minus NL, FF minus FO, and NL minus FO. Numbers below each image represent millimeters from the interhemispheric fissure (-, left; +, right). Numbers adjacent to activated foci correspond to location numbers (first column) of Tables 1, 2, and 3. Massimo Tistarelli 61

Brain activation

C. L. Leveroni et al "Neural	Table 1. Famous faces (FF) vs newly learned (NL) faces						
Systems Underlying the Loc. # Brain r		Brain region	BA	vol. (ml)	x	v	z
Recognition of Familiar and		EE > NI				,	
Newly Learned Faces". The		Frontal Lobe					
Journal of Neuroscience January	1	L Superior Frontal	8	2.6	-15	33	44
15 2000 20(2).979 996	2	R Medial Frontal	9	2.4	10	47	25
15, 2000, 20(2).878-880	3	R Superior Frontal	8	0.5	12	40	45
	4	L Medial Frontal	10	0.4	-6	49	-4
	5	R Precentral	6	0.4	49	-1	13
	6	L Superior Frontal	8	0.4	-36	15	50
	7	R Inferior Frontal	47	0.3	32	32	-7
	8	R Anterior Cingulate	32	0.3	11	21	-7
	9	R Medial Frontal	11	0.3	9	35	-13
	10	L Medial Frontal	11	0.3	-6	39	-14
		Temporal Lobe					
	11	L Middle Temporal	21	2.7	-51	-11	-13
	12	R Middle Temporal	21	1.9	52	-6	-18
	13	L Middle Temporal	21	0.6	-49	-42	7
	14	L Middle Temporal	39	0.5	-46	-68	22
	15	R Superior Temporal	22	0.5	54	-52	15
	16	R Fusiform	20/37	0.4	32	-46	-16
	17	R Middle Temporal	37	0.3	43	-64	9
	18	R Insula	_	0.3	37	3	11
	19	R Parahippocampal	35	0.2	30	-14	-23
	20	R Parahippocampal	36	0.2	24	-43	-7
	21	L Hippocampus	28	0.2	-19	-12	-20
		Parietal/Occipital Lobe					
	22	L Posterior Cingulate	23/30	1.7	$^{-4}$	-57	15
	23	R Inferior Parietal	40	0.5	44	-30	22
	24	R Posterior Cingulate	31	0.3	2	-57	29
	25	L Extrastriate	18	0.3	-20	-89	20
		Subcortical					
	26	R Pons	_	0.4	11	-43	-34
	27	L Pons	_	0.2	-10	-43	-33
	28	R Putamen	_	0.3	22	-7	-6
		NL > FF					
		Parietal Lobe					
	29	L Inferior Parietal	40	1.0	-37	-64	40
	30	R Superior Parietal	7	0.5	23	-66	30
	31	R Inferior Parietal	40	0.3	35	-67	42

Region is defined as center of mass. The first column refers to location numbers demarcated in Figures 2 and 3 (italicized numbers indicate locations not shown in figures). Coordinates represent distance in millimeters from anterior commissure: x right (+)/left (-); y anterior (+)/posterior(-); z superior (+)/inferior(-).

Face and motion perceptionVision Lab

Biological **M**otion

Non Rigid Motion

Vaina, L.M., Solomon, J., Chowdhury, S., Sinha, P., Belliveau, J.W., "Functional Neuroanatomy of Biological Motion Perception in Humans". *Proc. of the National Academy of Sciences of the United States of America*, Vol. 98, No. 20 (Sep. 25, 2001), pp. 11656-11661

Brain models

"Unsupervised learning of invariant representations", Theoretical Computer Science, 2015.

Brain models

1°

Towards 3D: Morphable models

Laser Scanner

Max Planck Institute Biologische Kybernetik

Towards 3D: Morphable models

Towards 3D: **Morphable models**

1°

- Blanz, Vetter 99: Stochastic Gradient Descent
- Pighin, Szeliski, Salesin 99: Levenberg-Marquardt
- Romdhani, Blanz, Vetter 02: Non-linear fitting

Vision Lab

Biometrics evaluations...Yision Lab

Modality	Test Label	Test Parameter	False Reject Rate	False Accept Rate	
Fingerprint	FpVTE 2003	US Government operational data	0.1%	1%	
Fingerprint	FVC 2006	Heterogeneous population (young, elderly)	2.2%	2.2%	
Face	FRGC 2006	Controlled Illumination, high-resolution images	0.8-1.6%	0.1%	
Voice	NIST 2004	Text independent, multi-lingual	5-10%	2-5%	
Iris	ITIRT 2005	Indoor environment	0.99%	0.94%	
Iris	ICE 2006	Controlled Illumination, broad quality range	1.1-1.4%	0.1%	

1° Int.l Winter School on Biometrics – 9-1-2017

The iArpa JANUS projectvision Lab

1° Int.l Winter School on Biometrics – 9-1-2017

70

The iArpa JANUS projectvision Lab

Dramatically improve face recognition performance in massive video collections through novel approaches capable of leveraging the rich spatial and temporal information available within the multiple views captured in unconstrained video.

Intelligence analysts often rely on facial images to assist in establishing the identity of an individual, but too often, just examining the sheer volume of possibly relevant images and videos can be daunting.

Phase 2 - 18 months(3/16-9/17)
datasets challenging for face
detection, occlusion, aging

2000+subjects and hundreds of hours of video

Accuracy: 85% TAR @ 0.1% FAR Query time: sublinear

Phase 3 - 36 months(10/17-9/20)

10000+subjects and thusands of hours of video

Accuracy: 85% TAR @ 0.01% FAR Query time: logarithmic

The USC JANUS team

P. Natarajan, Pl

G. Medioni, Co-PI

R. Nevatia, Fusion

P. Debevec, Illumination

W. AbdAlmageed Indexing, LSML

J. Choi Face Recognition

R. Wu FD, Systems

H. Li Expression

L.P. Morency LM Detection

T. Hassner, 2D matching

A. Del Bimbo, Firenze Tracking

U. Park, Sogang U. Aging, Distinctive

M. Tistarelli, UNISS Age and Expression

M. Kilmer, Tufts U. Tensor Approaches

2D Frontalization

- (a) Query photo; (b) facial features detection; (c) the same detector used to localize the same facial features in a reference face photo, produced by rendering a textured 3D computer graphics model (d);
- (e) from the 2D coordinates on the query and their corresponding 3D coordinates on the model we estimate a projection matrix which is then used to back-project query intensities to the reference coordinate system;
- (f) estimated visibility due to non-frontal poses, overlaid on the frontalized result. Warmer colors reflect less visible pixels. Facial appearance in these regions is produced by borrowing colors from corresponding symmetric parts of the face; (g) final frontalized result.

Tal Hassner, Shai Harel, Eran Paz, Roee Enbar; "Effective Face Frontalization in Unconstrained Images" The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4295-4304

Efficient CNN learning

Augmenting faces by using different generic 3D models for rendering.

Top: Ten generic 3D face shapes used for rendering. **Bottom**: Faces rendered with the generic model. Different shapes induce subtle appearance variations yet do not change the perceived identity of the face in the image. For training a CNN a single face image is rendered using different generic 3D models, at different poses and different expressions.

Iacopo Masi, Anh Tuan Tran, Jatuporn Toy Leksut, Tal Hassner, Gerard Medioni; "Do We Really Need to Collect Millions of Faces for Effective Face Recognition?" The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. arXiv preprint arXiv:1603.07057, 24 Mar 2016.

Face recognition performances^{Vision Lab}

State-of-the-art in face recognition Good marks:

- Optimal classifiers (SVM/NN/Bayesian/SRC/DL)
- Advanced face-space representation (ICA/LFA/Kx)
- Best feature extraction methods (Gabor/LBP/MBLBP-SIFT/SURF/etc.) and *visual features*
- Learning

Need for improvements:

- Video vs mugshots
- Subject-based analysis (familiarity)
- Registration
- Illumination
- Feature selection

Main techniques:

- Histogram-based adaptive techniques, applied on image patches
- Re-lighting techniques
- Synthesis of illumination-invariant representations (for example the *Hue* component in color space)

Modelling the face skin^{Vision Lab}

Skin chromaticity map

Diffuse light rendering

Reflectance map of the oily skin layer

Sub-surface reflectance

Final face rendering

Henrik Wann Jensen, "Digital face cloning", SIGGRAPH'2003 Technical Sketch, San Diego, July 2003. (http://graphics.ucsd.edu/~henrik/papers/face_cloning/)

Image re-lighting

 $I(x, y) = R(x, y) \cdot L(x, y) \qquad R(x, y) = \frac{I(x, y)}{L(x, y)}$ L(x,y)

$F(L) = \iint_{\varpi} \rho(x, y) (L(x, y) - I(x, y))^2 dx dy + \lambda \iint_{\varpi} (L_x^2 + L_y^2) dx dy$

Anisotropic diffusion (Lagrange solution of (1))

Isotropic diffusion (Gaussian filtering)

R. Gross and V. Brajovic, "An Image Preprocessing Algorithm for Illumination Invariant Face Recognition", International Conference on Audio- and Video-Based Biometric Person Authentication, 2003.

D. Jobson, Z. Rahmann and G. Woodell, "A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observations of Scenes", IEEE Transanctions on Image Processing, volume 6, Issue 7, 1997.

Face alignment

... But the data is still there

1° Int.l Winter School on Biometrics – 9-1-2017

The "registration" problemsion Lab

In cognitive psychology it is called "perceptual organization"

The "registration" problemsion Lab

S. Arca, P. Campadelli, and R. Lanzarotti. A face recognition system based on automatically determined facial fiducial points. *Pattern Recognition*, 39(3):432–443, 2006.

Recent advances in face recognition

- Face recognition from video sequences
- Subject-based template definition
- 3D shape and texture
- Aging, gender, kinship, expression, intention...
- Spoofing/Camouflage
- Face registration and Facial symmetry
- Compensation of illumination
 - Multispectral imaging
 - Evaluation of illuminant components
 - Face appearance-invariant models

Subject-specific representation^{ab}

For **localization** and **tracking** we are interested on what every face has <u>in common</u> (to tell a face from "non-faces")

For **identification** we are not interested on what faces have in common but rather <u>what</u> <u>differentiate</u> one face from another.

Subject-specific representation^{ab}

□ Face 1 • Face 2

Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M. (2007) "Distinctiveness of faces: a computational approach", ACM Transactions on Applied Perception, Vol. 5, n. 2, 2008.

(A) perceptual and (B) computational results of saliency of local facial features, demonstrate the relevance of *non-standard* facial landmarks

Selective attention

- Starting point: HMM based classification of faces
- "Walking on the face" for obtaining HMM sequences

Standard raster scan-path

Attention drives face scanning

Saliency-based scan-path

A. A. Salah, M. Bicego, L. Akarun, E. Grosso, M. Tistarelli: "Hidden Markov model-based face recognition using selective attention", *Human Vision and Electronic Imaging XII*, Proc. of SPIE, vol. 6492, (2007)

Attention-based classification

- Experiments on BANCA protocol MC
- Gabor wavelets for saliency map construction
- Employed features: gray levels, DCT coefficients, Haar wavelets

Window Size	Average Acc. (std)		Max Acc.	
	Biological	Raster	Biological	Raster
7	87.62%(2.28%)	91.92%(1.63%)	91.15%	93.08%
9	89.31%(1.20%)	93.92%(0.92%)	90.38%	95.00%
11	93.69%(1.58%)	94.46%(1.29%)	95.77%	95.77%
13	95.23%(0.89%)	96.08%(0.74%)	96.15%	97.31%
15	96.85%(1.00%)	95.85%(1.29%)	98.08%	97.31%
17	93.15%(1.13%)	96.69%(0.89%)	95.00%	98.08%

Table 2. Comparison between raster and biological scanning

A. A. Salah, M. Bicego, L. Akarun, E. Grosso, M. Tistarelli: "Hidden Markov model-based face recognition using selective attention", *Human Vision and Electronic Imaging XII*, Proc. of SPIE, vol. 6492, (2007)

FACE FROM VIDEO TECHNOLOGIES

4 P. Tarnov, & Verning again A. Siyasingu and R. Chellarini, "Statistical computations on grassmann and stell paraticlis for inner and value posed recognition," *History Internation Pattern Internation Market Dyna*, 33–41, Nucl. 2011, 2273–2286.

- Argan Hu, Ajmal S, Man, and Koban Owens, "Sparse armosoniated neurospecies for index sectors through a 1977 for two sectors of Communications and Renov Respective 2011;27:13.
- [17] Tarasa, V. Verenag areas and R. Oscillarov, "Surround Antibasion States and Gravitation Manifolds with Applications in Construct Vision," III The Construction Computer Processing Proceedings, 2008.

M. Bicego, E.Grosso, M. Tistarelli. "Person authentication from video of faces: a behavioral and physiological approach using Pseudo Hierarchical Hidden Markov Models", Int.l Conference on Biometric Authentication 2006, Hong Kong, January 2006/IMAVIS 2009 Yi-Chen Chen; Patel, V.M. ; Chellappa, R. ; Phillips, P.J. "Adaptive representations for video-based face recognition across pose", 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), 984-991, 24-26 March 2014.

Face recognition from video

Dynamics in a video stream conveys far more information than a collection of single snapshots

1° Int.l Winter School on Biometrics – 9-1-2017

Video-Based Face Recognition

- General face recognition problem: Identifying faces in the query (probe) given a stored database of ID-labeled faces (gallery).
- Why videos?
 - Video *naturally* arises in many applications
 - Videos contain more information: Spatio-temporal patterns, evidence accrual, 3D information etc.

Still to Video

Video to Video

Video-Based Face Recognition Not just *more data* to be processed:

- Select the "best" sensory data (pose, expression, illumination, noise...)
- Multiple-data fusion (decision/score/feature level)
- > 3D reconstruction/virtual views
- Resolution enhancement
- Expression and emotion analysis
- Behavioral analysis
- > *Dynamic* video templates...?

Representations

- □ Linear subspaces: Discriminative canonical correlation [Kim et al. PAMI 2007]
- Affine subspaces: Affine hull, convex hull [Cevikalp & Triggs CVPR 2010]
- Manifolds: [Lee et al. CVIU 2005; Wang et al. CVPR 2008, CVPR 2009]
- **Probability distributions**: [Zhou & Chellappa PAMI 2006]
- Covariance matrices: [Wang et al. CVPR 2012]
- □ **Dictionaries**: [Chen et al. ECCV 2012]
- Temporal models: HMM [Liu & Chen CVPR 2003], PH-HMM [Bicego et al. ICBA 2006], ARMA [Aggarwal et al. ICPR 2004]
- **3D models**: [Park & Jain ICB 2007]

1° Int.l Winter School on Biometrics – 9-1-2017

Video preprocessing/partitioning^{Lab}

- Given a video sequence, extract all frames from it, from which the human face regions are then detected and cropped.
- Based on video summarized algorithm [1], partition cropped face images into K partitions.
 - Different partitions exhibit different pose/lighting conditions.

(a) MBGC Notre Dame frontal face (b) MBGC Notre Dame profile fac: partitions partitions

Figure 3. MBGC Notre Dame partition results

(a) FOCS UT-Dallas walking parti- (b) FOCS UT-Dallas activity partitions tions

[i] N. Shroli, P. Turaga, and R. Chellappa, ""ideo procis. High lighting diverse aspects of vacuus," IEEE Transactions on Multimedia, 2010.

Hidden Markov Models

Statistical analysis of sequences of patterns

This idea can be extended to multi-dimensional patterns and sequences ... in several ways

Hidden Markov Models

1. Each image is modeled as a single HMM and the sequence of images as a sequence of HMMs

A. Hadid and M. Pietikainen. "An experimental investigation about the integration of facial dynamics in videobased face recognition". *Electronic Letters on Computer Vision and Image Analysis*, 5(1):1-13, 2005.

2. The entire video is modeled as a single HMM

X. Liu and T. Chen. "Video-based face recognition using adaptive hidden Markov models". In *Proc. Int. Conf. on Computer Vision and Pattern Recognition*, 2003.

3. The images and the sequence itself are modeled as a complex, hierarchical HMM-based structure

M. Bicego, E.Grosso, M. Tistarelli. "Person authentication from video of faces: a behavioral and physiological approach using Pseudo Hierarchical Hidden Markov Models", Int.l Conference on Biometric Authentication 2006, Hong Kong, China, January 2006.

...ANOTHER WAY OF USING MORE IMAGES:

COHORT NORMALIZATION

Y. Sun, M. Tistarelli, N. Poh (2013); "Picture-Specific Cohort Score Normalization for Face Pair Matching" Proc IEEE 6th Int.l Conference on Biometrics: Theory, Applications and Systems - BTAS 2013 Washington DC, USA; September 29 - October 2, 2013.

M. Tistarelli, Y. Sun, N. Poh (2014) "On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition", IEEE Trans. on Information Forensic and Security, 9(12):2063-2075, 2014.

What is a Cohort?

• Ancient Roman military unit, comprising six centuries, equal to one tenth of a legion.

• A group of people banded together or treated as a group.

What is a Cohort set?

• *Cohort samples* are non-matching samples of the same kind of the test samples.

An independent data set

Two fingerprints being compared

• Cohort score normalization is a procedure, which aims to postprocess the matching score, using information from a set of *cohort samples*.

How Cohort modeling works?" Lab

Score normalization can *map* the raw matching score to a domain where the degradation effects caused by the sample variations are reduced.

Cohort score normalization can exploit the *discriminative information* by a pool of non-matching samples. This information can be used to normalize the raw matching scores.

Existing literature

• Cohort models have been proposed to model **language processing** and lexical retrieval.

Marslen-Wilson, W. (1987). "Functional parallelism in spoken word recognition" Cognition, 25, 71-102

- Initially adopted in biometrics for speaker verification.
- A. E. Rosenberg, J. DeLong, C. H. Lee, B. Juang, and F. K. Soong (1992). "The use of cohort normalized scores for speaker verication" In Int.I Conf. on Spoken Language Processing, 1992.
- Afterwards applied for **fingerprint verification** and for multibiometrics.
- G. Aggarwal, N. Ratha, R. M. Bolle, and R. Chellappa (2008). "Multibiometric cohort analysis for biometric fusion". In IEEE Int.I Conf. on Acoustics, Speech and Signal Processing, 5224–7, 2008.
- Two representative cohort normalization methods:
 T-norm (Test-norm ...with Gaussian assumption)
 Polynomial regression-based cohort normalization

Face pair matching

- Only two images are given, no other information is provided.
- Large variations may be found in the image pair.

Face verification

Picture-specific Cohort normalization

Picture-specific Cohort normalization

- **Database**: Labeled Faces in the Wild
- **Protocol**: image-restricted setting; 10-fold cross validation
- Feature extraction: Intensity, LBP, Gabor, SIFT
- Matching score: Euclidean or Hellinger distance

	Intensity	Gabor	LBP	SIFT
Euclidean (no cohort)	0.6502	0.6985	0.6500	0.7140
Euclidean (with cohort)	0.6830	0.7560	0.7443	0.7703
Hellinger (no cohort)	0.6497	0.7100	0.7132	0.7183
Hellinger (with cohort)	0.6913	0.7680	0.7707	0.7738

Comparative verification accuracy with and without cohort normalization

FACE RECOGNITION ACROSS PLASTIC SURGERY

M. Nappi, S. Ricciardi, M. Tistarelli, (2013); "Deceiving Faces: When Plastic Surgery Challenges Face Recognition" Image and Vision Computing, Vol. 54, pp. 71-82, 2016.

Y. Sun, M. Tistarelli, D. Maltoni (2013); "Structural Similarity based Image Quality Map for Face Recognition across Plastic Surgery" Proc IEEE 6th Int.l Conference on Biometrics: Theory, Applications and Systems - BTAS 2013 Washington DC, USA; September 29 - October 2, 2013.

Botulinum toxin

Chemical peel

Dermoabrasion

Dermal fillers

1° Int.l Winter School on Biometrics – 9-1-2017

Common cosmetic procedures

Rhinoplasty

Blepharoplasty

Rhytidectomy (face lift)

Brow/Forehead lift

1° Int.l Winter School on Biometrics – 9-1-2017

Common cosmetic procedures

Otoplasty

Cheek bones reshaping

Mentoplasty

Surgical procedure	Facial region	Spatial frequencies	SpatialExtension of facefrequenciessurface		Relative diffusion
Botulinum toxine	Forehead	High	Medium	Low to Medium	52%
Dermal fillers	Periocular / smile lines	High	Limited	Medium	19%
Chemical peel	Whole face	High	Wide	Low	9%
Dermoabrasion (<i>Resurfacing</i>)	Whole face	ace High/Medium Wide		Low to Medium	0,6%
Microdermoabrasion	Whole face	High	Wide	(very) Low	8%
Nose reshaping (Rhinoplasty)	haping Nose Low		Limited	Medium	1,8%
Eyelid surgery (Blepharoplasty)	Periocular re- gion	Medium	Limited	Low to Medium	1,8%
Facelift (Rhytidectomy)	Whole face	Low to High	Wide	High	1.1%
Brow lift (Forehead lift)	Forehead	Medium/High	Limited	Medium	0.4%
Chin surgery (Mentoplasty)	Lower face re- gion	Low	Medium	High	0.15%
Cheekbones reshaping	Zygomatic re- gion	Low	Medium	High	0.1%
Ear surgery (Otoplasty)	Ears	Low	Limted	Low	0.2%

Face recognition algorithms^{n Lab}

# Reference			Key					
	Dataset	GLOBAL	LOCAL	TEX	3D	RR%	Algorithm	
1	Aggarwal et al. [26]	Plastic Surgery Face Database	N	Ŷ	N	N	77.9	Part-wise and Sparse representation
2	Bhatt et al. [40]	Plastic Surgery Face Database	Y	Y	Y	N	78.6	Uniform Circular Local Bi- nary Pattern (UCLBP) + Speeded Up Robust Features (SURF) + genetic alghorithm
3	De Marsico et al. [20,21]	Plastic Surgery Face Database	Ŷ	Y	N	N	70.0	PIFS + region-based correlation index
4	El–said, Abol Atta [39]	Plastic Surgery Face Database	N	Y	N	N	76.1	geometrical descriptors of ROIs + minimum distance classifiers
5	Ibrahim et al. [14]	Plastic Surgery Face Database	Y	N	Y	N	83.2	PCA, KPCA, KFA, Gabor
6	Karuppusamy and Ponmuthu- ramalingam [44]	NA	N	Y	Y	N	-	Extended Uniform Circular Local Binary Pattern (EUCLBP) + SIFT + Particle Swarm Optimization (PSO)
7	Lakshmiprabha et al. [34]	Plastic Surgery Face Database	N	Y	Ŷ	N	74.4	Gabor/LBP + PCA + Euclid- ean Distance
8	Liu et al. [29]	Plastic Surgery Face Database	Y	Ŷ	Ŷ	N	86.1	Gabor Patch classifiers via Rank-Order list Fusion (GPROF)
9	Mun and Deoran- kar [33]	Web available Before/After Surgery photos	Y	Y	Y	N	-	Multimodal biometric fea- turesPCA (face)+LBP (periocular region)
10	Singh, Vatsa and Noore [4]	NA	Y	Ŷ	Y	N	40	PCA, FDA, GF, LFA, LBP, GNN
11	Singh et al. [11]	Plastic Surgery Face Database	Y	Y	Y	N	40	PCA, FDA, LFA, CLBP, SURF, GNN
12	Sun et al. [36]	Plastic Surgery Face Database	Y	Ŷ	Ŷ	N	77.5	Structural Similarity (SSIM) index +weighted patch fusion
13	Verghis et Bhu- vaneshwari [16]	Plastic Surgery Face Database	Y	Y	N	Y	87.3	Evolutionary granular algo- rithm + SIFT and EUCLBP

1° Int.l Winter School on Biometrics – 9-1-2017

Reference image

JPEG compressed image

SSIM quality map

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

matching with SSIM based multi-patch fusion

SSIM examples

Rhinoplasty

Lip augmentation

Experimental results

Plastic surgery database containing 576 images of 784 subjects taken from the web.

Component-based matching Lab

Performance

Comparison of the Cumulative Match Characteristic curves computed from eleven different face recognition algorithms applied to the same plastic surgery database. Dashed lines refer to region-based approaches, while solid lines refer to holistic approaches. The CMC curves are those reported in their original research papers.

Identification error, as reported by eight different recognition algorithms, categorized by eight different surgical procedures. The six leftmost procedures are local, while the two rightmost procedures are global.

Performance

Comparison of overall vs. procedure-wise performance of eight different algorithms. The identification rate is normalized to 1.

DEALING WITH AGE PROGRESSION

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,", Proc. of IEEE Computer Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (2009)

Aging effects

Time duration: 2 years

Time duration: several years

Aging ... over time

Oct 1 1998–2006 8 years of JK's Daily Photo Project

Aging ... over time

$$d_{I_1,I_2}(x,y) = \frac{1}{2} \left(\frac{1}{|P_{I_1}|} \sum_{p \in P_{I_1}} \omega(p) + \frac{1}{|P_{I_2}|} \sum_{q \in P_{I_2}} \omega(q) \right)$$

Photometric effects

Time evolution of facial features over 4 years

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,", Proc. of IEEE Computer Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (2009)

Photometric effects

Time evolution of facial features over 8 years

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,", Proc. of IEEE Computer Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (2009)

Photometric effects

Comparative time evolution of features for different subjects

M. Ortega, L. Brodo, M. Bicego, M. Tistarelli, "Measuring changes in face appearance through aging,", Proc. of IEEE Computer Vision and Pattern Recognition Workshop, pp. 107-113, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (2009)

3D FACE RECOGNITION

Cadoni M., Grosso E., Lagorio A., "Large scale face identification by combined iconic features and 3D joint invariant signatures", Image and Vision Computing, Vo. 52, pp. 42-55, 2016.

Cadoni M., Grosso E., Lagorio A., Tistarelli M., "Blending 2D and 3D Face Recognition", T. Bourlai Ed. *Face Recognition Across the Imaging Spectrum*, pp. 305-331, Springer, 2016.

Cadoni M., Grosso E., Lagorio A., Tistarelli M., "From 3D Faces to Biometric Identities", Proc. of BioId European Workshop, pp. 156-167, LNCS 6583, Springer, 2011.

Cadoni M., Bicego E., Grosso E., "3D Face Recognition Using Joint Differential Invariants", Proc. of Third International Conference on Biometrics, ICB 2009, pp. 279-288, LNCS 5558, Springer, 2009.

3D face recognition: *Vision Lab* from ill-posed to well-posed

3D face matching

- Recognition of faces from 3D data can be achieved by pairing a set of points from two individuals and measuring the goodness of fit.
- > This process requires to identify anchor points on the faces

3D shape matching

Author, year, reference	Persons in dataset	Images in dataset	Image size	3D face data	Core matching algorithm	Reported performance
Cartoux, 1989 [12]	5	18	Not available	Profile, surface	Minimum distance	100%
Lee, 1990 [26]	6	6	256×150	EGI	Correlation	None
Gordon, 1992 [21]	26 train 8 test	26 train 24 test	Not available	Feature vector	Closest vector	100%
Nagamine, 1992 [39]	16	160	256×240	Multiple profiles	Closest vector	100%
Achermann, 1997 [3]	24	240	75×150	Range image	PCA, HMM	100%
Tanaka, 1998 [52]	37	37	256×256	EGI	Correlation	100%
Achermann, 2000 [2]	24	240	75×150	Point set	Hausdorff distance	100%
Chua, 2000 [17]	6	24	Not available	Point set	Point signature	100%
Hesher, 2003 [22]	37	222	242×347	Range image	PCA	97%
Lee, 2003 [27]	35	70	320×320	Feature vector	Closest vector	94% at rank 5
Medioni, 2003 [34]	100	700	Not available	Point set	ICP	98%
Moreno, 2003 [38]	60	420	2.2K points	Feature vector	Closest vector	78%
Pan, 2003 [42]	30	360	3K points	Point set, range image	Hausdorff and PCA	3–5% EER,
						5–7% EER
Lee, 2004 [28]	42	84	240×320	Range, curvature	Weighted Hausdorff	98%
Lu, 2004 [30]	18	113	240×320	point set	ICP	96%
Russ, 2004 [49]	200 FRGC v1	468	480×640	Range image	Hausdorff distance	98% verification
Xu, 2004 [57]	120 (30)	720	Not available	Point set + feature vector	Minimum distance	96% on 30,
						72% on 120
Bronstein, 2005 [11]	30	220	Not available	Point set	"canonical forms"	100%
Chang, 2005 [16]	466 FRGC v2	4007	480×640	Point set	multi-ICP	92%
Gökberk, 2005 [20]	106	579	Not available	Multiple	Multiple	99%
Lee, 2005 [29]	100	200	Various	Feature vector	SVM	96%
Lu, 2005 [31]	100	196 probes	240×320	Surface mesh	ICP, TPS	89%
Pan, 2005 [41]	276 FRGC v1	943	480×640	Range image	PCA	95%, 3% EER
Passalis, 2005 [44]	466 FRGC v2	4007	480×640	Surface mesh	Deformable model	90%
Russ, 2005 [50]	200 FRGC vl	398	480×640	Range image	Hausdorff distance	98.5%

Bowyer et al. CVIU 101: 1-15 (2006)

1° Int.l Winter School on Biometrics – 9-1-2017

Fusing 3D shape and texture Lab

Author, year, reference	Persons in dataset	Images in dataset	Image size	3D face data	Core matching algorithm	Reported performance
Lao, 2000 [25]	10	360	480×640	Surface mesh	Minimum distance	91%
Beumier, 2001 [4]	27 gallery	81 gallery,	Not available	Multiple profiles	Minimum distance	1.4% EER
	29 probes	87 probes				
Wang, 2002 [56]	50	300	128×512	Feature vector	SVM, DDAG	>90%
Bronstein, 2003 [10]	157	Not available	2250 points	Range, point set	PCA	Not reported
Chang, 2003 [14]	200 (275 train)	951	480×640	Range image	PCA	99% 3D+2D, 93% 3D only
Tsalakanidou, 2003 [55]	40	80	100×80	Range image	PCA	99% 3D+2D, 93% 3D only
Godil, 2004 [19]	200	400	128×128	Range image	PCA	82% rank 1
Papatheodorou, 2004 [43]	62	806	10,000 points	Point set	ICP	100-66%
Tsalakanidou, 2004 [54]	50	3000	571×752	Range image	EHHM per mode	4% EER
Hüsken, 2005 [23]	466	4,007 FRGC v.2	480×640	hier. graph	graph match	93% verification at 0.01 FAR
Lu, 2005 [32]	100	598	320×240	Point set	ICP, LDA	91%
Maurer, 2005 [33]	466	4007 FRGC v.2	480×640	Surface mesh	ICP, Neven	87% verification at 0.01 FAR

Bowyer et al. CVIU 101: 1-15 (2006)

3D Shape invariants

Multiscale features extracion

3D face registration using geometrical invariants

Compute the face similarity

Cadoni M., Grosso E., Lagorio A., "Large scale face identification by combined iconic features and 3D joint invariant signatures", Image and Vision Computing, Vo. 52, pp. 42-55, 2016. Cadoni M., Bicego E., Grosso E., "3D Face Recognition Using Joint Differential Invariants", Proc. of Third International Conference on Biometrics, ICB 2009, pp. 279-288, LNCS 5558, Springer, 2009.

3D face *registration*

□ For each triplet (*p*1, *p*2, *p*3) of features points a set of nine invariants is computed:

$$(I_1, I_2, I_3, J_1, J_2, J_3, \widetilde{J}_1, \widetilde{J}_2, \widetilde{J}_3)$$

- **3 of differential order zero**: $I_1 = \|p_2 - p_1\|$
- 6 of differential order one:

$$u = \frac{p_2 - p_1}{\|p_2 - p_1\|} \qquad v_t = \frac{(p_2 - p_1) \wedge (p_3 - p_1)}{\|(p_2 - p_1) \wedge (p_3 - p_1)\|}$$
$$J_k = \frac{(v_t \wedge v) \cdot v_k}{v_t \cdot v_k} \qquad \tilde{J}_k = \frac{u \cdot v_k}{v_t \cdot v_k}$$

Results

Exp.	FR	AR	ТР	FP	FN	TN	Acc.
1	0	0.981	103	0	2	10920	0.9998
2	0	0.924	97	0	8	10920	0.9992
3	0	0.99	104	0	1	10920	0.9999

- **FR:** Failed registration
- **AR:** Authentication rate
- **TP: True positives**
- **FP:** False positives
- **FN:** False negatives
- **TN: True negatives**
- Acc.: Accuracy = (TP + TN)/(P + N)

[•] M. Cadoni, M. Bicego, E. Grosso, "3D face recognition using joint differential invariants", *Proc. Int. Conf. on Biometrics (ICB2009)*, pp. 279-288, (2009)

[•] Marinella Cadoni, Enrico Grosso, Andrea Lagorio, Massimo Tistarelli: "From 3D Faces to Biometric Identities". Proc. of BIOID 2011: 156-167, 2011

Results

Impostor and client distributions for experiment 1 (left), and 3 (right)

- M. Cadoni, M. Bicego, E. Grosso, "3D face recognition using joint differential invariants", *Proc. Int. Conf. on Biometrics (ICB2009)*, pp. 279-288, (2009)
- Marinella Cadoni, Enrico Grosso, Andrea Lagorio, Massimo Tistarelli: "From 3D Faces to Biometric Identities". Proc. of BIOID 2011: 156-167, 2011

Biometrics and Forensic Science

- Latent fingerprint
- Latent palmprint
- Fibers
- Explosive residue
- Paint chips
- DNA
- Tire marks
- Shoe prints
- Bite marks
- Scars Marks Tatoos

- Improve matching accuracy
- Automated matching
- Minimize human bias and sources of human error
- Validate basis for evidence

Forensics: Use of "trace evidence" from the crime scene to identify objects or persons Biometrics: Identification of living persons by their traits in "real-time"

Biometrics and Forensic Science

- Tippet plots
 - Representation of the results proposed in the field of interpretation of forensic DNA analysis

Working environments Vision Lab

Working environments Vision Lab

Videos & Sketches

First Composite Sketch Created in 1987 Later Sketch which became widely circulated

The search for the Unabomber generated one of the most well known composite sketches in recent history. The sketch is based on a single 1987 witness, who saw an individual drop off a package containing a bomb. Although the identity is obscured by a hooded sweatshirt and dark glasses, there are some very obvious differences between the sketch and Ted Kaczynski, the man who was later arrested for the crimes. The man in the sketch seems to have a very narrow nose, yet Kacyknski has a prominent, almost bulbous nose. Kaczynski also has a broad chin and prominent age lines extending from above the flare of his nose down. The basic shape of the face is different in the two sketches, but neither accurately captures Kaczynski's likeness.

Face "Recognition"

Forensic face evaluation

Courtesy of Didier Meuwly NFI

Face "Reconstruction" Vision Lab

https://www.youtube.com/watch?v=TOgGTgYXTys&list=PL1ptAvVz1FL61_KtmPgqKr-RjTMQiuwJ5&feature=player_detailpage

1° Int.l Winter School on Biometrics – 9-1-2017

Face representation in the HVS

Loc. #	Brain region	BA	vol. (ml)	x	у	Z
	FF > NL					4 4 0 0 1
	Frontal Lobe			BRAIN	lotal	1400 ml
1	L Superior Frontal	8	2.6			
2	R Medial Frontal	9	2.4	100 hi	llion n	ourong
3	R Superior Frontal	8	0.5		<u>111011 11</u>	cuiviis
4	L Medial Frontal	10	0.4			/ 1
5	R Precentral	6	0.4	71.5	VIneur	ons/m
6	L Superior Frontal	8	0.4			
7	R Inferior Frontal	47	0.3			
8	R Anterior Cingulate	32	0.3			
9	R Medial Frontal	11	0.3			
10	L Medial Frontal	11	0.3	Maybe we can sketch		
	Temporal Lobe					
11	L Middle Temporal	21	2.7	tho n	otwor	
12	R Middle Temporal	21	1.9	uie n		A SIZE
13	L Middle Temporal	21	0.6			
14	L Middle Temporal	39	0.5	devot	ed to p	rocess
15	R Superior Temporal	22	0.5			
16	R Fusiform	20/37	0.4	4	Fo o o o	
17	R Middle Temporal	37	0.3		alts	•
18	R Insula	_	0.3			
19	R Parahippocampal	35	0.2			
20	R Parahippocampal	36	0.2			
21	L Hippocampus	28	0.2	-19	-12	-20
	Parietal/Occipital Lobe					
22	L Posterior Cingulate	23/30	1.7	$^{-4}$	-57	15
23	R Inferior Parietal	40	0.5	44	-30	22
24	R Posterior Cingulate	31	0.3	2	-57	29
25	L Extrastriate	18	0.3	-20	-89	20
	Subcortical					
26	R Pons	_	0.4	11	-43	-34
27	L Pons	_	0.2	-10	-43	-33
28	R Putamen	_	0.3	22	-7	-6
	NL > FF					
	Parietal Lobe					
29	L Inferior Parietal	40	1.0	-37	-64	40
30	R Superior Parietal	7	0.5	23	-66	30
31	R Inferior Parietal	40	0.3	35	-67	42

Table 1. Famous faces (FF) vs newly learned (NL) faces

C. L. Leveroni et al. "Neural Systems Underlying the **Recognition of Familiar and** Newly Learned Faces", The Journal of Neuroscience, January 15, 2000, 20(2):878-

886

149 Region is defined as center of mass. The first column refers to location numbers demarcated in Figures 2 and 3 (italicized numbers indicate locations not shown in figures). Coordinates represent distance in millimeters from anterior commissure: x right (+)/left(-); y anterior (+)/posterior(-); z superior (+)/inferior(-).

Face representation in the HVS ab

Brain region	BA	vol. (ml)				
FF > NL						
Frontal Lobe						
L Superior Frontal	8	2.6				
R Medial Frontal	9	2.4				
R Superior Frontal	8	0.5				
L Medial Frontal	10	0.4				
R Precentral	6	0.4				
L Superior Frontal	8	0.4				
R Inferior Frontal	47	0.3				
R Anterior Cingulate	32	0.3				
R Medial Frontal	11	0.3				
L Medial Frontal	11	0.3				
Temporal Lobe						
L Middle Temporal	21	2.7				
R Middle Temporal	21	1.9				
L Middle Temporal	21	0.6				
L Middle Temporal	39	0.5				
R Superior Temporal	22	0.5				
R Fusiform	20/37	0.4				
R Middle Temporal	37	0.3				
R Insula	_	0.3				
R Parahippocampal	35	0.2				
R Parahippocampal	36	0.2				
L Hippocampus	28	0.2				
Parietal/Occipital Lobe						
L Posterior Cingulate	23/30	1.7				
R Inferior Parietal	40	0.5				
R Posterior Cingulate	31	0.3				
L Extrastriate	18	0.3				
Subcortical						
R Pons	_	0.4				
L Pons	_	0.2				
R Putamen	_	0.3				
NL > FF						
Parietal Lobe						
L Inferior Parietal	40	1.0				
R Superior Parietal	7	0.5				
R Inferior Parietal	40	0.3				

:enter of mass. The first column refers to location numbers demarcated in Figures 2 and 1 t distance in millimeters from anterior commissure: x right (+)/left(-); y anterior (+)/left(-); y anteri

The BRAIN mass is equal to 1400 ml Composed of some 100 billion neurons 71.5 Mneurons/ml

Summing up the volumes of all active areas, the total volume is 21,2 ml or ... 1.5 Bneurons

... with 12K Synapses/neuron!

= 18 trillion synapses! = 2.3 trillion Bytes?

If we can learn, say 10,000 faces this corresponds to 220 MB/face

(or a 7 sec. video stream of 1Kx1K images)

Face recognition

I. What happened in 20+ years of research in face recognition?

II. What can we learn?

III.What is still to be done?

Summary and Conclusion Lab

- Face recognition is one of the most appealing biometric modality ... and one of the most challenging,
 - sometimes beyond expectations
- Several successful working systems
 - ... still several drawbacks and limitations
- Many directions for research to follow
 Feature extraction and selection
 Subject-based representation and classification
 Illumination and registration
 Complex behaviors
 Learn from external factors and expectations
 Exploit contextual information

THANK YOU FOR YOUR ATTENTION ...AND PATIENCE

1° Int.l Winter School on Biometrics – 9-1-2017 Massimo Tistarelli

APPENDIX 1

DATASETS

The appearance of a face is affected by many factors

- Age

- Identity
- Face pose

- Occlusion

Illumination

- Facial hair

- Facial expression
- The development of algorithms robust to these variations requires databases of sufficient size that include carefully controlled variations of these factors.
- Common databases to comparatively evaluate algorithms.
- Collecting a high quality database is a resourceintensive task.

AR database. The conditions are (1) neutral, (2) smile, (3) anger, (4) scream, (5) left light on, (6) right light on, (7) both lights on, (8) sun glasses, (9) sun glasses/left light (10) sun glasses/right light, (11) scarf, (12) scarf/left light, (13) scarf/right light

CAS-PEAL database. The images were recorded using separate cameras triggered in close succession. The cameras are about 22.5⁰ apart. Subjects were asked to look up, to look straight ahead, and to look down. Shown here are seven of the nine poses currently being distributed.

Illumination variation in the CAS-PEAL database. The images were recorded with constant ambient illumination and manually triggered fluorescent lamps.

Also the CMU PIE database has been designed to include illumination variations

Equinox IR database. The upper row contains visible images and the lower row long-wave infrared images. The categories are (a) vowel (frontal illumination), (b) "smile" (right illumination), (c) "frown" (frontal illumination), (d) "surprise" (left illumination).

fafbduplicate Ifcduplicate IIFrontal image categories used in the FERET evaluations. For images in the fb category, a different facialexpression was requested. The fc images were recorded with a different camera and under different lightingconditions. The duplicate images were recorded in a later session, with 0 and 1031 days (duplicate I) or 540to 1031 days (duplicate II) between recordings.

Additional set of pose images from the FERET database: right and left profile (labeled pr and pl), right and left quarter profile (qr, ql), and right and left half profile (hr, hl).

Notre Dame HumanID database. Example images of the "unstructured" lighting condition recorded in the hallway outside of the laboratory.

University of Texas Video Database.

Example images for the different recording conditions of the database. First row: Facial speech. Second row: Laughter. Third row: Disgust.

Database Description Home Introduction Hardware Specification Protocol

Purchase Details Available Datasets Payment Methods Order Forms

Documentation

The BANCA database is a new large, realistic and challenging multi-modal database intended for training and testing multi-modal verification systems. The BANCA database was captured in four European languages in two modalities (face and voice). For recording, both high and low quality microphones and cameras were used. The subjects were recorded in three different scenarios, controlled, degraded and adverse over 12 different sessions spanning three months. In total 208 people were captured, half men and half women.

Associated with the database is the <u>BANCA protocol</u>. The protocol defines which sets of data to use for training, evaluation and testing. Performing experiments according to the protocol allows institutions to easily compare their results to others. Two face verification competitions on the images from the BANCA database and associated protocol are being held in the year 2004. The first is being held in conjunction with <u>ICBA</u> and the second in conjunction with <u>ICPR 2004</u>.

Through this web-site portions of the BANCA database are being made available to the research community. As more of the data becomes available it will be released here. Presently, the complete set of English images is available.

The BANCA database offers the research community the opportunity to test their multi-modal verification algorithms on a large, realistic and challenging database. It is hoped that this database and protocol will become a standard, like the <u>XM2VTS database</u>, which enables institutions to easily compare the performance of their own algorithms to others.

The BANCA and XM2VTS video databases distributed by the University of Surrey

The BANCA Protocol

An evaluation protocol defines a set of data, how it should be used by a system to perform a set of experiments and how the system performance should be computed.

In verification, two types of protocols exist; closed-set and open-set. In closed-set verification the population of clients is fixed. This means that the system design can be tuned to the clients in the set. Thus both the adopted representation (features) and the verification algorithm applied in the feature space are based on some training data collected for this set of clients. Anyone who is not in the training set is considered an impostor. The <u>XM2VTS protocol</u> is an example of this type of verification problem formulation.

In open-set verification we wish to add new clients to the list without having to redesign the verification system. In particular, we want to use the same feature space and the same design parameters such as thresholds. In such a scenario the feature space and the verification system parameters must be trained using completely independent data from that used for specifying client models. The <u>BANCA protocol</u> is an example of an open-set verification protocol.

Face detection databases

- Face detection algorithms typically have to be trained on face and non-faces images to build up an internal representation of the human face.
- Popular choices are the FERET, MIT, ORL, Harvard, and AR public databases. Nonpublic databases are often also employed.
- These data sets should be representative of real-world data containing faces of various orientations against a complex background.
- In recent years two public data sets emerged as quasistandard evaluation test sets:

The combined MIT/CMU test set for frontal face detection

The CMU test set II for frontal and non-frontal face detection

Face detection databases

Example images from the Upright Test Set portion of the MIT/CMU test set.

Face detection databases

CMU Test Set II. Most of the faces in this test set are in profile view.

1° Int.l Winter School on Biometrics – 9-1-2017

Cohn-Kanade AU-Coded Facial Expression database. Examples of emotion-specified expressions from image sequences.

University of Maryland database. The images show peak frames taken from an image sequence in which the subjects display a set of facial expressions of their choice.

References	Elicitation method	Size	A/V	Emotion description	Labeling	Acces- sibility
Cohn-Kanade	Posed	210 adults, 3 races;	V	Category: 6 basic emotions, and	FACS	Y
(CK) '00 [/1]	Natural: Subjects watched emo-	Available: 480 videos	V	AUS Category: Neutral happy sur-	Self-report	N
(SD) '04 [123]	tion-inducing videos	20 00010	ľ	prise, disgust	Sen-report	1
MMI '05 ³	Posed: static images, videos re-	Posed: 61 adults	V	Category: 6 basic emotions, single	FACS,	Y
[106], [98]	corded simultaneously in frontal	Natural: 11 children		AU and multiple AUs activation	Observers'	
[100], [30]	and profile view;	and 18 adults.			judgment	
	Natural: Children interacted with	Overall: 3 races				
	a comedian. Adults watched emo-	Available: 1250 vid-				
UT Dallas 106	tion-inducing videos	eos, 600 static images	V	Catagony 6 basis amotions and	Obcomions?	v
[95]	tion-inducing videos	229 aduns	ľ	zle, laughter, boredom, disbelief	iudgment	1
BU-3DFE	Posed: 3D range data by using	100 adults	V	Category: 6 basic emotions.	N/A	Y
(BU)'06 [148]	3DMD digitizer.	Mixed races		Four levels of intensity		
FABO face	Posed: two cameras to record	23 adults	V	Category: 6 basic emotions, neu-	N/A	Y
and body	facial expressions and body ges-	Mixed races		tral, uncertainty, anxiety, boredom		
gesture [63]	tures respectively	Available: 210 videos				
Banse-Scherer	Posed	6 actors & 6 actresses	A	Category: hot/cold anger, panic	Listeners	Y
90 [8]		Available: 1544 audio		elation happiness interest hore-	Judgment	
		sampies		dom, shame, pride, disgust, con-		
				tempt.		
Danish Emo-	Posed	2 actors & 2 actresses;	A	Category: neutral, surprise, hap-	Listeners'	Y
tional Speech		2 words, 9 sentences, 2		piness, sadness, anger	judgment	
Database '965		passages; 10 min of				
101	N l	audio data.		C		V
ISL meeting	Natural: meeting corpus	18 meetings; Available:	A	tive [3] [90]	Listeners	Y
[15]		data of 5 participants		uve [5], [50]	Judgment	
[10]		per meeting averagely				
CSC corpus	Natural: subject was motivated to	32 adults, 15.2 h,	A	Deceptive, non-deceptive speech	Self-report	N
[65]	tell the truth and deceive the	3882 speaking turns,				
	interviewers in different tasks	9687 SUs				
Automatic call	Natural: Human-computer dia-	1187 calls	A	Category: Negative, non-negative	listeners'	N
(ACC):05	logue at a commercial call system	/200 utterances			Judgment	
[83]						
Bank and	Natural: human-human dialogue	350 dialogues, 10000	A	Category: fear, anger, stress	Listeners'	N
Stock Service	at call center	speaking turns			judgment	
04 [34]						
AIBO data-	Natural: children and robot inter-	110 dialogues,	A	Category: joyful, emphatic, sur-	Listeners'	N
base '04 [13]	action	29200 words		prised, ironic, helpless, touchy,	judgment	
				angry, bored, motherese, repri-		
Chen-Huang	Posed	100 adults, 9900 visual	AV	Category: 6 basic emotions, and 4	N/A	N
(CH) '00 [21]	rosed	and AV expressions		cognitive states (interest, puzzle,		
()				bore, frustration)		
Adult At-	Natural: subjects were inter-	60 adults	AV	Category: 6 basic emotions, em-	FACS	N
tachment	viewed to describe the childhood	Each interview last 30-		barrassment, contempt, shame,		
Interview	experience	60min		general positive and negative.		
(AAI) ⁰⁴ [111]	Natural subjects are used to	100 adulta	AV	Catagomy 22 AUs	FACS	N
(RID '05 [10]	convince the interviewers they	100 adults	AV	Category: 55 AUS	FACS	IN
(were telling the truth					
SAL '057	Induced: subjects interacted with	24 adults	AV	Dimensional labeling/categorical	FEEL-	Y
	artificial listener with different	10h		labeling	TRACE	
	personalities					
Belfast data-	Natural: clips taken from televi-	125 subjects.	AV	Dimensional labeling/categorical	FEEL-	Y
Dase (BE) '03	sion and realistic interviews with	TV 30 from interview		labeling	TRACE	
[20]	resource reality	ray bo from micrylew				1

Face actions databases

References	Elicitation method	Size	A/V	Emotion description	Labeling	Acces- sibility
Cohn-Kanade (CK) '00 [71]	Posed	210 adults, 3 races; Available: 480 videos	V	Category: 6 basic emotions, and AUs	FACS	Y
Sebe et al. (SD) '04 [123]	Natural: Subjects watched emo- tion-inducing videos	28 adults	V	Category: Neutral, happy, sur- prise, disgust	Self-report	N
MMI '05 ³ [106], [98]	Posed: static images, videos re- corded simultaneously in frontal and profile view; Natural: Children interacted with a comedian. Adults watched emo- tion-inducing videos	Posed: 61 adults Natural: 11 children and 18 adults. Overall: 3 races Available: 1250 vid- eos, 600 static images	V	Category: 6 basic emotions, single AU and multiple AUs activation	FACS, Observers' judgment	Y
UT Dallas '06 [95]	Natural: Subjects watched emo- tion-inducing videos	229 adults	V	Category: 6 basic emotions, puz- zle, laughter, boredom, disbelief	Observers' judgment	Y
BU-3DFE (BU)'06 [148]	Posed: 3D range data by using 3DMD digitizer.	100 adults Mixed races	V	Category: 6 basic emotions. Four levels of intensity	N/A	Y
FABO face and body gesture [63]	Posed: two cameras to record facial expressions and body ges- tures respectively	23 adults Mixed races Available: 210 videos	V	Category: 6 basic emotions, neu- tral, uncertainty, anxiety, boredom	N/A	Y
Chen-Huang (CH) '00 [21]	Posed	100 adults, 9900 visual and AV expressions	AV	Category: 6 basic emotions, and 4 cognitive states (interest, puzzle, bore, frustration)	N/A	N
Adult At- tachment Interview (AAI) ⁶ 04[111]	Natural: subjects were inter- viewed to describe the childhood experience	60 adults Each interview last 30- 60min	AV	Category: 6 basic emotions, em- barrassment, contempt, shame, general positive and negative.	FACS	N
RU-FACS (RU) '05 [10]	Natural: subjects were tried to convince the interviewers they were telling the truth	100 adults	AV	Category: 33 AUs	FACS	N
SAL '05 ⁷	Induced: subjects interacted with artificial listener with different personalities	24 adults 10h	AV	Dimensional labeling/categorical labeling	FEEL- TRACE	Y
Belfast data- base (BE) '03 [38]	Natural: clips taken from televi- sion and realistic interviews with research team	125 subjects. 209 sequences from TV, 30 from interview	AV	Dimensional labeling/categorical labeling	FEEL- TRACE	Y

Face aging databases

FG-NET dataset: images of about 100 individuals with ages varying from 5 to 69 years of age

MORPH dataset: images of 13,000 individuals collected over four years

Face aging databases

IIIT-Delhi face aging database:2,618 images from 49 female and 53 male Indian celebrities

• Features:

- Full 3D / 2.5D
- Single view / Multi-view
- Illumination changes
- Expressions changes
- Only shape or shape + texture
- Pre-processing
- Quality of data (sensors)

- UND database (University of Notre Dame)
 - 953 facial scans (277 subjects)
 - frontal scans (neutral expression)
 - 2.5D shape + texture

- FRGC database (NIST)
 - 4007 scans (465 subjects)
 - nearly frontal
 - different expressions
 - 2.5D shape + texture

- USF database (University of South Florida)
 - 100 scans
 - full-view models
 - neutral expression

- 3D_RMA database (Royal Military Academy of Belgium)
 - 120 subjects (2 sessions, 3 scans each)
 - different (but limited) orientations
 - 3D points

- GavabDB database (University Rey Juan Carlos – Madrid)
 - different orientations and expressions
 - 61 subjects (9 scans)
 - Shape only

The **Bosphorus database** contains scans of 105 individuals: 61 male; 44 female

About 50 scans/subject. Each scan either presents a diffent facial expression (anger, happiness, disgust), or a head rotation along different axes.

A.Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur, L. Akarun, Bosphorus Database for 3D Face Analysis, The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008) Roskilde University, Denmark, May 2008.

76500 frames of 17 persons, recorded using Kinect for both realaccess and spoofing attacks. https://www.idiap.ch/dataset/3dmad

After •FERET •FRVT •FRGC

Face recognition challenges *ision Lab*

Labeled Faces in the Wild

Menu

- LFW Home
 - Mailing
 Explore
 - Download
 - Train/Test
 - Results
 - Information
 - Errata
 - Reference
 - Contact
 Support
 - Support
 Changes
- UMass Vision

LFW Home

New: Professor Learned-Miller will be running a workshop titled Faces in Real-Life Images at the European Conference on Computer Vision with co-organizers Andras Ferencz and Frederic Jurie.

last updated: 2007/11/21 1:30 PM EST change log

Mailing list:

If you wish to receive announcements regarding any changes made to the LFW database, please send email to majordomo@cs.umass.edu with the message body: "subscribe lfw" on a single line.

Explore the database:

- Alphabetically by first name:
 - $$\begin{split} & [A][Alf][Ang][B][Bin][C][Che][Col][D][Daw][Don][E][Eri][F][G][Goe][H] [I][J] \\ & [Jav][Jes][Joh][Jos][K][Kim][L][Lil][M][Mark][Mel][Mik][N][O][P] [Per][Q][R][Ric) \\ & [Rog][S][Sha][Ste][T][Tim][U][V][W][X][Y][Z) \end{split}$$
- Alphabetically by first name, only people with more than one image: [A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Y][Z]
 Alphabetically by last name:
- [A][B][C][D][E][F][G][H][I][J][X][L][M][N][O][P][Q][R][S][T][U][V][W][X][Y][Z] By number of images per person:

Face recognition challenges

http://vis-www.cs.umass.edu/lfw/results.html

Bion	icb 2009	Ges Vision Lab
Homo	The 3rd IAPR/IEEE International Conference on Biometrics	
Call for Papers	ICB2009 Competitions	IAPR®
Committee		
Competitions	Competitions Chairs	•
Keynote Speakers	Bernadette Dorizzi Biosecure Foundation, France Jonathon Phillips NIST, USA	Biometrics Council
Paper Submission		
Demo Submission	Face recognition from stills and video	
Awards	This competition is performed under the supervision of Norman Poh from the University of	
Call for Tutorials	Suney	
Conference Venue	Fingerprint	
Sponsors	This competition is performed under the supervision of Raffaele Cappelli from the University of Bologna	
Travel Information		
Poster	Multimodal Biometric Feature Selection Challenge	
	This competition is performed under the supervision of Krzysztof Kryszczuk from the Ecole Politechnique Federale de Lausanne	
	Multiple Biometrics Grand Challenge	
	The Multiple Biometrics Grand Challenge is organized and supported by the <u>National Institute</u> of <u>Standards and Technology</u> (NIST). The MBGC is sponsored by multiple U.S. Government Agencies. Dr Jonathon Phillips is the responsible for the NIST MBGC evaluation. Within the framework of ICB program, submissions are encouraged to the <u>MBGC evaluation</u> . The results of the MBGC, together with the other competitions, will be presented at a special conference session.	
	Signature verification	
1° Int.l Winter School on Biometrics	This competition is performed under the supervision of Sonia Garcia-Salicetti from the institute TELECOM SudParis 9-1-2017 Massimo Tistarelli	

Biometrics challenges

Home

Competitions

0

Call for Papers Paper Submission Camera-Ready Instructions Presentation Instructions Program / Schedule Keynote Speakers Organizing Committee **Program Committee** Competitions Doctoral Consortium Tutorials Registration Visa Information Accommodation **Related Events Conference Venue** Social Program

The availability of common benchmark databases, together with evaluation protocols has been partly responsible for the significant gains made in biometrics in recent years. We believe that such evaluations should be continued. Databases and, more importantly, unbiased evaluation mechanisms should be spread across the scientific community, making it possible for scientists to evaluate their progress.

The 6th IAPR International Conference on Biometrics (ICB 2013) is supporting the organization of the following 8 evaluations:

- » The 2nd competition on counter measures to 2D facial spoofing attacks
- » Competition on face recognition in mobile environment using the MOBIO database
- » Competition on speaker recognition in mobile environment using the MOBIO database
- » The First ICB Competition on Face Recognition (ICFR2013)
- » The First ICB Competition on Iris Recognition (ICIR2013)
- » Competition on Secure Template Fingerprint Verification (STFV@ICB-2013)
- » Competition on Fingerprint Indexing (FIDX@ICB-2013)
- » Competition on Fingerprint Liveness Detection

Competitions will be running from January 7, 2013 to March 22, 2013, but database and instructions will be available in late 2012. Each competition will have the opportunity to submit for review a competition summary paper for possible publication into the official proceedings.

Together with these 8 evaluations, an on-site spoofing challenge intended to evaluate operational vulnerabilities of various biometric systems will be conducted: » TABULA RASA Spoofing Challenge. [NEW!]

1° Int.l Winter School on Biometrics – 9-1-2017

Multimodal databases

1° Int.l Winter School on Biometrics – 9-1-2017

Quality in Face and Iris Research Ensemble (Q-FIRE)

Release 1

- > 4TB of visible face and NIR face/iris video for 90 subjects
- > Multiple distance up to 8.3 meters with controlled quality degradation
- Release 2
 - > An additional 83 subjects (currently sequestered)
- Available by Request to CITeR *http://www.clarkson.edu/citer/research/collections*

Out-of Focus Blur

S. Schuckers, Clarkson University, sschucke@clarkson.edu

Quality in Face and Iris Research Ensemble (Q-FIRE)

Release 1

- > 4TB of visible face and NIR face/iris video for 90 subjects
- > Multiple distance up to 8.3 meters with controlled quality degradation
- Release 2
 - > An additional 83 subjects (currently sequestered)
- Available by Request to CITeR *http://www.clarkson.edu/citer/research/collections*

Motion Blur

Angle

Multiple Faces

S. Schuckers, Clarkson University, sschucke@clarkson.edu

1° Int.l Winter School on Biometrics – 9-1-2017

Multimodal databases

1° Int.l Winter School on Biometrics – 9-1-2017

VIDEO DATASETS

Natural Viewing Environmention Lab Video

Courtesy of Jonathon Phillips, NIST

1° Int.l Winter School on Biometrics – 9-1-2017

Multiple Biometric Grand Challenge

- Walking footage: Subject walks towards camera.
- Activity/Conversation footage: Non-frontal footage of subject performing an A/C.

U of Texas at Dallas & U of Notre Dame

Examples PaSC—Stills

Problem Defined

- 9,376 stills; 293 subjects
- 2,802 videos; 265 subjects
- Video-to-video
- Still-to-video
- Still-to-still
- http://face.nist.gov
- Release 11 June 2013
- Design: Colorado State (CSU) and NIST
- Data collection: Notre Dame, NIST, and CSU

FOCUS UT-Dallas Dataset

FOCS videos: 510 walking (frontal face) and 506 activity (profile face) videos

J. O'Toole, P. J. Phillips, S. Weimer, D. A. Roark, J. Ayyad, R. Barwick, and J.Dunlop, "Recognizing people fromdynamicandstatic faces and bodies:Dissectingidentity with a fusion approach," *Vision Research, vol.51, no.1, pp.74-83, 2011.* National Institute of Standards and Technology, "Face and Ocular Challenge Series (FOCS)".

🛃 🔰 🖂 ...)

Face in Video Evaluation Vision Lab

NIST Home > ITL > Information Access Division > Image Group > Face in Video Evaluation (FIVE)

2014-07-16 Program Announcement

Scope: The Face in Video Evaluation (FIVE) is being conducted to assess the capability of face recognition algorithms to correctly identify or ignore persons appearing in video sequences – i.e. the open-set identification problem. Both comparative and absolute accuracy measures are of interest, given the goals to determine which algorithms are most effective and whether any are viable for the following primary operational use-cases: 1. High volume screening of persons in the crowded spaces (e.g. an airport); 2. Low volume forensic examination of footage from a crime scene (e.g. a convenience store); 3. Persons in business meetings (e.g. for video-conferencing); and 4. Persons appearing in television footage. These applications differ in their tolerance of false positives, whether a human examiner will review outputs, the prior probabilities of mate vs. non-mate presence, and the cost of recognition errors.

Out of scope: Gait, iris and voice recognition; Recognition across multiple views (e.g. via stereoscopic techniques); Tracking across sequential cameras (re-identification); anomaly detection; detection of evasion.

Relationship to FRVT: The Face Recognition Vendor Tests of 2000, 2002, 2006, 2010, and 2013 gave quantitative statements of accuracy and speed of mostly still-image face recognition algorithms. The last test included a video track (FRVT class V) – results from that work are being provided to participants. Our new FIVE program supersedes the FRVT work but proceeds in an almost identical manner.

Test progression: Software submitted to NIST will be evaluated on sequestered sets to quantify accuracy and speed. Algorithms must be implemented behind the formal C++ API to be published by NIST. This will be very similar to the API used in the prior FRVT evaluation. The test will be conducted over at least three iterative cooperative test-report-test phases engaging algorithm developers. This process will culminate in the publication of reports on this website and in the open literature.

Powered by Google Translate

Other Links

FRVT Homepage face.nist.gov Image Group Publications Archive Homepage Fingerprint Homepage Image Group Homepage Biometrics Evaluations Homepage ITL Biometrics Overview iris.nist.gov

http://www.nist.gov/itl/iad/ig/five.cfm

...and Beyond

- Female makeup Datasets
- Plastic Surgery Face Database
- YouTube Faces Database
- ChokePoint
- SCface Surveillance Cameras Face Database
- Long Distance Heterogeneous Face Database (LDHF-DB)
- VADANA: Vims Appearance Dataset for facial ANAlysis
- MOBIO Mobile Biometry Face and Speech Database

APPENDIX 2

KINSHIP

Lorusso L., Brelstaff G., Brodo L., Lagorio A., Grosso E., "Visual judgments of kinship: an alternative perspective", Perception 40(11):1282-9, 2011

Faces and Kinship

Faces and Kinship

1 Kings 3:16-27

Raphael's oil painting *The Judgement of Solomon* – 1518

1° Int.l Winter School on Biometrics – 9-1-2017

Face-based Kinship analysister Lab the literature

Studies of kin recognition investigated the relationship between <u>KINSHIP</u> and <u>SIMILARITY</u>:

- Maloney & Dal Martello , 2006, "Kin recognition and the perceived facial similarity of children" *Journal of Vision* 6, pp. 1047-1056.
- Dal Martello & Maloney, 2006, "Where are kin recognition signals in the human face?", *Journal of Vision* 6, pp. 1356-1366.
- DeBruine et al., 2009, "Kin recognition signals in adult faces" Vision Research 49, pp. 38-43.
- Alvergne et al., 2010, "Are parents' perceptions of offspring facial resemblance consistent with actual resemblance? Effects on parental investment" *Evolution and Human Behaviour* 31, pp.7-15.

Face-based Kinship analysis: Lab the literature

Maloney and Dal Martello (2006) have introduced a model for kin recognition -*Thresholded Similarity Observer (TSO) model* - in which kin recognition is reduced to a similarity measure of similarity cues.

The flow of visual information (visual pathway) in similarity and kinship judgments (Maloney and Dal Martello 2006).

The TSO Assumptions

- 1. Genetically-related people manifest in their faces "Kin signals".
- 2. "Kin signals" are represented by similarity features.
- 3. Kin recognition is a <u>signal detection</u> task.
- 4. Perception of similarity and kin recognition are based on a <u>common measure of similarity of features</u>.
- 5. Kinship and similarity judgments are based on a <u>common</u> <u>flow of visual information</u> from the stimulus to the observer.
- 6. The model of perceived similarity between faces is a <u>"generalized" (vs an "individualized") model</u>.

The TSO Assumptions

- From such assumptions it follows that judgments of <u>similarity and kinship do not</u> require any kind of cognitive modulation, but a visual flow of similarity information is sufficient for the observer to make the judgments.
- In other words, bottom-up mechanisms are sufficient to make kinship judgments.

Not considered in TSO

- Top-down mechanisms: task-driven and context-dependent strategies. Different tasks and visual contexts may induce the observer to follow different observational strategies.
- Relations between concepts, may enhance or undermine the belief that two persons are *similar* or *genetically related* (i.e. *priming* effects of a judgment over another).

Not considered in TSO

Our past study on this topic (Lorusso et al., *Perception* 2011) investigates the possibility that a judgment of kinship may not be just a judgment of similarity and that different strategies may be involved in those judgments modulated by the <u>task</u>, <u>relations</u> between concepts, and different <u>stimulus contexts</u>.

Lorusso L., Brelstaff G., Brodo L., Lagorio A., Grosso E., "Visual judgments of kinship: an alternative perspective", *Perception* 40(11):1282-9, 2011

APPENDIX 2

INDUSTRIAL SYSTEMS

Commercial FR systemsvision Lab

- $\blacksquare \quad 3M/Cogent (2D + 3D rectification)$
- A4Vision, Inc. *(3D scanner)*
- AcSys Biometrics Corp.
- Animetrics Inc. (3D shape)
- Ayonix Inc. (2D ???)
- $\square \quad \text{Betaface } (2D + hair \& variable features)$
- □ Cognitec Systems GmbH (LFA)
- Crossmatch Tech. (2D face capture)
- □ Cybula Ltd. (3D shape/2D texture)
- Face.com (2D mugshots)
- □ DreamMirh Co., Ltd. (2D ???)
- Geometrix, Inc. *(3D shape)*
- □ Iconquest (2D Fractal-based ???)
- □ L-1/Identix Inc. / Safran-Morpho (2D Templates +LFA)
- □ KeeSquare Srl (2D landmark-based)
- □ Luxand (2D facial landmarks)
- NeuroTechnology (2D ???)
- Omniperception (2D + Quality measurements)
- PittPatt/Google (*Hi-Tech algorithms* ???)
- SensibleVision (2D Template matching ???)

1° Int.l Winter School on Biometrics – 9-1-2017

Massimo Tistarelli

From: www.face-rec.org

MORPHOWAY V : WORKFLOW

This document and the information therein are the property of Morphe. They must not be copied or communicated to a mird party without the processivities authorization of Morphe.

1° Int.I Winter School on Biometrics – 9-1-2017

The *standard* face

Width(pixels)	Distance from Eye to Eye (Inclusive)
240(min)	60
480	120
720	180

Templates and standardsision Lab

Eurosmart white paper 2003

It is generally anticipated that any single biometric template would fit within 10 Kbytes of data memory in the storage device (That includes the template itself, the signature or encryption overhead and any additional data required to fulfill the data file structure).

Figure 2: Biometric Template Size

Source: Frost & Sullivan

Biometric	Bytes Required
Finger-scan	300-1200
Finger geometry	14
Hand geometry	9
Iris recognition	512
Voice verification	1500
Face recognition	500-1000
Signature verification	500-1000
Retina recognition	96