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Biometric Recognition

e Verification mode
— Claimed identity
— One-to-one match

e |dentification mode

— |ldentity to be determined
e Closed-set: Output the identity
e Open-set: Possibly output a nil

— Template databases involved

b Most Wanfied
L NeImorists

— One-to-many match




Biometric Identification System

AK Jain et al./ Pattern Recognition Letters 79 (2016) 80-105
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Fig. 1. Operation of a typical biometric system. The two fundamental problems in biometric recognition involve finding an invariant feature representation and designing a

robust matcher for a given representation scheme.

Courtesy: A. K. Jain, K. Nandakumar and A. Ross, “50 years of Biometric Research:
Accomplishments, Challenges, and Opportunities”, Pattern Recognition Letters,
Vol. 79, Pages 80-105, August 2016.
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Fundamental Problems

* Finding the best feature representation
scheme for a given biometric trait

— Retain all the discriminative information
— Remain invariant to intra-subject variation

* Designing a robust matcher for a given
representation scheme

— Suitable similarity measure to minimize the
recognition errors



Problems with Large Databases

ldentification by 1:N exhaustive matching does
not scale well with size

Increasing false positive identification rates
with the size of database

No established way of organizing high
dimensional data

ldentification with biometric samples taken
from unconstrained sensing environment



Face ldentification Example

A.K Jain et al./Pattern Recognition Letters 79 (2016) 80-105
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Results of State-of-the-Art

116,342 12,446 87,501

1,869 1 12,622

Fig. 19. A simulated example to illustrate how face recognition systems could have been used to identify the suspects in the April 2013 Boston marathon bombings [99]. (a)
The five face images of the suspects obtained from surveillance videos and released by the FBL (b) A gallery database constructed by adding three portrait images each of
the two suspects (the Tsarnaev brothers) to a background database of 1 million mugshots provided by the Pinellas County Sheriff's Office (PCSO). Note that the six images
added to the gallery included mugshots as well as face images of the brothers obtained from the social media. (c) The top retrieval ranks (after demographic filtering) output
by a COTS face matcher when the images in (a) are used as probes to search against the gallery in (b). It was observed that one of the probe images of the younger brother
(Dzhokhar Tsarnaev) matched correctly (at rank 1) with his high school graduation photograph included in the gallery.



More Applications of Identification
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Biometric Indexing

* To avoid an exhaustive 1:N matching by
reducing the search space

e To overcome limitations of classification

— The class of a biometric identity may be
intrinsically ambiguous

— The distribution of identities across classes may be
uneven, resulting in inefficient classification

e To facilitate a rapid retrieval in the indexing
feature space



Indexing Features

e Feature points and local structures

— MCC [Cappelli et al. 2011], local texture features [Choi
et al. 2012], SIFT [Mehrotra et al. 2010], learned local
face descriptors [Lei et al. 2014][Lu et al. 2015]

* Global/Holistic features

— ridge orientation model [Wang et al. 2011], deep
learning features [He et al. 2015][Kan et al. 2016]
[Wang et al. 2016]

e Match scores

— match score vector [Paliwal et al. 2010], reference
scores [Gyaourova et al. 2012]
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Retrieval Strategies

input fingerprint

input fingerprint

Figure 5.15. Retrieval strategies for continuous classification. On the left: the fingerprints whose
corresponding vectors are inside the hypersphere are considered (fixed radius); on the right:
the fingerprints are incrementally retrieved according to the distance of the corresponding vec-

tors from the input point (/incremental search).

Courtesy: D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition, 2nd ed. Springer-Verlag, 2009, Ch. 5, pp. 264.
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Organizing into Data Structures

* Tree-like structures [Rathgeb et al. 2015]
[Procena 2013][Gyaourova et al. 2012]
— Partitioning the feature space
— To identify the pivots

e Hash tables [Wang et al. 2015] [Yue et al.
2013][Hao et al.2008]

— Collision-based search by hashing similar items to the
same “buckets”, e.g., locality sensitive hashing (LSH)

— To define and covert the similarity measure into
collision probabilities

14



Partitioning-Based Search

Regression
model

15



Collision-Based Search

Database ™

Query E Hash table

Retrieved results
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Performance Objectives

 Accuracy
. #qgueries found with correct identities
— Hit rate = 1 f .
# Totoal queries
e Efficiency

— Reducing the number of comparisons

— Reducing the cost of a single comparison
# gallery entries to be retrieved

— Penetration rate = :
# Total gallery entries

* Privacy
= Revocable for segregation and privacy
= Safe against forgery and spoofing attacks



Key Issues

* Intra-subject variations
— No identical match in the biometric database
— Low-quality biometric samples for query
— Retrieval of the most likely candidate(s)
 No natural order of biometric templates
— Direct sorting of biometric data is not possible
e Indexing multi-biometric traits

— To increase population coverage
— To attained the desired level of performance



Performance Considerations

e Low-quality samples Accuracy

e Large-scale databases Efficiency

e Biometric data Privacy

19
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Fingerprint Recognition Accuracy

NIST evaluations and the various editions of
FVC tests show that [Jain et al. 2016]

— Plain-to-plain matching is of 99.4% accuracy
— Latent-to-plain matching is of 64.4% accuracy

I

A T
Pl . A

Latent fingerprint Rolled/Plain fingerprint database
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Ridge Orientation Modelling

e Ridge orientation estimation
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Gray-scale image Coarse estimates Reconstructed ROF

e Use mathematical functions to describe the ridge
orientation field (ROF)
— Enhancing fingerprint image quality with refined ROF

— Typically require prior knowledge of singular points for
which the detection process is often error-prone
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Fingerprint Orientation Model based on 2D
Fourier Expansions (FOMFE)

. Models the transformed ROF as a phase portrait of
an unknown dynamic system x = f(x)

. Singular points are modeled as critical points of the
dynamic system

. A functional reprf(x,) = 0n enables more uses
— Singular point detection and feature analysis
- Model-based fingerprint indexing

Y. Wang, J. Hu and D. Phillips, “A fingerprint orientation model based on 2D Fourier
expansion (FOMFE) and its application to singular-point detection and fingerprint
indexing”, IEEE Trans. Pattern Analysis and Machine Intelligence, Special Issue on
Biometrics: Progress and Directions, vol. 29, no. 4, pp. 573-585, April 2007.




Model-Based Fingerprint Indexing

Step 1. Training the Indexing Feature Space

X, = |3 O |m X =[x1, ) CYR ,XN] » P, = PCAX, 1)1
\ J

k4 Yi = (I)ér x X;
Original feature space |
Y= [yIsY2 y seey YN:I
9 > P,
Step 2. Candidate Retrieval Indexing feature space

Example, Y: /=3

Query projection
c =dl v x
A\ (I)l X Xq

s : T

| Visiting list: 1, 2, 3, ...
P (until a match is found)
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Penetration rate

Performance Evaluation

Feature vector length: 162 (FOMFE) vs. 1,920 (ROF)

CPU time: 0.78 sec (FOMFE) vs. 1103.22 sec (ROF) to generate

the indexing feature space on 2, 700 gallery prints

Error rate

5, 400 ink-rolled prints from
NIST Special DB 14

Penetration rate

025
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_FOMFE |
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Error rate

800 optical-scanned prints
from FVC2002 DB1a

1
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Partial fingerprint Identification

 Matching with partial fingerprint is a critical challenge

e |dentifying them from large databases is even more
difficult

e Manual inspection is still indispensible

26



Partial Fingerprint Reconstruction

e We proposed to reconstruct the topological
structure of ridge patterns to facilitate indexing

Y. Wang and J. Hu, Global ridge orientation modeling for partial fingerprint
identification, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
33, no.l, pp.72-87, Jan. 2011.

27



Minimum maximum penetration rate

Indexing Performance
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(a) Indexing without global estimation (b) Indexing with global estimation

¢ Generate partial fingerprints by segmenting the core and
delta regions of the gallery fingerprints with different size.

¢ 26x26=676 query sets, each has 100 partial fingerprint.
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Motivations

e Vast data collections & frequent access demands
— Border control, e.g., US-VISIT
— National ID programs, e.g., UIDAI

e Computation intensive tasks, e.g., identity de-
duplication
— Essential in large-scale biometric systems
— Typically involves cross-matching with O(N?)
— Bottleneck with big data volume

e At the core is the search on biometric features
— Increasing the speed of every comparison
— Reducing the total number of comparisons



Binary Feature Representations

 Biometric indexing methods using real-valued
feature vectors focus on
— Dimensionality reduction of biometric features
— Similarity preserving transforms

e Binary representations of biometric features
— Fast operations: 1 million comparisons per second

— Typically long bit-length, e.g., 2048-bit iris code, 384-
bit MCC per minutiae point

— Typically an exhaustive search by sequential matching

— Not all biometric features can be easily encoded into
fixed-length binary string representations



NN Search in Hamming Space

 Long binary representations are problematic
for large-scale searches

— the Hamming-ball volume becoming prohibitive to
explore

— risk that many queries may not find any neighbor
within the restricted volume

— leading to a low recall because the collision
probability decreases exponentially with an
increasing code length



Hashing Biometric Features

e Various hash codes were developed for the
similarity search of natural images, BUT

— searching biometric identities requires higher
retrieval accuracy

— the indexing feature of a probe is not likely to be
identical to that of the corresponding identity in
the database

— for fingerprints in particular, feature points are
unordered and their number is unfixed



Learning Compact Binary Codes for
Hash-Based Fingerprint Indexing

e How to optimally embed the input data into
Hamming space heavily depends on the data
characteristic

e Systematically learning compact binary codes in
an integrated framework with nearest neighbor
search procedures

Y. Wang, L. Wang, Y.-M. Cheung and P. C. Yuen, “Learning compact binary
codes for hash-based fingerprint indexing”, IEEE Trans. Information
Forensics and Security, vol. 10, no. 8, pp. 1603-1616, Aug. 2015.




Minutiae Cylinder Code (MCC)

e A translation and rotation invariant local feature

descriptor derived from the standard minutiae
template

 Encoding the local neighborhood information of each
minutiae point into a 3D data structure

e Binary implementation by thresholding the cell values
into a 384-bit vector

35



Data Characteristics of MICC

e About 95% of MCC bits are zeros on average
e The entropy per MCC bit is approximately 0.3
 There are bit dependencies in MCC

— The cell values are obtained from accumulating
contributions of minutiae in the neighborhood

— Side lopes of the distance function extend the
minutiae contributions to adjacent cells, thus
correlated cell values



Modelling Bit Correlations

 Markov random field to capture bit correlations

Coding of a 2" order MRF system. The “Y” sites are mutually
independent in the presence of the “” sites

 Hashing the neighborhood information into a single
bit by quantizing the expected value at each “Y” site

E(Yi) = g(xp;10)

37



Learning Hash Bits from GLM

 Without knowing 0, a generalized linear model
(GLM) links the random variables to the explanatory
terms with a small set of parameters

nthorder

MRF system

(di, F'fl)

A4

Training Set MCC pool
i O i
588
Test print MeC
—u 00

nthorder
MRF system

A4

N/

Encoder

Yi

4

Hash
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Hash-Based Fingerprint Indexing

Fingerprint templates are indexed by an unordered set

of minutiae represented in binary has
Each minutiae creates a Hamming-bal

Nominate the most likely match by co
from all the Hamming-ball search of a

h codes

search
lecting evidence
query




Locality Sensitive Hashing

Hash similar points into the same "buckets” by

random projections

Colliding segments in at least some of the buckets

RZ

LSH problems:

e Long hashes and
more index tables

* Not efficient for
non-uniformly
distributed points

%
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Geometric Hashing

e Recognition based on maximum collisions of similar
local invariants and their geometric relations
e Previous fingerprint geometric hashing algorithms

— Mostly based on constructing minutiae triangulations:
sensitive to noise and distortion

— Same local geometric invariants for both index creation
and feature comparisons

— Accuracy depending on more geometric invariants

— Real-valued and high-dimensional feature descriptors
— Only local information used

— Problematic if two fingerprints have small overlaps



Geo-MCC

e MCC as the local invariants at each basis point
e Access keys by basis-defined triplets (x,y,6)

— Multiple views of the local invariants from
different perspectives (i.e., access points)

— Collectively, the access keys of a probe describe
the global geometric configuration

Y. Wang, L. Wang, Y.-M. Cheung and P. C. Yuen, “Fingerprint geometric
hashing based on binary minutiae cylinder codes”, in Proc. IEEE Intl. Conf.
Pattern Recognition (ICPR’14), Stockholm, Sweden, Aug. 20, pp. 690-695.




Geo-LSH

e Limitations of Geo-MCC:

— An uneven distribution of database entries over a few
hash bins

— The point matching is based on MCC comparisons

e Combine the merits of LSH and geometric
hashing for fingerprint indexing
— LSH helps to distribute binary codes more evenly to
buckets by random bit sampling

— Geometric hashing incorporates relative spatial
configuration of the local invariants
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Indexing Experiments

e FVC2002 DB1a and NIST DB14
— FVC 8x100 live-scanned fingerprints
— NIST 2x2700 ink-rolled fingerprints
e Performance measures
— Hit rate (accuracy) vs. Penetration rate (efficiency)

e Binary MCC features

— MCC SDK v1.3 available from
http://biolab.csr.unibo.it

— Minutiae extracted by VeriFinger v6.6




Hamming-Ball Search Accuracy
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Indexing Performance

Hit Rate (%)
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Scalability and Time Efficiency
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Motivations

* NN methods reduce the matching complexity
by using data structures

 Two vulnerabilities that can lead to privacy
infringements:
— Statistical information, e.g., clustering patterns and

feature similarity information, may be derived by
analyzing search indexes in the data structures

— Similarity distribution of the genuine users may
enable adversarial learning of biometric features
and lead to severe security attacks




Adversarial Biometric Recognition

 The genuine biometric similarity information
may be exploited to compromise system
operations[Biggio et al. 2015]
— Hill-climbing attacks: Effective spoofing with a

fabricated reference can be constructed from
similarity scores

— Presentation attacks: Multi-biometric systems may
be evaded by spoofing a single biometric trait, if

P(Se) = p(Sg)




Challenges

e Efficiency and privacy also become increasingly
important considerations for the design of
large-scale biometric identification systems

e Binary feature representations can provide fast
matching in Hamming space but

— High-dimensional binary feature representations
with large search radius in Hamming space

— The retrieval of biometric identities must be rank-
ordered due to large-intra class variations



Hash-Based Similarity Search

Database Iltems
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Privacy-Preserving Similarity Search

« Perform NN searches without knowing explicitly
the distance values [Rane et al. 2013]

— Distance computation + Minimum distance finding

_______________________________________________________________
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Courtesy: S. Rane and P. Boufounos, “Privacy-preserving nearest neighbor methods:

Comparing signals without revealing them,” IEEE Signal Process. Mag., vol.
30, no. 2, pp. 18—-28, Mar. 2013.



Template Protection

e Mostly designed for one-to-one matching
without disclosing the feature contents

* Bio-cryptosystems

— Validity checks (yes/no)

— Not suitable for similarity comparisons
e Feature transformations

— Apply non-invertible functions
— Distance-preserving



Cryptography-Based Approach

* Processing in the encrypted domain without
decrypting the data, e.g.,

— Homomorphic encryption, garbled circuits,
multi-party computation protocols, etc.

— Excessive computation and communication
overheads

— Inherent difficulties in scaling up and meeting
the efficiency requirements



Information-Theoretic Approach

e Secure binary embedding [Rane et al. 2013]
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Linear Mapping

* Preserves the similarity information
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* |ntroducing variable intervals (anonymization)

Distance Obfuscation

 The projected value c is selected uniformly

from a mapping interval at d
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Anonymized Non-Linear Mapping
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Revisit Hamming-Ball Search

e Consider a query string g and a data set

() = {p17p27°“7p]\7}
Find all p € {2 satisfy

H(p,q) <r

which constitute a NN subset of query g with
radius r, denoted by Bq({2,7)



Anonymized Distance Filter

 Explore the Hamming ball volume without
explicitly evaluate the distance values

e Randomized similarity test algorithms in
Hamming space

 Anonymized distance filter by designing a
thresholding function

Y. Wang, J. Wan, Y.-M. Cheung and P. C. Yuen, “Anonymized Distance Filter
In Hamming Space ”, Chinese Conference on Biometric Recognition,
Chengdu, China, Oct. 2016.




Randomized Similarity Test

* Piecewise matching binary sub-hash codes

Two binary strings p and g of D bits have
H(p,q) < r.Divide p and g into L > r non-
overlapping substring segments in the same way.

There must be m < r unmatched substring pairs
between p and q.

A randomized protocol for testing if two
binary strings are equal



The Drawer Principle

e Suppose H(p,q) < r.Dividepandqginto > r
non-overlapping substring segments.

e There must be m < runmatched substring
pairs between p and q.

e Forevery p € () find the value of m by testing L
substring pairs with g
— Ifm > r,pisnotin Bq(ij,o)
— If m < r, test p on a finer scale



A Variable Thresholding Function

* To avoid iterative substring division over p
. Sincem<d<ms

//// =27

. Introduce me for some € € [0, 1[Then,
r
1+4+e€(s—1)
can be used to make decisions by varying e

m < Me =




Anonymized Distance Filter

* Project ¢ = H(p,q) into an interval [m, ms]
defined by m and s

— Analogous to anonymization that attempts to
classify data into fixed or variable intervals

e Filtering decision made on m which can be
regarded as an obfuscated measure of d

- <m<d, it 0<d< L

<m < L, otherwise



Obfuscated Distance Measure
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Filtering rate (%)

Filtering rates by varying ¢

Hamming-Ball Simulation

2071
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16

Substring length s

Top 10 ranked ID example

Ground Truth

ADF Top Ranked ID (e)

NN ID (d) s=010) s=8 s=8
Ae=.1 Ae=.1 Ae=.05
7 (1) 7 (1) 7 (1) 7 (1)
e 10 (2) 10 (1) 10 (1) 10 (1)
6 (15) 2 (0.2) 2 (0.6) 2 (0.6)
2 (16) 6 (0.2) 6 (0.5) 6 (0.55)
1 (19) 1 (0.1) 1(0.4) 1 (0.45)
5 (20) 5 (0.1) 5 (0.3) 5 (0.35)
4 (34) 3 (0) 4 (0.1) 4 (0.15)
8 (41) 4 (0) 8 (0.1) 8 (0.1)
3 (50) 8 (0) 3 (0) 3 (0.05)
9 (71) 9 (0) 9 (0) 9 (0)
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FERET Face Search Results

Hit Rate (%)
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