Biometrics Winter School, 2022

On Gait and Soft Biometrics

Mark Nixon

IEEE Biometrics Council Distinguished Lecturer
University of Southampton UK

Intro: let's find a single person in Southampton

Characteristic – chance

Non-manicured hair – 1/10

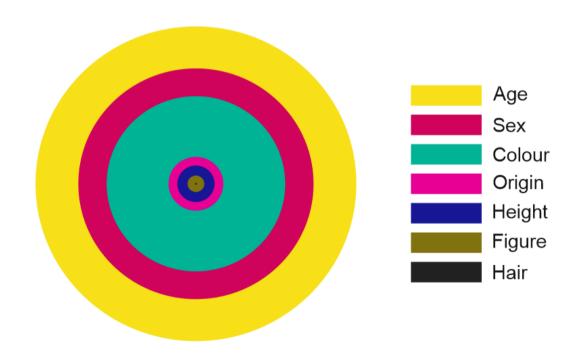
Remaining population

popⁿ Southampton

	• • •
	300000
>> 21 (!!) – <mark>1/5</mark>	60000
Male – 1/2	30000
White (?) - 2/3	20000
Northerner – 1/40	500
(was) 6' - 1/10	50
Slim – 1/5	10

Visualising the search

The whole page contains 750×400 pixels. I'm the dot in the middle!



Identifying people by their gait

- 1. Where are we now?
- 2. How did we get here?
- 3. Where are we going?

Gait biometrics

As a biometric, gait is available at a distance when other biometrics are obscured or at too low resolution

South

and Computer Science

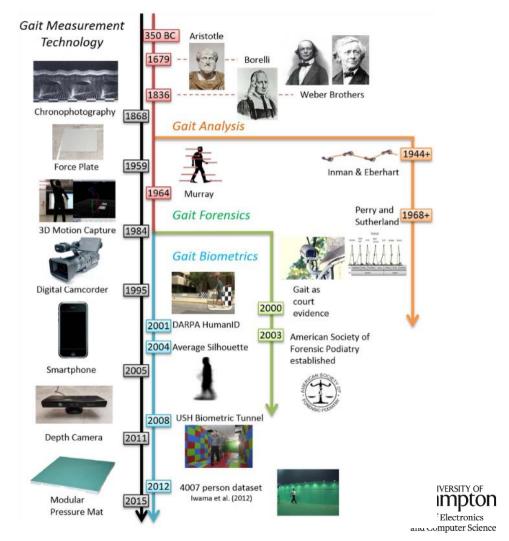
https://www.youtube.com/watch?v=6KuMe5n_jdQ

2000 years of progress

As a biometric, gait is available at a distance when other biometrics are obscured or at too low resolution

It is now widely accepted that people can be recognised by their gait

This is a consequence of desire, need and research, together with technological advance



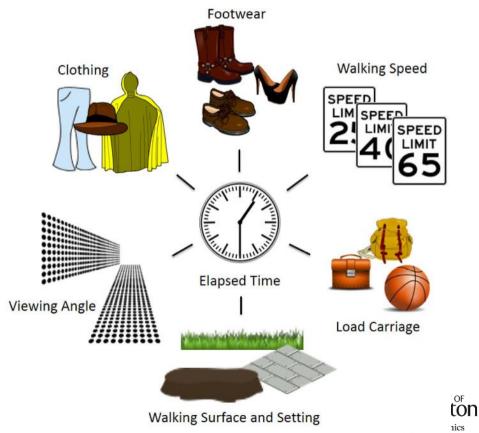
Connor and Ross, Biometric recognition by gait, *CVIU* 2018

What changes?

Many covariates can affect walking style

.... + health, drugs, mood,

.... but walking is a natural part of our daily lives



Gait biometrics databases

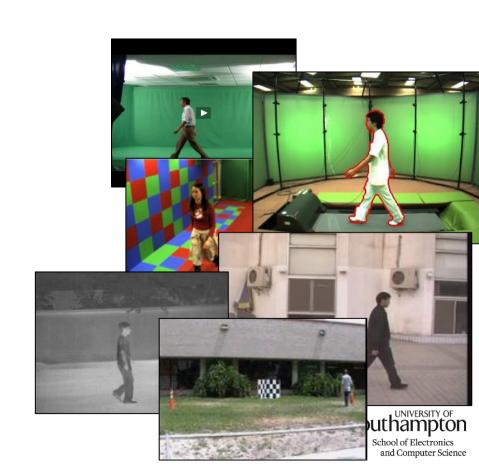
Laboratory

- Southampton 3D and 2D
- CASIA (+ multiview, thermal)
- Osaka OU-ISIR (+ multiview)

'Real' World

- HumanID/ Southampton
- FVG
- CASIA

+ accelerometer, footfall, medical



Gait Recognition – the state of art

Technique: mainly deep

Data: Frontal-View Gait (FVG)

CASIA E

Applications: increasing use in crime scene analysis

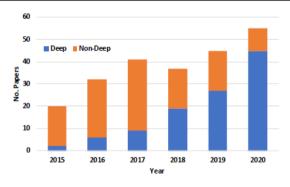
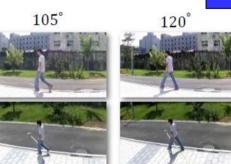
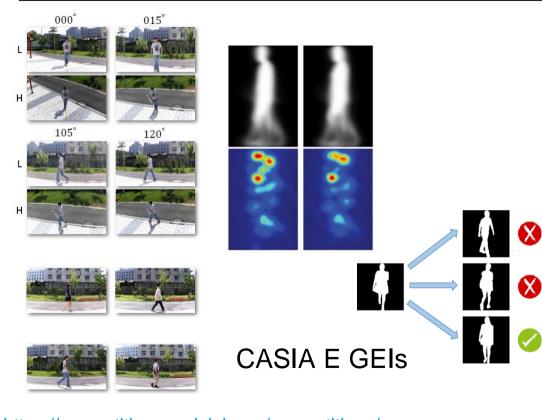


Fig. 1: The number of gait recognition papers published after 2015 using non-deep (orange) and deep (blue) gait recognition methods.

A Sepas-Moghaddam, Deep Gait Recognition: A Survey

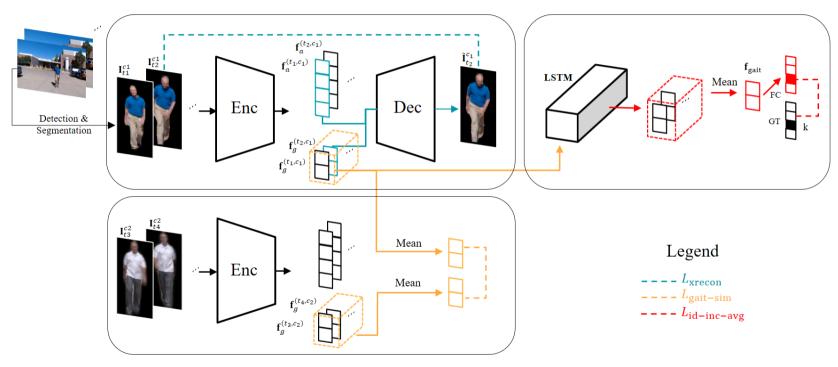


HiD competition, ACCV 2020/ IJCB 2021



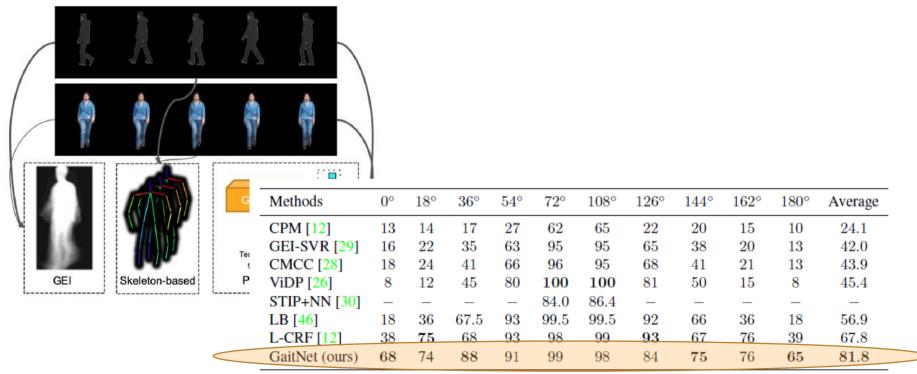
https://competitions.codalab.org/competitions/ 26085#learn_the_details

Gait recognition via disentangled representation learning



See also: Li, Makihara, Xu, Yagi: Gait recognition via semisupervised disentangled representation learning to identity and covariate features, CVPR 2020

Gait recognition via disentangled representation learning



GaitSet: Cross-view Gait Recognition through Utilizing Gait as a Deep Set

Hanqing Chao; Kun Wang; Yiwei He; Junping Zhang; Jianfeng Feng (Shanghai/ Fudan)

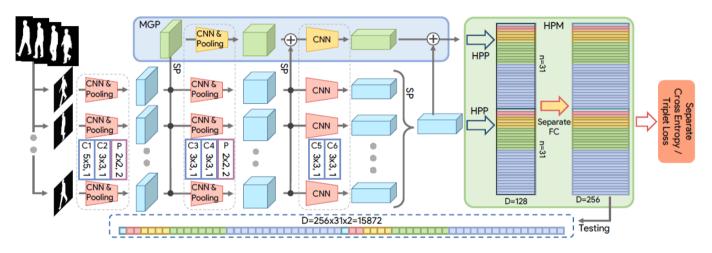


Fig. 2. The framework of GaitSet [26] . 'SP' represents set pooling. Trapezoids represent convolution and pooling blocks and those in the same column have the same configurations, as shown by the rectangles with capital letters. Note that although the blocks in MGP have the same configurations as those in the main pipeline, the parameters are shared only across blocks in the main pipeline – not with those in MGP. HPP represents horizontal pyramid pooling [27].

GaitSet: Cross-view Gait Recognition through Utilizing Gait as a Deep Set

TABLE 3
Averaged rank-1 accuracies on OU-MYLP, excluding identical-view cases GEINet: [18]. C... +2diif. [4]

Probe	Gallery All 14 Views		Gallery 0°, 30°, 60°, 90°					
11000	GEINet	Ours	GEINet	3in+2diff	Ours			
0°	11.4	81.3	8.2	25.5	79.6			
15°	29.1	88.6	-	-	87.1			
30°	41.5	90.2	32.3	50.0	87.4			
45°	45.5	90.7	-	-	89.8			
60°	39.5	88.6	33.6	45.3	86.2			
75°	41.8	89.1	-	-	88.0			
90°	38.9	88.3	28.5	40.6	84.3			
180°	14.9	83.1			01.0			
195°	33.1	87.7	 Ablation experiments condu 					

GEINet: View-invariant gait recognition using a convolutional neural network

On input/output architectures for convolutional neural network based cross-view gait recognition

Large-Sample Training (LT)

normal (NM) walking with a bag (BG) wearing a coat or jacket (CL)

Ablation experiments conducted on CASIA-B using setting LT. The results are rank-1 accuracies averaged on all 11 views, excluding identical-view cases. The numbers in brackets indicate the second highest results in each column. Here 'att' is the abbreviation of attention.

+	GEI Set		Set Pooling				MGP NN	NM	BG	CL			
┪	GEI Set	Max Mean	Median	Joint sum 3	Joint 1_1C 4	Pix-att	Frame att	MGI	IVIVI	bG			
	\checkmark										89.0	76.3	50.7
		√									95.4	88.7	69.9
1		\checkmark									95.0	86.3	66.3
		\checkmark			\checkmark						94.8	84.9	63.7
		√									94.1	84.1	64.3
		\checkmark					√				94.9	86.9	66.8
											95.6	88.9	69.6
		√							√		95.0	85.1	65.3
										\checkmark	96.1	90.8	70.3

89.4

89.7

87.8

88.3

86.9

87.9

43.2

45.6

39.4

40.5

36.3

35.8

210°

225°

240°

255°

270°

mean

Identifying people by their gait

- 1. Where are we now?
- 2. How did we get here?
- 3. Where are we going?

Technology in 1994

Gait and literature

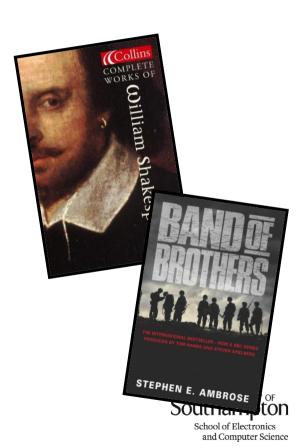
Dictionary: "manner of walking"

Shakespeare observed recognition:

"High'st Queen of state; Great Juno comes; I know her by her gait" [The Tempest]

"For that John Mortimer....in face, in gait in speech he doth resemble" [Henry IV/2]

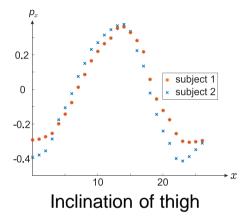
Other literature: e.g. Band of Brothers: "I noticed this figure coming, and I realized it was John Eubanks from the way he walked"

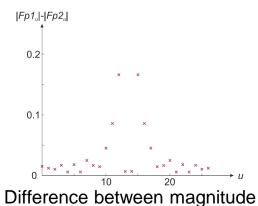


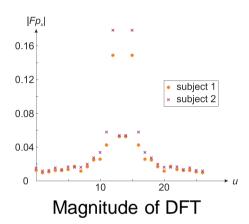
Early data

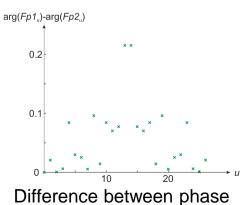
- 6 subjects; 7 sequences
- Sony Hi8 video camera
- Circular trackexhausted subjects?
- We used a police digital video recorder

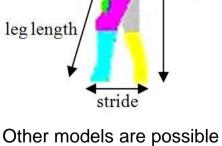
Model-based recognition











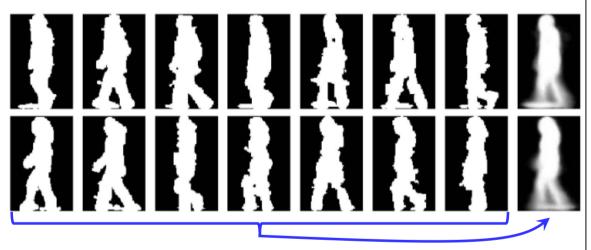
height

torso height

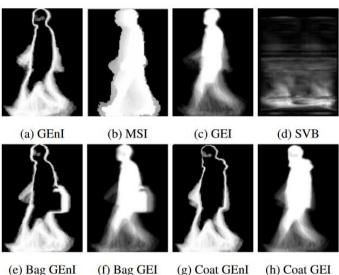
■ UNIVERSITY OF D Cunado, MS Nixon, JN Carter, Proc. AVBPA, 1997

Using silhouettes

Some names: average silhouette, GEI



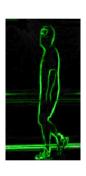
Gait **Energy** Image

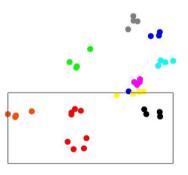


Gait Entropy Image

Many gait representations possible

Recognising people from the motion of the whole body





silhouette edges

flow

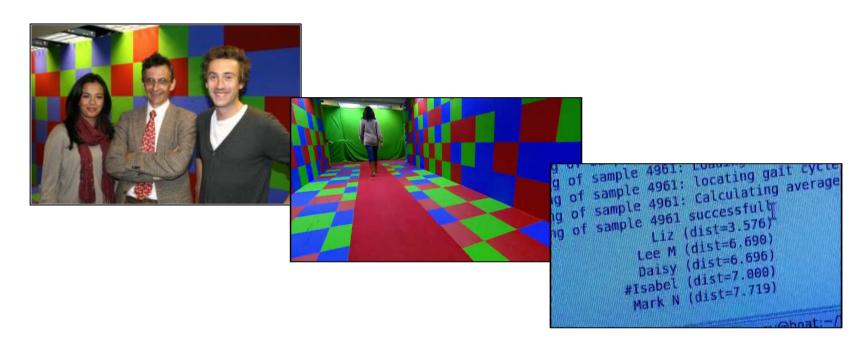
symmetry acceleration

feature space

DARPA's Human ID at a Distance

and Computer Science

Does gait biometrics really work?



https://www.youtube.com/watch?v=PUwINc0xAgQ

BBC1 Bang Goes the Theory Episode 1, 2009

Gait-based Age Estimation using a Wholegeneration Gait Database

How old is he/she?

Subject	1	2	3
Gait			
Age	A. 4 years old B. 14 years old C. 24 years old	A. 62 years old B. 72 years old C. 82 years old	A. 24 years old B. 34 years old C. 44 years old

Southampton
School of Electronics
and Computer Science

Major difficulty 1 - viewpoint

Figure 1: The structure of GEINet.

Table 1: Layer configurations for GEINet. Act. denotes the activation function.

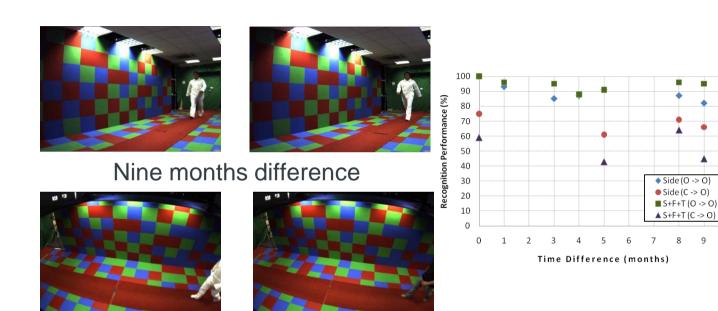
Layer	#Kernels	Size/stride	Act.	Pooling
conv1	18	$7 \times 7 \times 1/1$	ReLU	
pool1		$2\times2/2$		Max pooling
conv2	45	$5\times5\times18/1$	ReLU	
pool2		$3\times3/2$		Max pooling

Figure 2: Examples of gait image sequences with four observation views in the OU-ISIR dataset

Gallery		Probe view				
view	Method	55	65	75	85	
55	GEINet	(94.7)	93.2	89.1	79.9	
	w/ FDF	(92.7)	91.4	<i>87.2</i>	80.0	
	TCM+		79.9	70.8	54.5	
	wQVTM		78.3	64.0	48.6	

Shiraga, Makihara and Muramatsu ICB 2016 Southampton
School of Electronics
and Computer Science

Major difficulty 2 - time



Few minutes apart, different clothes

US demonstration

Identifying people by their gait

- 1. Where are we now?
- 2. How did we get here?
- 3. Where are we going?

Other recent works

Fig. 1. Samples from the KinGaitWild dataset

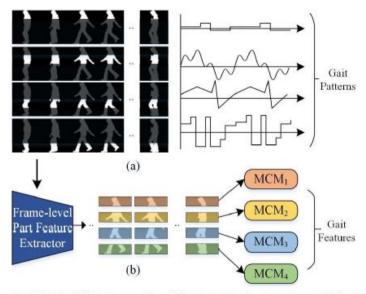


Figure 1. (a): Different parts of human gait possess evidently different shapes and moving patterns during walking. (b): Overview of the GaitPart, consisting of the Frame-level Part Feature Extractor(FPFE) and Micro-motion Capture Module(MCM).

SE Bekhouche, A Chergui, A Hadid..., ICIP 2020

Fan et al, CVPR 2020

Identity science

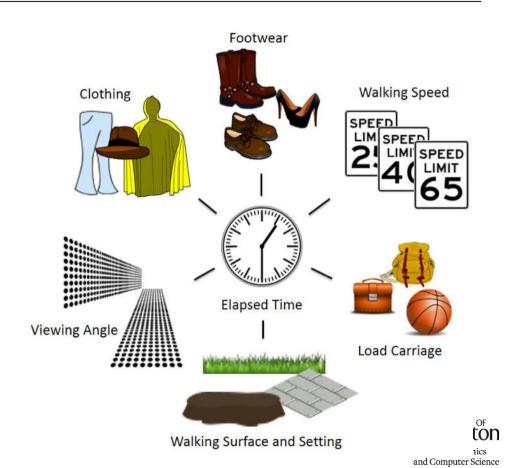
Science/ technology

Covariates and exploratory variables
Soft biometrics
Spoofing
Deep architectures

Applications

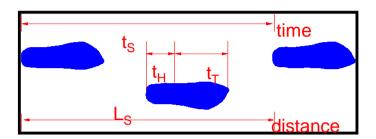
Medicine (dementia, balance, falls)
Sports
Security

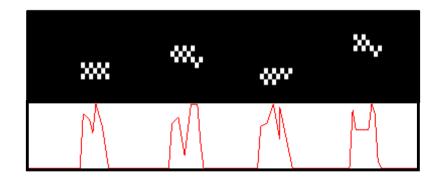
Marketing

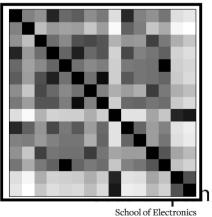


The first intelligent carpet

192×32 binary sensor array



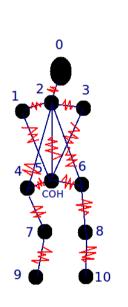


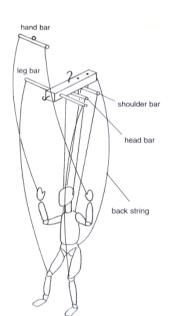


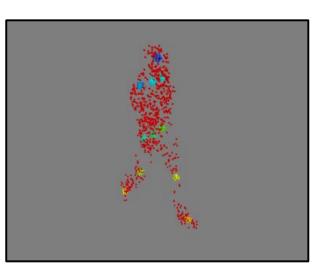
and Computer Science

Middleton, Buss and Nixon, AutoID 2005

3D recognition – marionette based

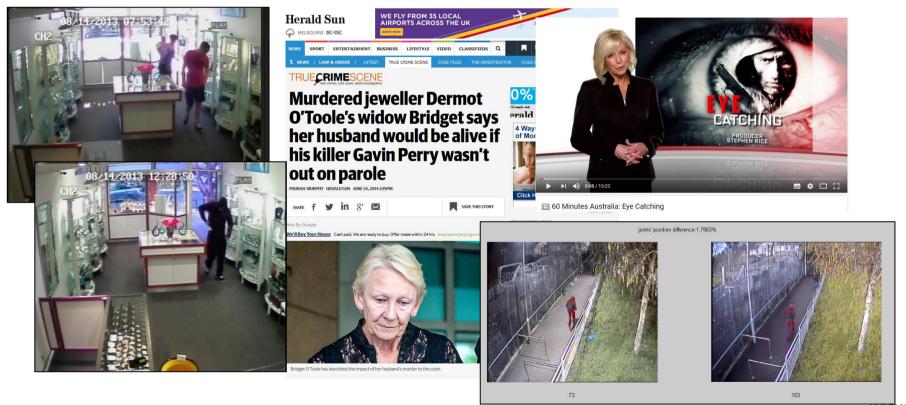






3D is completely viewpoint invariant

Gait as evidence: murder case in Australia 2014



https://www.youtube.com/watch?v=
F1b_apXjjV0&feature=youtu.be

Descriptions and attributes for identification

Eyewitness statement

"24 year old male average height wearing shirt"

Image of crime

Generate description

Subject	Gender	Age	Height	Nose W	Тор
?	М	24	171	2.4	Shirt

Database of images

	<u> </u>				
Subject	Gender	Age	Height	Nose W	Тор
123456	М	25	172	2.3	Shirt
123457	F	36	156	2.2	Blouse
123458	М	58	182	1.2	T shirt

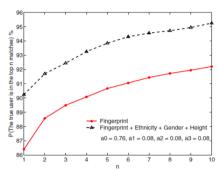
Database of descriptions

Martinho-Corbishley, Nixon and Carter, IEEE TPAMI 2019

Soft Biometrics

Bertillonage 1890 (body, face, iris, ear, nose...)

Nandakumar and Jain 2004 (augmenting traditional biometrics



Adapted from
Ross and Nixon **Soft Biometrics Tutorial** *BTAS* 2016

Face Soft

Attribute
Kumar, Klare, Zhang,
Gonzalez-Sosa
Relative Attribute
[Graumann], Reid,
Almudhahka,

Body Soft

Categorical
Samangooei
Comparative
Reid, MartinhoCorbishley

Other Soft

Tattoos Lee
Clothing Jaha
Makeup Dantcheva
Eyes & glasses
Mohammed
Hair Proenca

Applications: Performance, identification, marketing, fashion

Advantages of Soft Biometrics

- Human understandable description
 rich in semantics, e.g., a face image described as a "young Asian male"
 bridges gap between human and machine descriptions
- Robustness to image quality
 soft biometric attributes and low quality data
 subject at a distance from the camera
- 1. Privacy

lack of distinctiveness implies privacy friendly ... but we can recognise you anywhere

1. Performance improvement

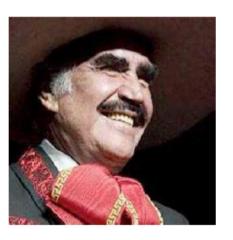
use in conjunction with biometric cues such as face, fingerprint and iris fusion to improve accuracy. ID invariance to viewpoint, illumination.

Soft biometrics – the state of art

Technique: mainly deep

Data: Maad-face

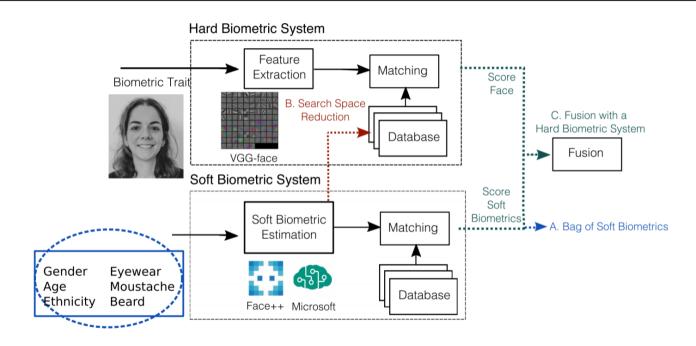
Applications: face



Male	1	Bangs	-1	Round Face	0	Big Lips	0
Young	-1	Sideburns	1	Double Chin	1	Big Nose	1
Middle Aged	-1	Black Hair	0	High Cheekbones	0	Pointy Nose	-1
Senior	1	Blond Hair	-1	Chubby	1	Heavy Makeup	-1
Asian	-1	Brown Hair	-1	Obstructed Forehead	1	Wearing Hat	1
White	0	Gray Hair	1	Fully Visible Forehead	-1	Wearing Earrings	-1
Black	-1	No Beard	-1	Brown Eyes	0	Wearing Necktie	-1
Rosy Cheeks	0	Mustache	1	Bags Under Eyes	0	Wearing Lipstick	-1
Shiny Skin	1	5 o Clock Shadow	-1	Bushy Eyebrows	1	No Eyewear	1
Bald	-1	Goatee	-1	Arched Eyebrows	-1	Eyeglasses	-1
Wavy Hair	-1	Oval Face	-1	Mouth Closed	0	Attractive	-1
Receding Hairline	0	Square Face	1	Smiling	0		

See also Terhörst et al. On Soft-Biometric Information Stored in Biometric Face Embeddings, *IEEE TBIOM* 2021

Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation



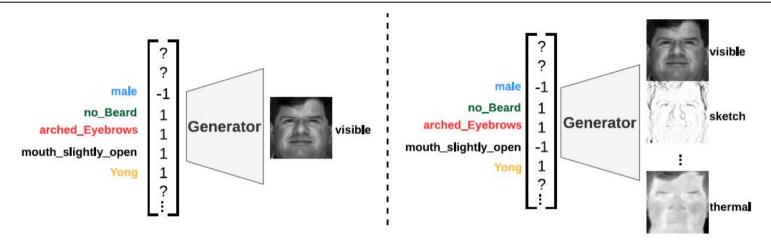
Soft Biometrics for Recognition: A) Bag of Soft Biometrics; B) Search Space Reduction; and C) Fusion with a Hard Biometric System

Gonzalez-Sosa, Fierrez, Vera-Rodriguez, Alonso-Fernandez *IEEE TIFS* 2018

Soft-Biometrics Estimation In the Era of Facial Masks

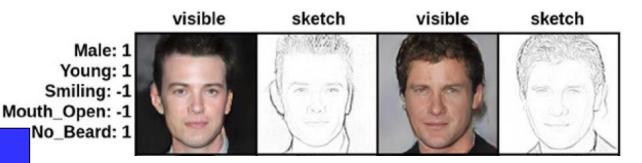
Fig. 2: Accuracy of gender estimation using different facial regions.

Multimodal Face Synthesis From Visual Attributes



(a) Unimodal synthesis

(b) Multimodal synthesis

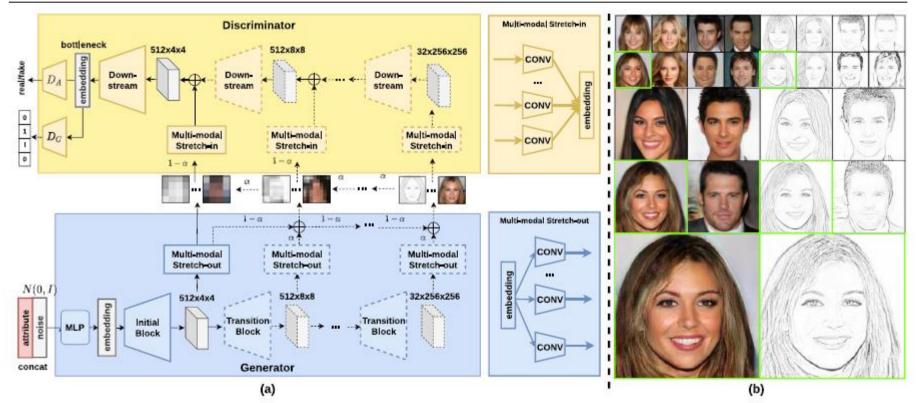


Di and Patel, *IEEE TBIOM*, 2021

Southampton

School of Electronics
and Computer Science

Multimodal Face Synthesis From Visual Attributes



What can you recognise?

64×97

128×194

256×386

Traits and terms

Global Features

- Features mentioned most often in witness statements
- Sex and age quite simple
- Ethnicity
 - Notoriously unstable
 - There could be anywhere between 3 and 100 ethnic groups
 - 3 "main" subgroups plus 2 extra to match UK Police force groupings

So we thought!!

- Global
 - Sex
 - Ethnicity
 - Skin Colour
 - Age
- Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - Facial Hair Colour/Length
 - Neck Length/Thickness

on

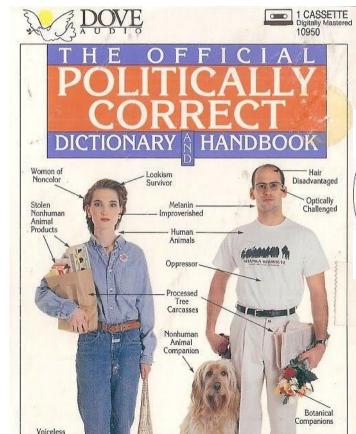
Samangooei, Guo and Nixon, *IEEE BTAS* 2008

Phrasing questions

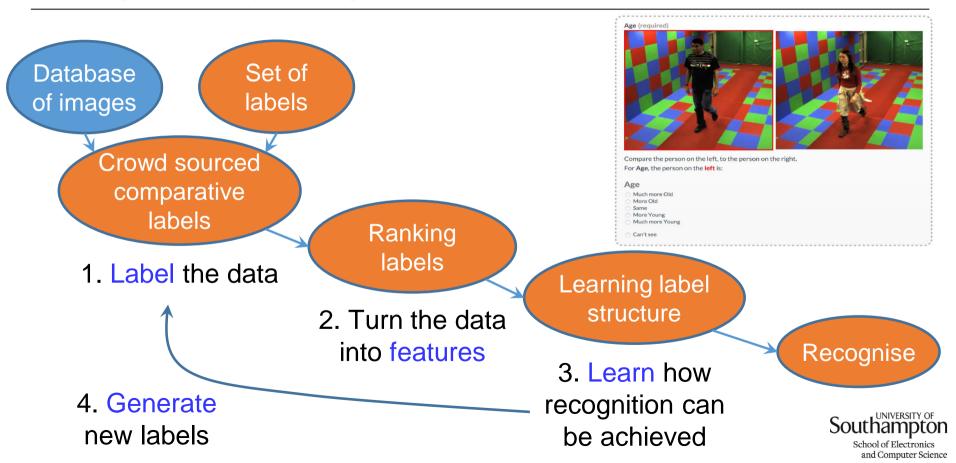
- No 'political correctness'
- Note, or avoid, homonyms and polysemes
- Eschew completely argot and colloquialism

E.g. nose: hooter, snitch, conk (UK), schnozzle (US?)

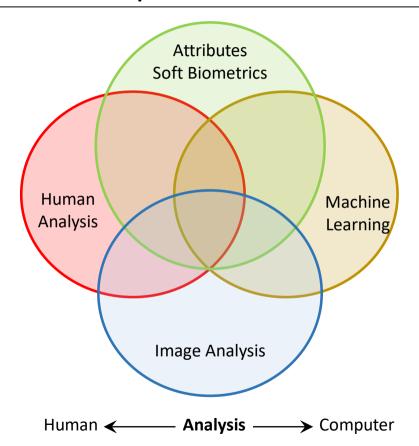
..... and avoid words like eschew

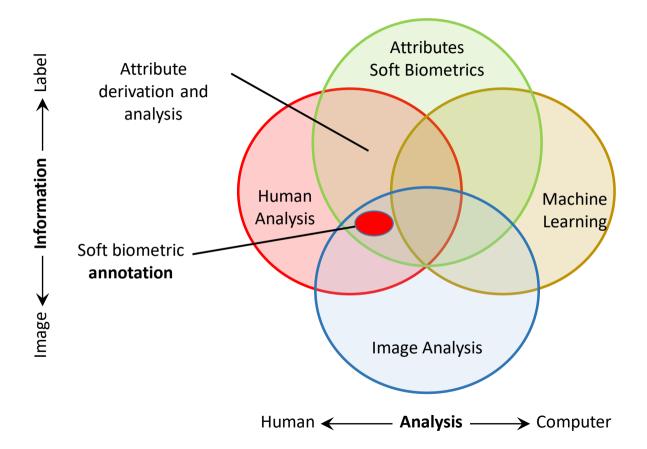


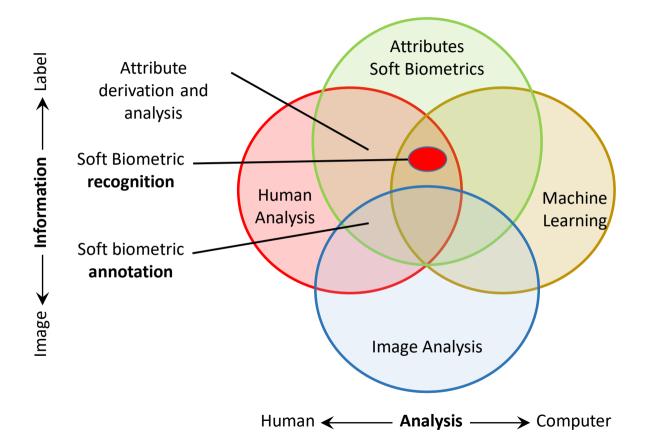
Recognition by fine-grained attributes

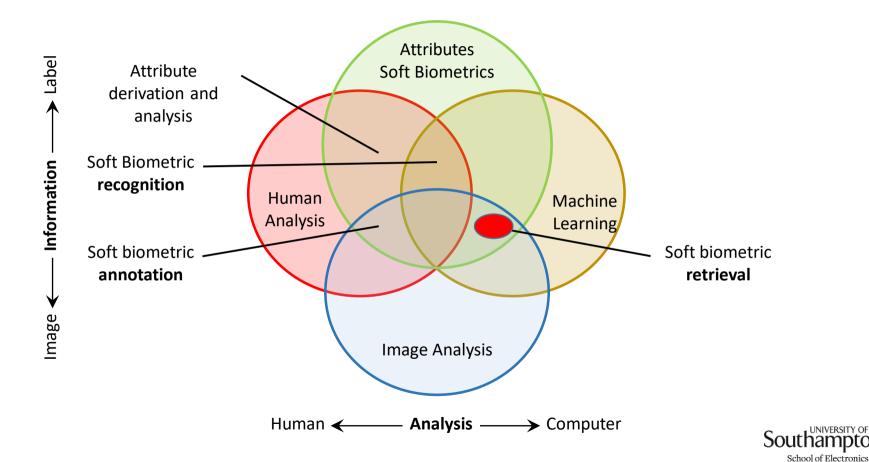


How does this fit with computer vision?

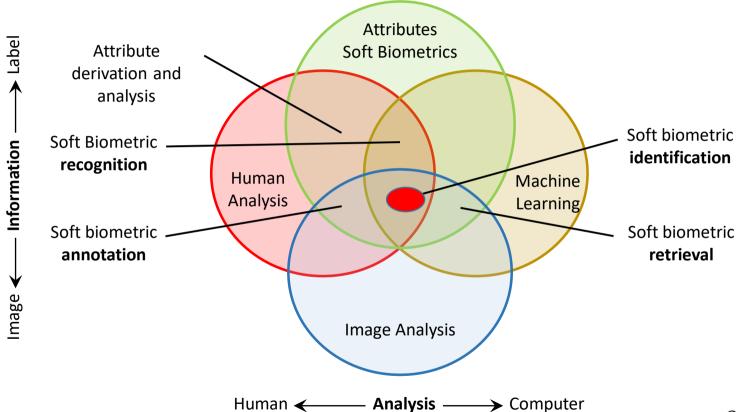


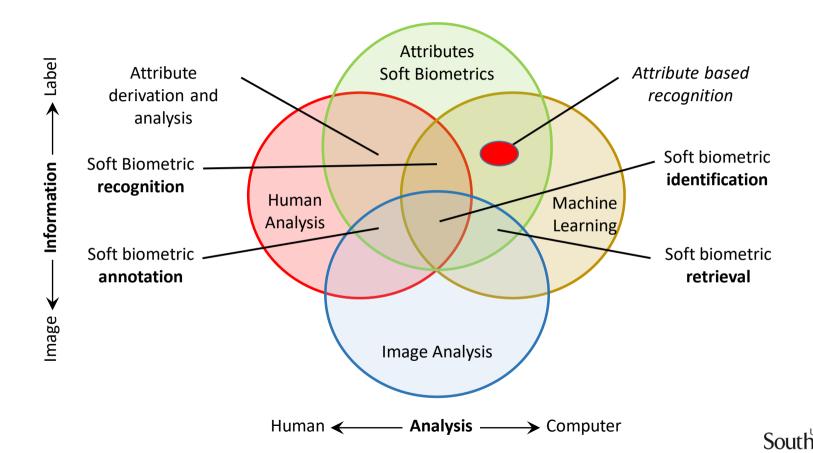




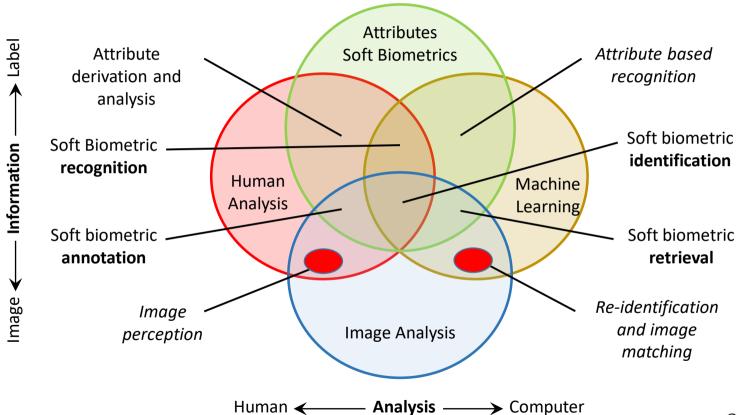


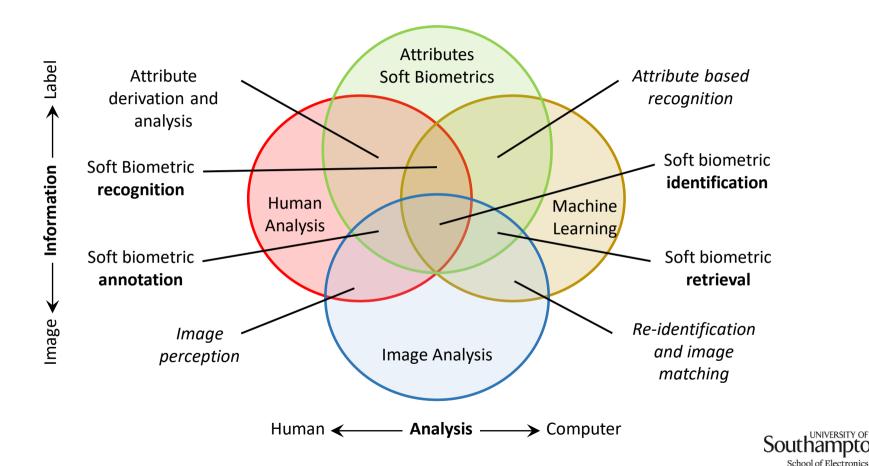
and Computer Science





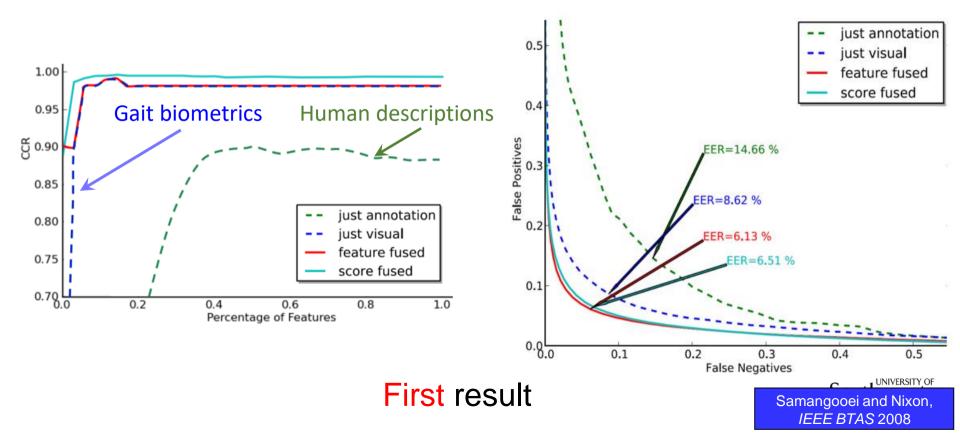
School of Electronics and Computer Science





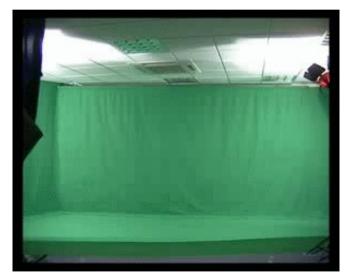
and Computer Science

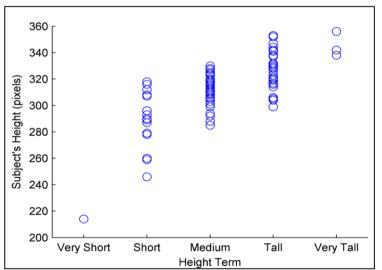
Human descriptions: recognition capability



Problems with absolute descriptors

Subjective = unreliable; Categorical = lacks detail



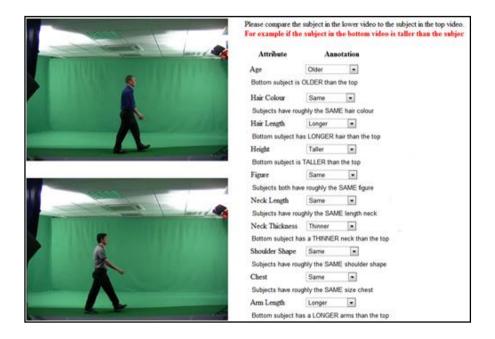


Reid and Nixon, IEEE

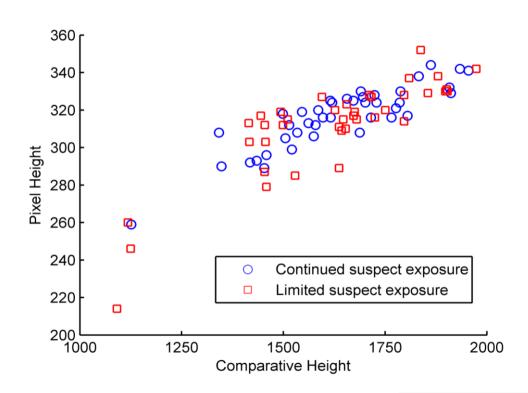
IJCB 2011; TPAMI 2015

Comparative human descriptions

- Compare one subject's attribute with another's
- Infer continuous relative measurements

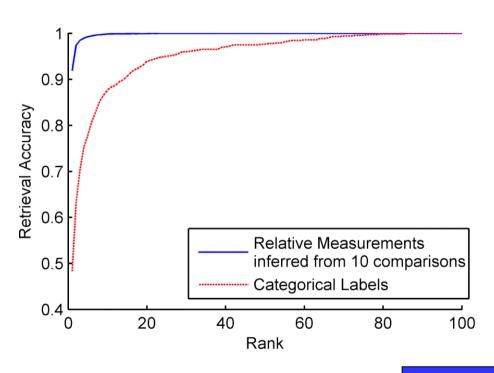


Height correlation (with time)



Reid and Nixon, IEEE IJCB 2011; TPAMI 2015

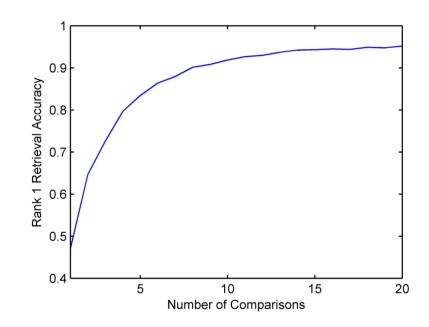
Recognition



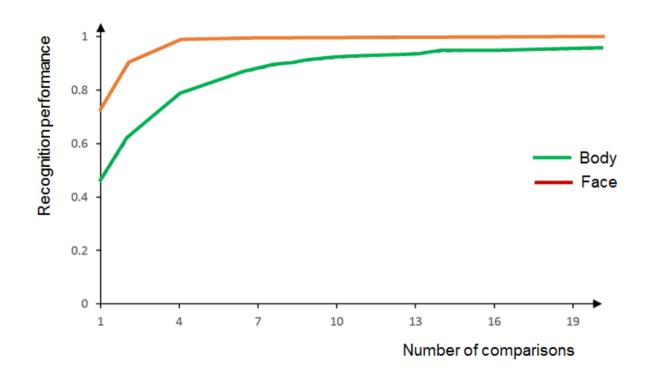
Reid and Nixon, IEEE ICDP 2011

Ranking comparative descriptions

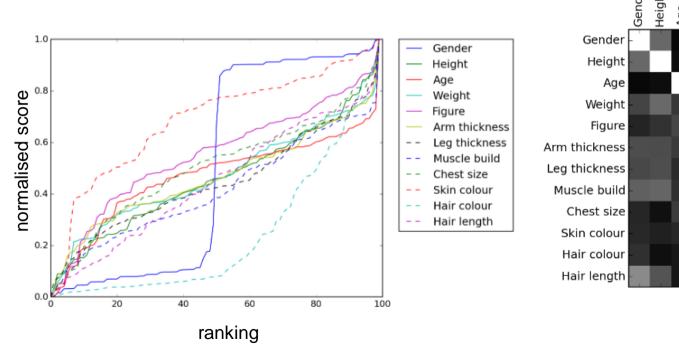
- Use ELO rating system from chess to infer relative descriptions
- Turn comparative labels into a ranked list
- Comparative > categorical
- Alternatives?
- Parameters?

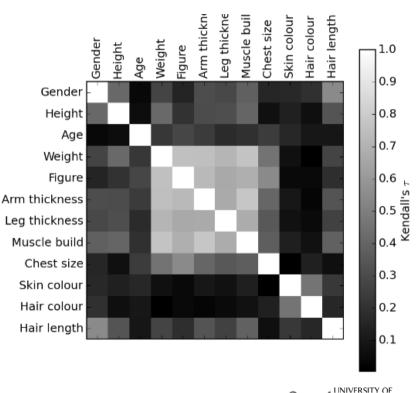


Evaluation: effect of number of comparisons on recognition



Body trait performance

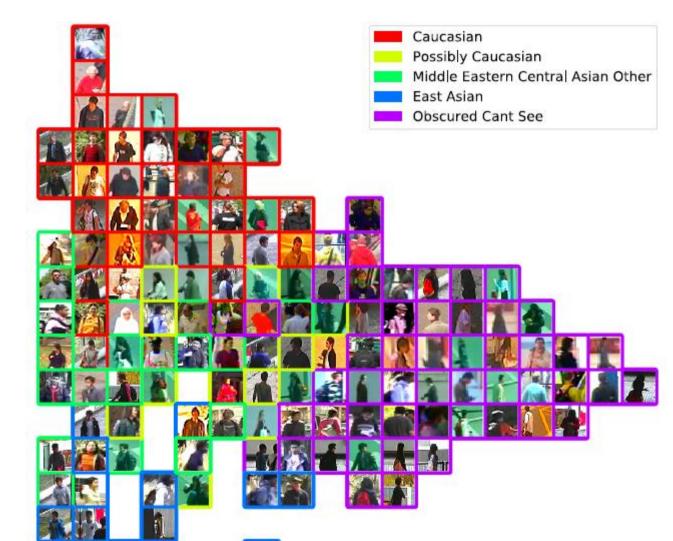




Normalised relative scores vs ranks

Kentall's τ correlation

Ethnicity



Gender Estimation on PETA

• Gender?

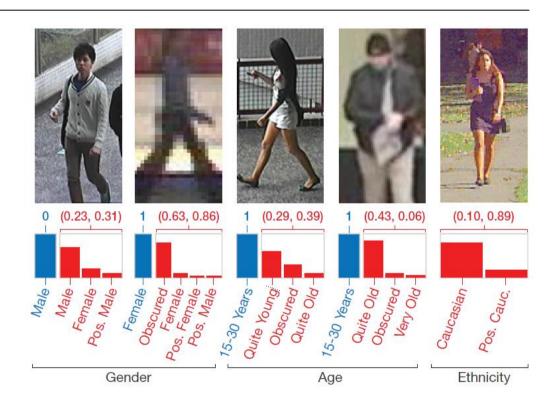
Subject	1	2	3
PETA image			C
PETA label			A. Male B. Female

Superfine labels

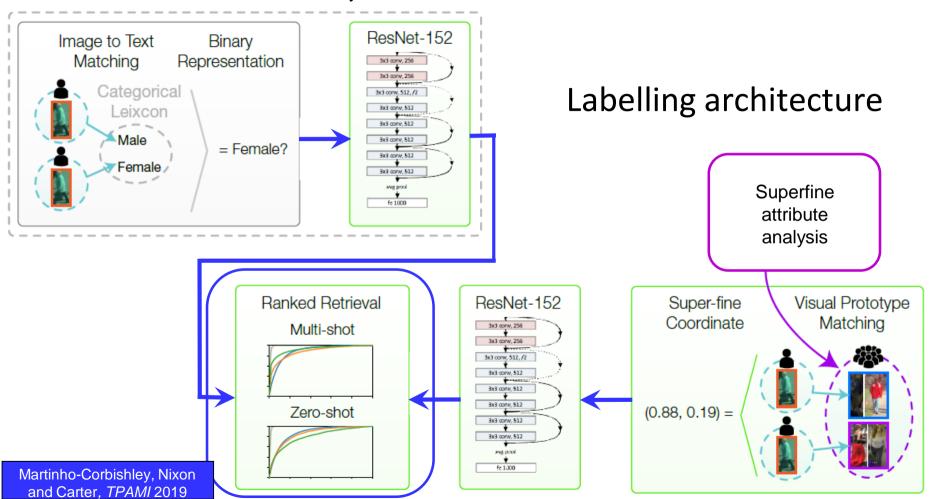
Most 'fine' are actually coarse

Our comparative attributes are superfine

Comparison/ ranking gives many advantages

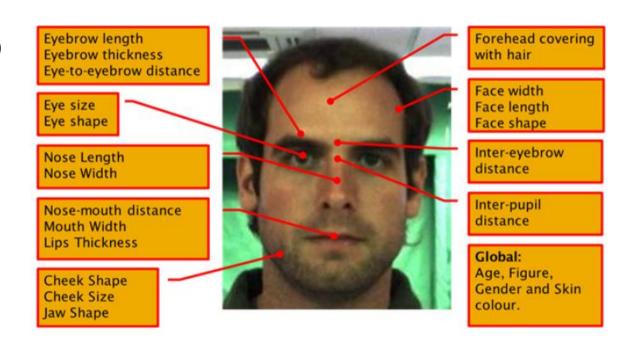


Conventional attribute-based analysis



Recognition by face attributes

Categorical labels
(gender, age +...)
Comparative labels



Reid and Nixon, *IEEE ICB* 2013

Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Recognition by face via comparative attributes on LFW

	2		
	Collected	Inferred	Total
Traits comparisons	241560	132879504	133121064
Subjects' comparisons	10065	5536646	5546711
Average number of comparisons per subject	4.98	1371.1	N/A
Number of annotators		9901	

Person-B

The eyebrow horizontal length of person-A relative to that of person-B is:

- More Short
- Same
- More Long
- Don't know

Almudhahka, Nixon and Hare, *IEEE BTAS 2016*

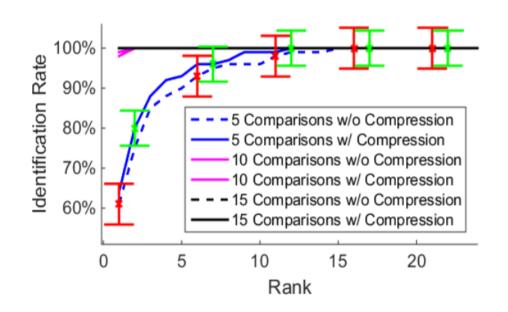
Compression of 5 point scale: for comparative face labels

Label compression improves recognition

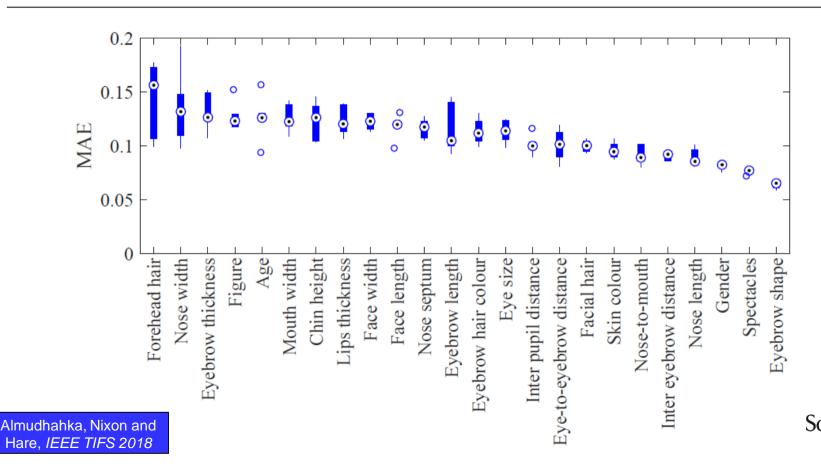
Data is Southampton tunnel

New system just 3:

bigger, same, smaller
Had we previously added
categorical to comparative?



Estimating face attributes



and Computer Science

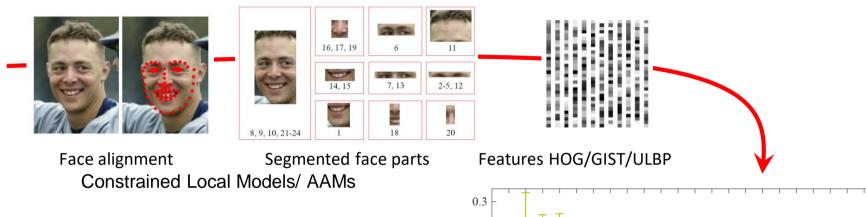
Ranking subjects (images) by estimated face attributes

MIURank semantic ECL REL MIURank semantic ECL REL Most feminine Youngest Most masculine Oldest

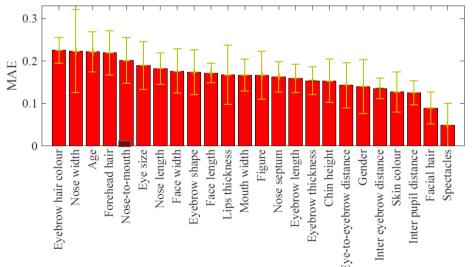
(a) Age

(b) Gender

Crossing the semantic gap: estimating relative face attributes



Estimation of comparative labels

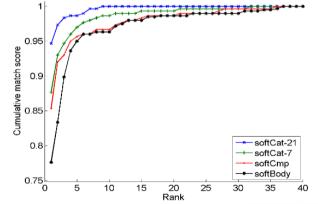


on

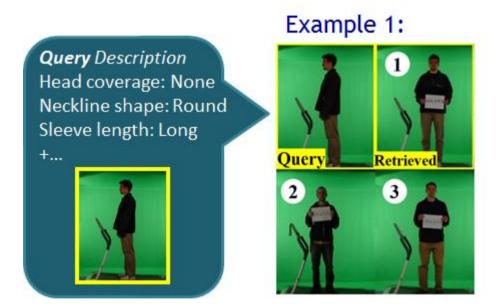
Almudhahka, Nixon and Hare, *IEEE TIFS 2018*

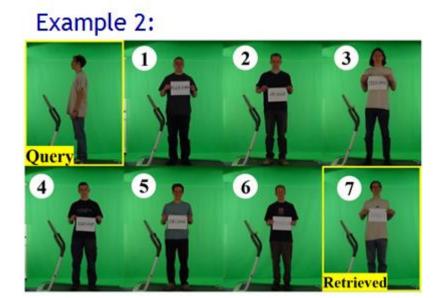
Subject recognition, by clothing

- Clothing generally unique
- Shakespeare
 "Know'st me not by my clothes?"
 (Cymbeline Act 4 Scene 2)
- Short term biometric
- Has strong invariance
- Links with computer vision and automatic clothing analysis/ reidentification



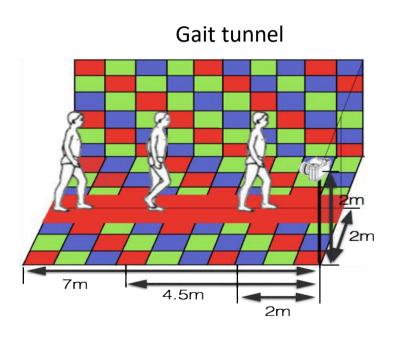
Viewpoint invariant recognition, by clothing





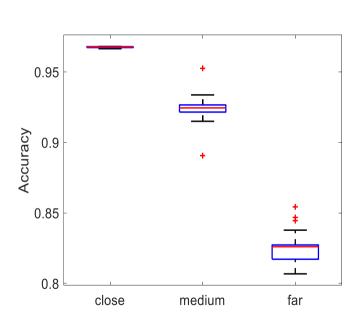
Clothing has ability to handle 90 degree change

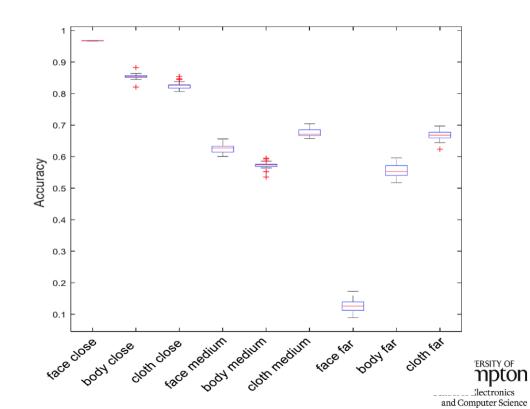
Soft biometric fusion – synthesised data

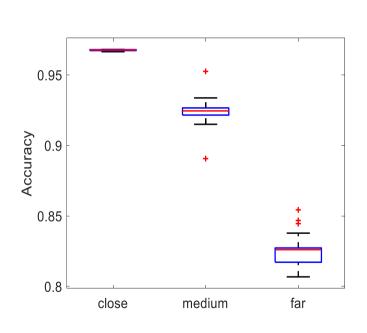


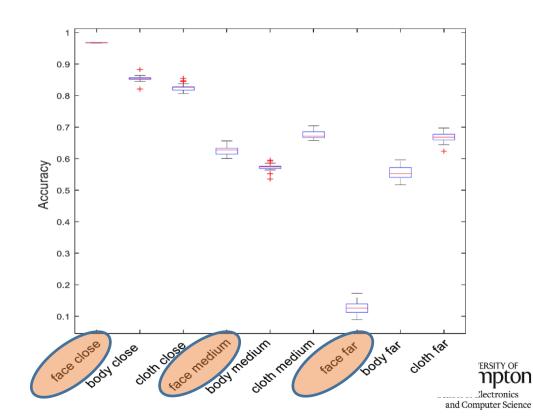
Guo, Nixon and Carter, *IEEE TBIOM* 2019

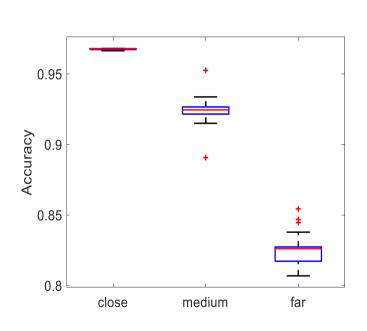
School of Electronics and Computer Science

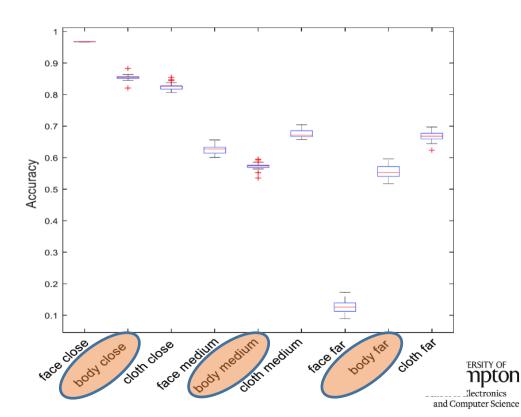


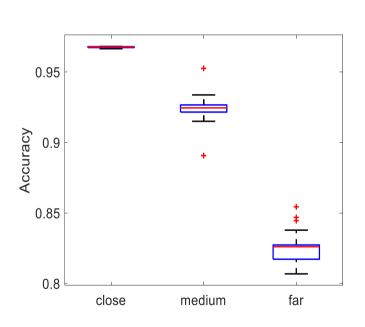


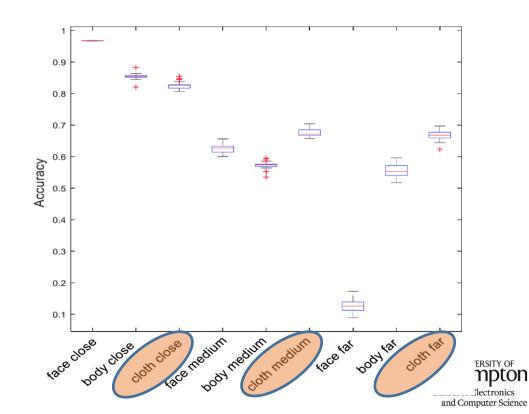












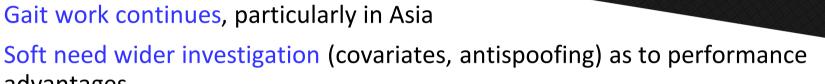
Biometrics and marketing ...

Conclusions

advantages

Yes, gait works, so does/ do soft

Gait work continues, particularly in Asia



The technologies are grounded in science, literature, medicine +

We have more to learn, and learning architectures are not complete

Society still needs identification

Privacy/ ethics/ accuracy/ new technology?

Office of the Director of National Intelligence

And thanks to

Dr John Carter, Dr Sasan Mahmoodi, Dr Jon Hare

Dr Hani Muammar, Dr Adrian Evans, Prof. Xiaoguang Jia, Prof Yan Chen, Prof Steve Gunn, Dr Colin Davies, Dr Mark Jones, Dr Alberto Aguado, Dr David Cunado, Dr Jason Nash, Prof Ping Huang, Dr David Hurley, Dr David Benn, Dr Liang Ng, Dr Mark Toller, Dr John Manslow, Dr Mike Grant, Dr Jamie Shutler, Dr Karl Sharman, Prof Andrew Tatem, Lavla Gordon, Dr Richard French. Dr Vijay Laxmi. Dr James Hayfron-Acauah. Dr Chew-Yean Yam. Dr Yalin Zheng. Dr Jeff Foster. Dr Jana Hee Yoo, Dr Nick Spencer, Dr Stuart Prismall, Wan Mohd.-Isa, Dr Peter Myerscough, Dr Richard Evans, Dr Stuart Mowbray, Dr Rob Boston, Dr Ahmad Al-Mazeed, Prof Peter Gething, Dr Dave Waga, Dr Alex Bazin, Dr Mike Jewell, Dr Lee Middleton, Dr Galina Veres, Dr Imed Bouchrika, Dr Xin Liu, Dr Cem Direkoglu, Hidayah Rahmalan, Dr Banafshe Arbab-Zavar, Dr Baofeng Guo, Dr Sina Samangooei, Dr Michaela Goffredo, Dr Daniel Thorpe, Dr Richard Seely, Dr John Bustard, Dr Alastair Cummings, Dr Muayed Al-Huseiny, Dr Mina Ibrahim, Dr Darko Matovski, Dr Gunawan Ariyanto, Dr Sung-Uk Jung, Dr Richard Lowe, Dr Dan Reid, Dr George Cushen, Dr Ben Waller, Dr Nick Udell, Dr Anas Abuzaina, Dr Thamer Alathari, Dr Musab Sahrim, Dr Ah Reum Oh, Dr Tim Matthews, Dr Emad Jaha, Dr Peter Forrest, Dr Jaime Lomeli, Dr Dan Martinho-Corbishley, Dr Bingchen Guo, Dr Jung Sun, Dr Nawaf Almudhahka, Tom Ladyman, Dr Wenshu Zheng, Dr Di Meng, Moneera Alnamnakani

Sponsors: EPSRC, Home Office, MoD (GD), DARPA, ARL, EU

