Generative Reconstruction Models for Low-Quality Face Images

Chen Change Loy

MMLab@NTU, Nanyang Technological University

https://www.mmlab-ntu.com/

IAPR/IEEE Winter School on Biometrics 2023

Outline

- Introduction
- Priors for face restoration
- CodeFormer

Papers

Image Super-Resolution Using Deep Convolutional Networks

TPAMI 2015

Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang

Deep Cascaded Bi-Network for Face Hallucination

ECCV 2016

Shizhan Zhu, Sifei Liu, Chen Change Loy, Xiaoou Tang

GLEAN: Generative Latent Bank for Image Super-Resolution and Beyond

TPAMI 2022

Kelvin C.K Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, Chen Change Loy

Towards Robust Blind Face Restoration with Codebook Lookup Transformer

NeurIPS 2022

Shangchen Zhou, Kelvin C.K Chan, Chongyi Li, Chen Change Loy

Introduction

Goal of super-resolution

- Increase the resolution of images
- Produce a detailed, realistic output image.
- Be faithful to the low resolution input image.

First work on this topic was published in 1984 [1] and the term "Super-resolution" itself appeared at around 1990 [2].

1. R. Y. Tsai and T. S. Huang, "Multiframe image restoration and registration," in Advances in Computer Vision and Image Processing, vol. 1, chapter 7, pp. 317-339, JAI Press, Greenwich, Conn, USA, 1984.

2. M. Irani and S. Peleg. 1991, "Super Resolution From Image Sequences" ICPR, 2:115--120, June 1990.

Applications

- Medical Imaging
- Satellite imaging
- CCTV surveillance (car plate or face)
- Airborne surveillance
- Saving bandwidth

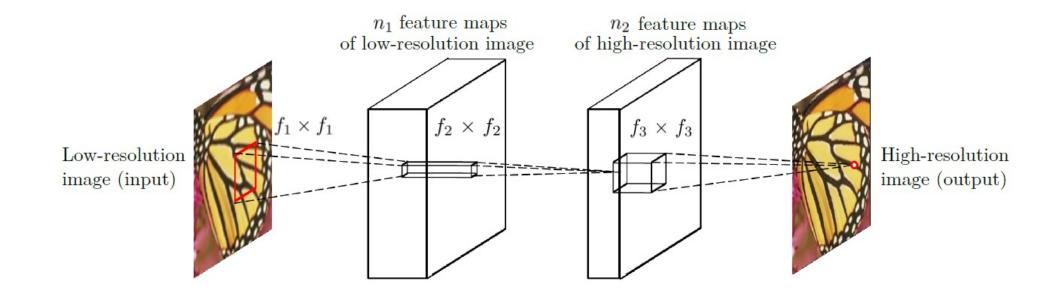
original 1000 x 1500, <mark>100kb</mark>

RAISR 1000 x 1500, **25kb**

Instead of requesting a full-sized image, G+ requests just 1/4th the pixels...

...and uses **RAISR** to restore detail on device

SRCNN



C. Dong, C. C. Loy, K. He, X. Tang, Image Super-Resolution Using Deep Convolutional Networks, TPAMI 2015

Problem objective

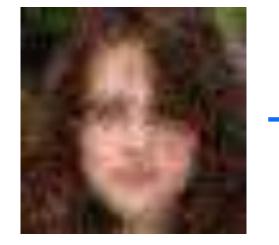
Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$$

where ${\bf H}$ is a degradation matrix, ${\bf v}$ is additive noise

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \lambda \Phi(\mathbf{x})$$

fidelity term regularization
term



Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$$

where ${\bf H}$ is a degradation matrix, ${\bf v}$ is additive noise

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \lambda \Phi(\mathbf{x})$$

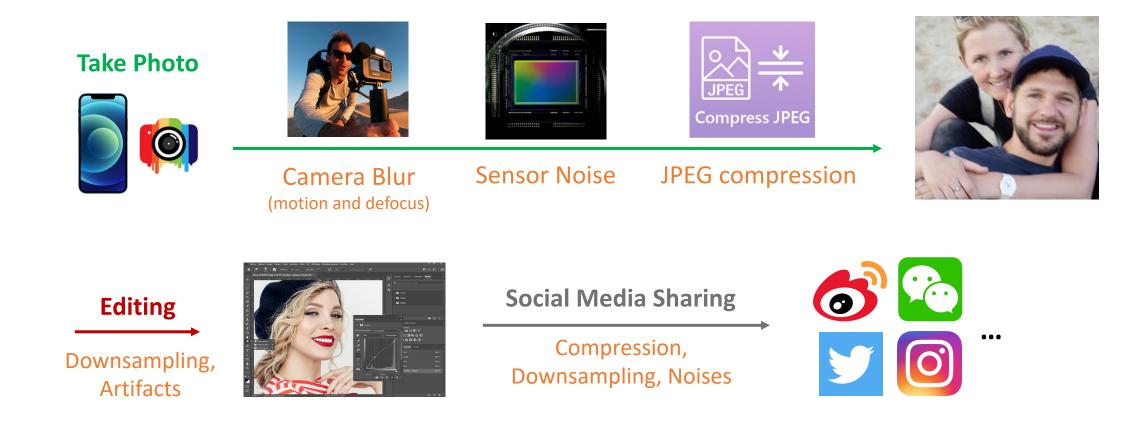
fidelity term regularization term

If we know the **H** and **v**, then is a non-blind super-resolution. Otherwise it is a blind super-resolution

Degradation involved in real applications are typically complicated (downsampling, blur, noise, and JPEG compression) and unavailable.

Degradation in the real world

• The real-world degradations usually come from complicate processes, such as **imaging system of cameras**, **image editing**, and **Internet transmission**.



- Learning-based methods will suffer severe performance drop when the pre-defined degradation is different from the real one
- This phenomenon of kernel mismatch will introduce undesired artifacts to output images

SR sensitivity to the kernel mismatch. σ_{LR} denotes the kernel used for downsampling and σ_{SR} denotes the kernel used for SR.

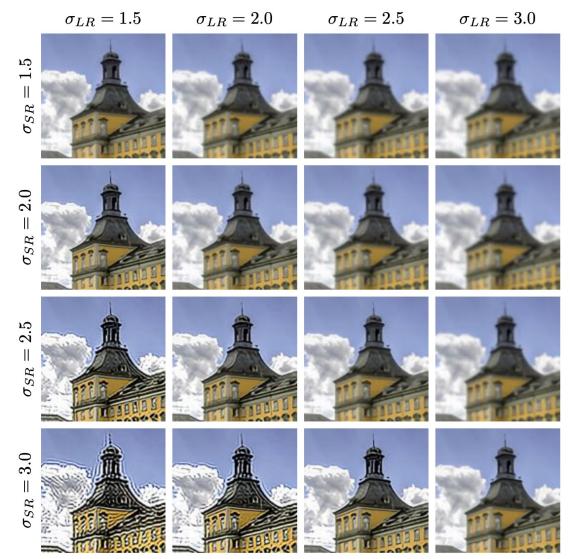


Figure credit: J. Gu et al., Blind Super-Resolution With Iterative Kernel Correction, CVPR 2019

- Highly ill-posed problem
 - One LQ image corresponds to infinite number of HQ images

- Vice versa
 - One HQ image corresponds to infinite number of LQ images

HQ

• Facial details are lost and degraded in the LQ images

LQ

• Identity inconsistency between output and GT

•••

Input LQ

Possible Outputs HQ

A good solution

- i. Reduce the uncertainty and ambiguity of LQ-to-HQ mapping.
- ii. Complement high-quality details lost in the LQ inputs.
- iii. Be robust against heavy degradations while maintaining identity consistency.

How to achieve this?

S. Zhou, K. C. K. Chan, C. Li, C. C. Loy, Towards Robust Blind Face Restoration with Codebook Lookup TransFormer, NeurIPS 2022

Priors for Face Restoration

Existing priors for face restoration

• Geometric priors

- Facial semantic map
- Facial component heatmap
- Facial 3D shape
- ...

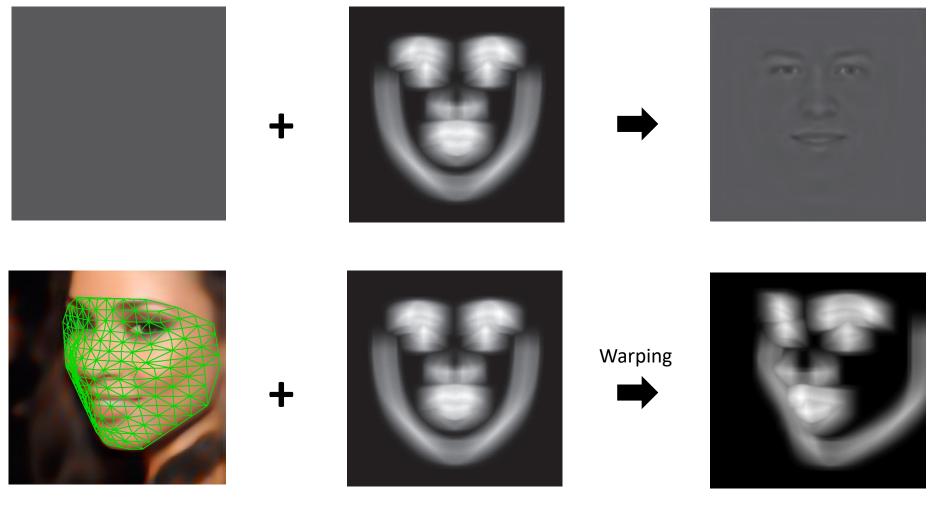
• Reference priors

- Similar faces
- Facial component dictionaries
- ...

• Generative priors

- Pre-trained face generator, e.g., StyleGAN2
- ...

Geometric prior

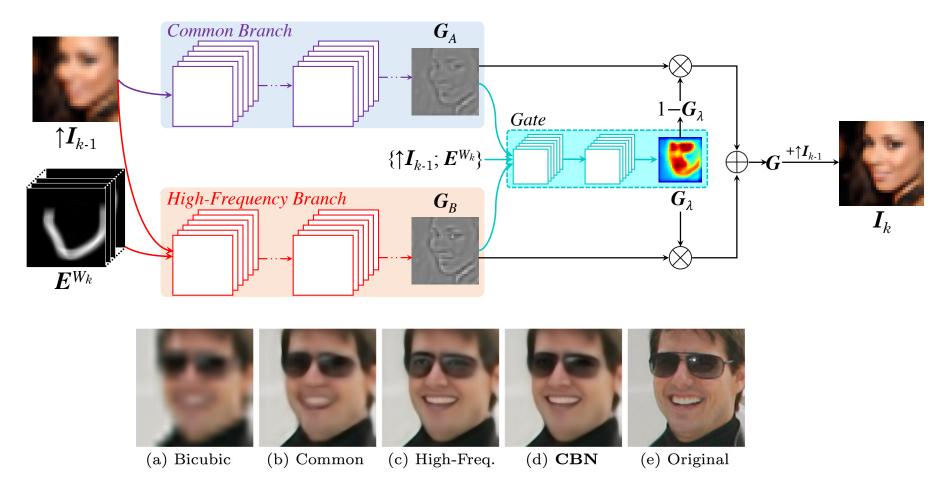


Dense correspondence field

Face prior

Geometric prior

Face restoration conditioned on prior



S. Zhu, S. Liu, C. C. Loy, X. Tang, Deep Cascaded Bi-Network for Face Hallucination, ECCV 2016

Geometric prior

[a] Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior, ICCV 2015 [b] Jin, Y., Bouganis, C.S.: Robust multi-image based blind face hallucination. CVPR, 2015

Existing priors for face restoration

• Geometric priors

- Facial semantic map
- Facial component heatmap
- Facial 3D shape
- ...

• Reference priors

- Similar faces
- Facial component dictionaries
- ...

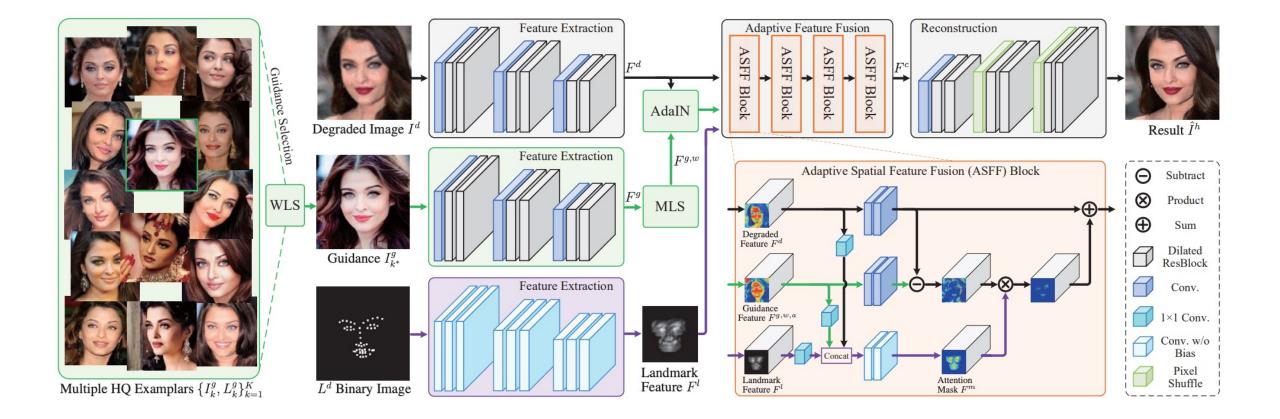
• Generative priors

- Pre-trained face generator, e.g., StyleGAN2
- ...

Reference prior

Face restoration conditioned on exemplars

Reference prior



X. Li et al., Enhanced Blind Face Restoration with Multi-Exemplar Images and Adaptive Spatial Feature Fusion, CVPR 2020

Existing priors for face restoration

• Geometric priors

- Facial semantic map
- Facial component heatmap
- Facial 3D shape
- ...

• Reference priors

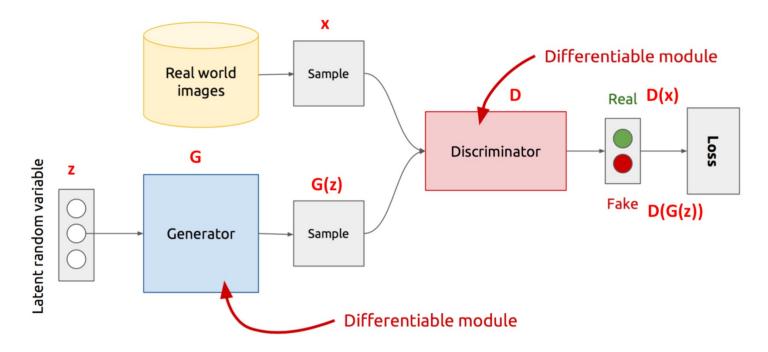
- Similar faces
- Facial component dictionaries
- ...

• Generative priors

- Pre-trained face generator, e.g., StyleGAN2
- ...

Generative Adversarial Network

- Generative model *G*:
 - Captures data distribution
 - Fool D(G(z))
 - Generate an image G(z) such that D(G(z)) is wrong (i.e. D(G(z)) = 1)
- Discriminative model D:
 - Distinguishes between real and fake samples
 - D(x) = 1 when x is a real image, and otherwise



- z is some random noise (Gaussian/Uniform).
- z can be thought as the latent representation of the data.

Can we leverage a GAN trained on large-scale natural images for richer priors?

GAN is a good approximator for natural image manifold.

Using GAN as latent bank

Encoder-Decoder Structure

(
Encoder	Decoder

A common architecture

It is typically trained from scratch using a combined objective function consisting of a fidelity term and an adversarial loss

The generator is responsible for both capturing the natural image characteristics and maintaining the fidelity to the ground-truth.

This inevitably limit its capability of approximating the natural image manifold.

Using GAN as latent bank

	Generator of	
Encoder	pretrained	Decoder
	GANs	

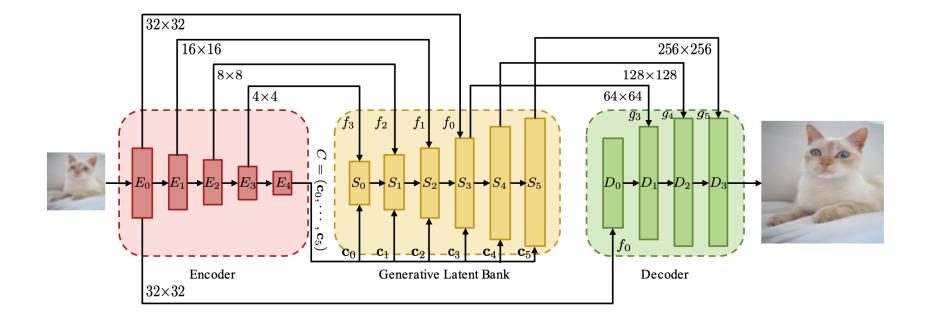
Encoder-Bank-Decoder Structure

Lifts the burden of learning both fidelity and texture generation simultaneously

Does not involve image-specific optimization at runtime

Needs a single forward pass to perform image restoration

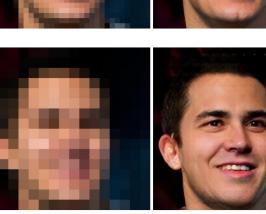
Inspired by the classic notion of dictionary but exploit GAN as a more effective way for storing priors



Condition the bank by passing both the latent vectors and multi-resolution convolutional features from the encoder to achieve high-fidelity results. Symmetrically, multi-resolution cues need to be passed from the bank to the decoder.

K. C. K. Chan, X. Wang, X. Xu, J. Gu, C. C. Loy, GLEAN: Generative Latent Bank for Image Super-Resolution and Beyond, TPAMI 2022

GLEAN (ours)



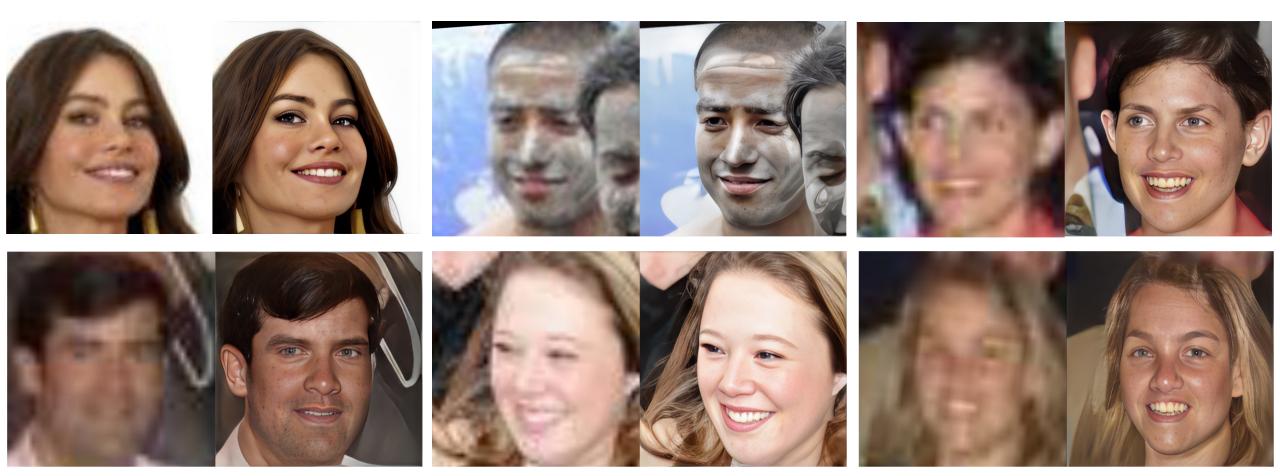
LR

GLEAN (ours)

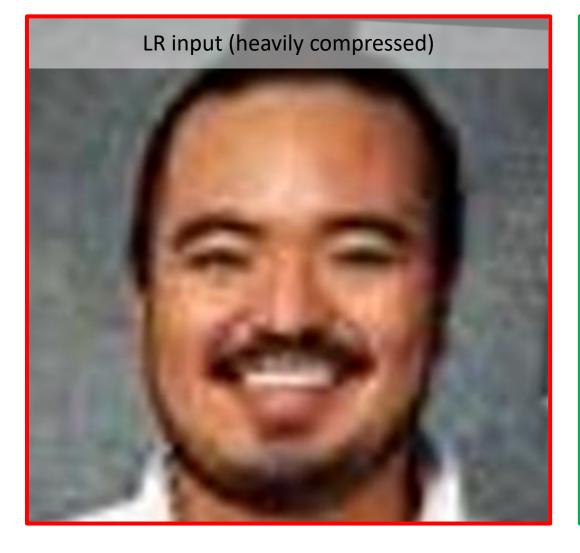
484x484

242x242

121x121

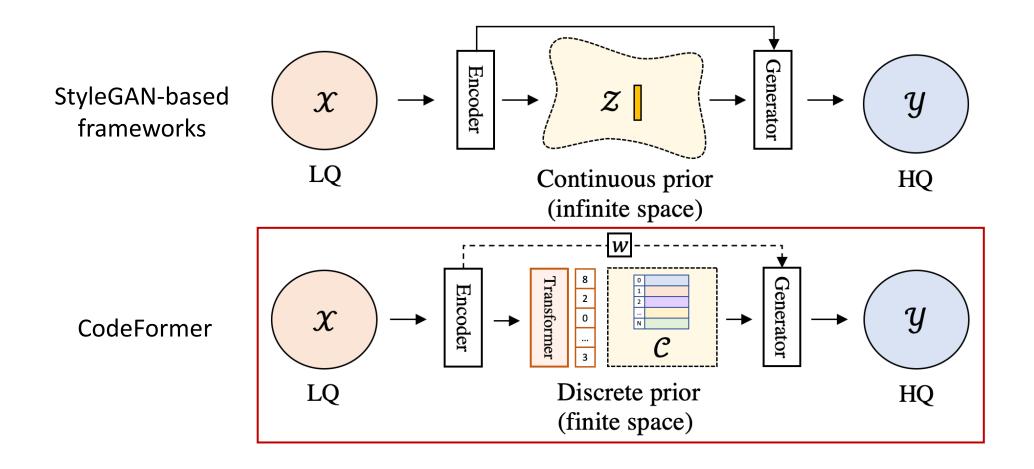


Generative prior

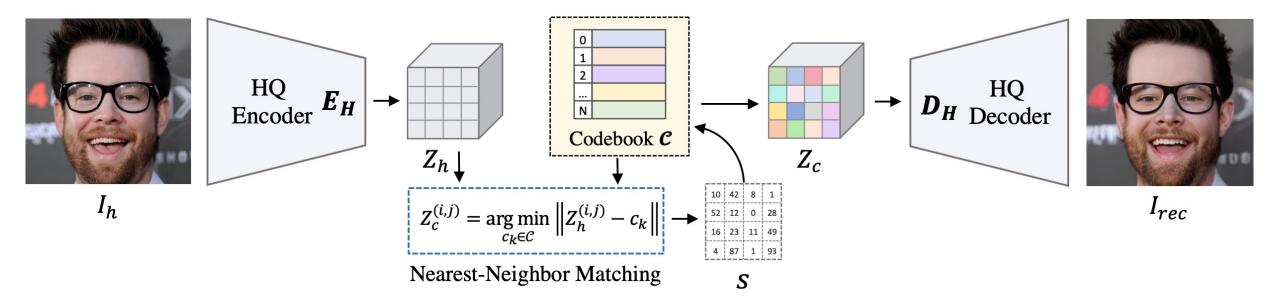


Generative prior

Continuous prior v.s. discrete prior



VQGAN



[VQGAN] *Esser et al.,* Taming Transformers for High-Resolution Image Synthesis, CVPR 2021 [VQVAE] *Oord et al.,* Neural Discrete Representation Learning, NeurIPS 2017

Continuous prior v.s. discrete prior

Input

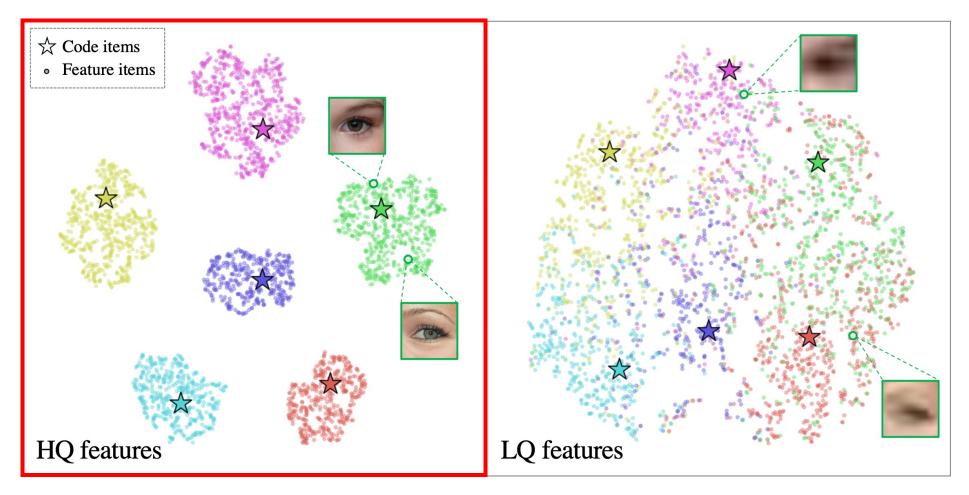
PULSE GFP-GAN (continuous, w/o connection) (continuous, w/ connection)

- A. LQ-HQ mapping √
- B. Details v
- C. Identity

Ground Truth

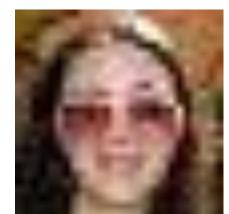
Nearest Neighbor (discrete, w/o connection)

Codebook lookup



(b) Distributions of HQ (left) / LQ (right) features and the codebook items

Continuous prior v.s. discrete prior



Input

A. LQ-HQ mapping

B. Details **v**

C. Identity **v**

Ground Truth

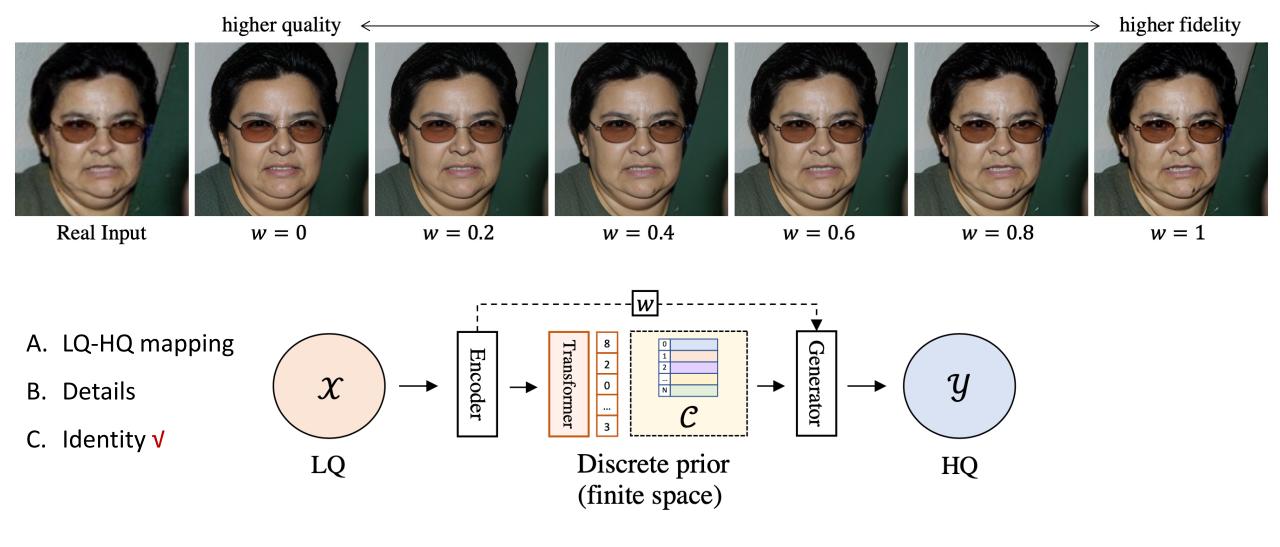
PULSE GFP-GAN (continuous, w/o connection) (continuous, w/ connection)

Nearest Neighbor v.s. CodeFormer

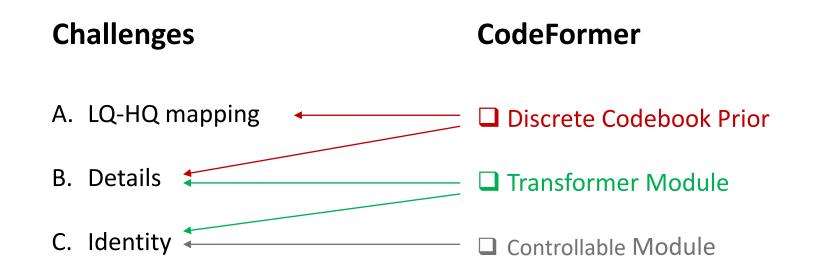
Real Input

Nearest Neighbor

Controllability

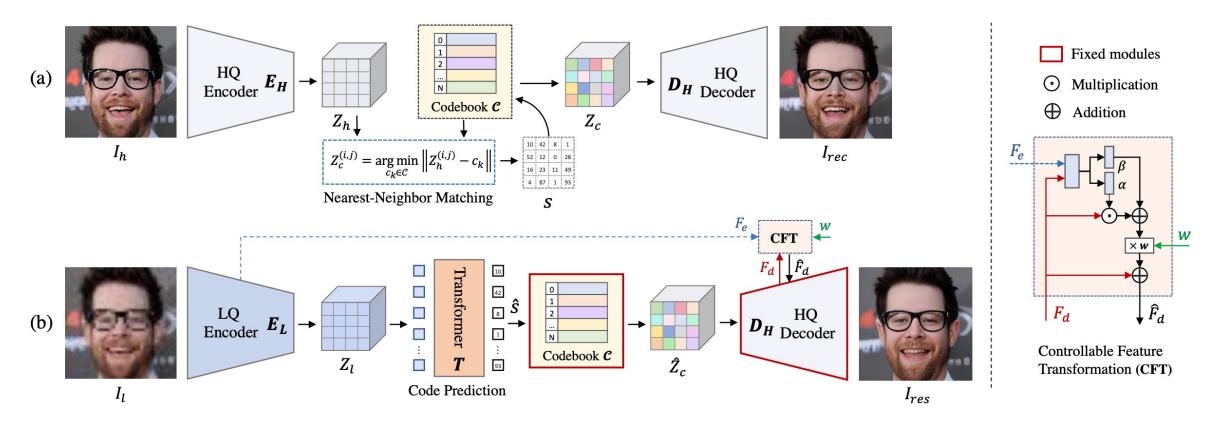


Addressing the challenges

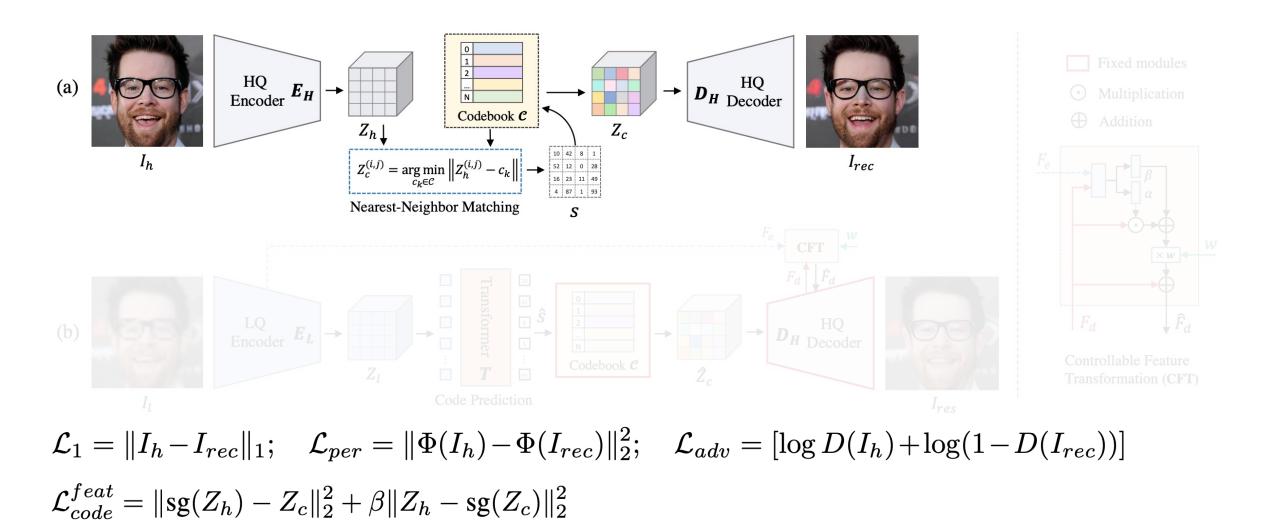


Framework of CodeFormer

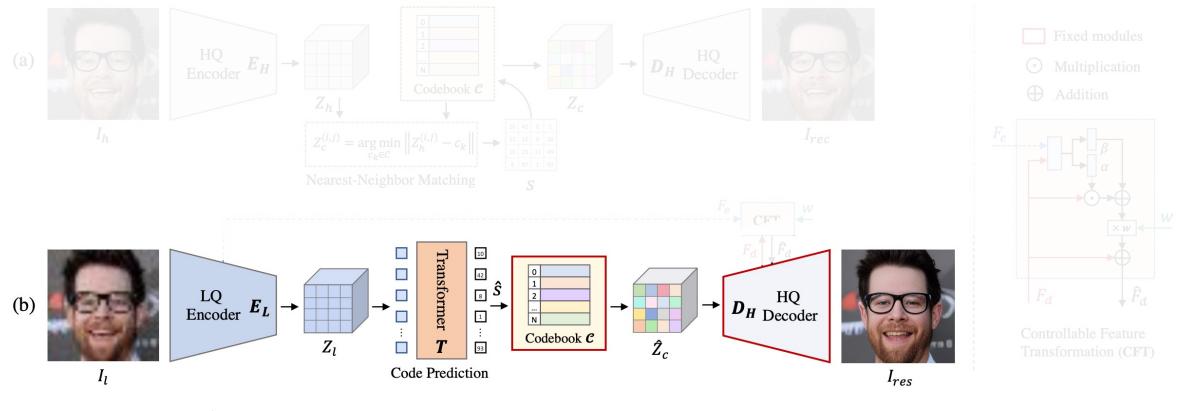
It contains three training stages



Stage I: Codebook Learning (VQGAN)

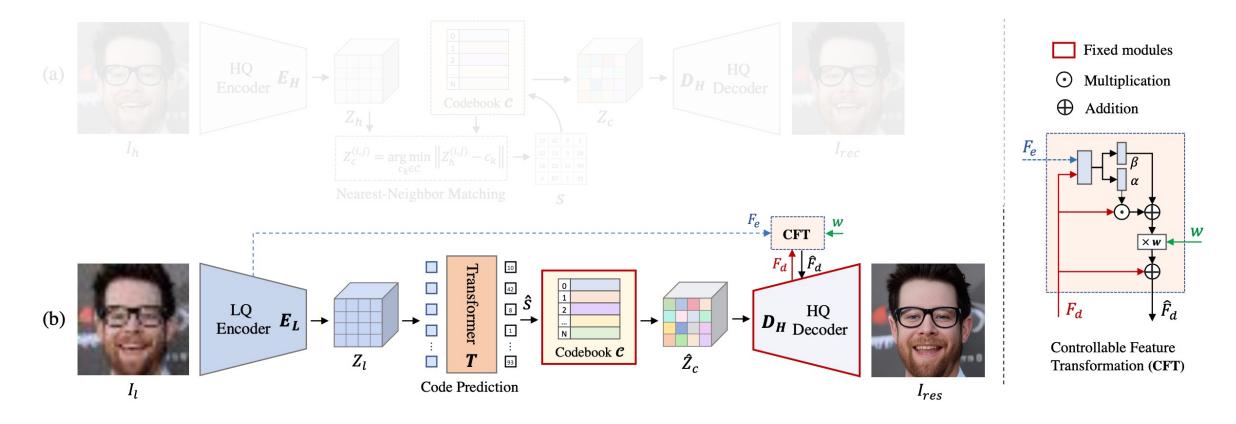


Stage II: Codebook Lookup Transformer



 $\mathcal{L}_{code}^{token} = \sum_{i=0}^{mn-1} -s_i \log(\hat{s_i}); \quad \mathcal{L}_{code}^{feat'} = \|Z_l - \operatorname{sg}(Z_c)\|_2^2$

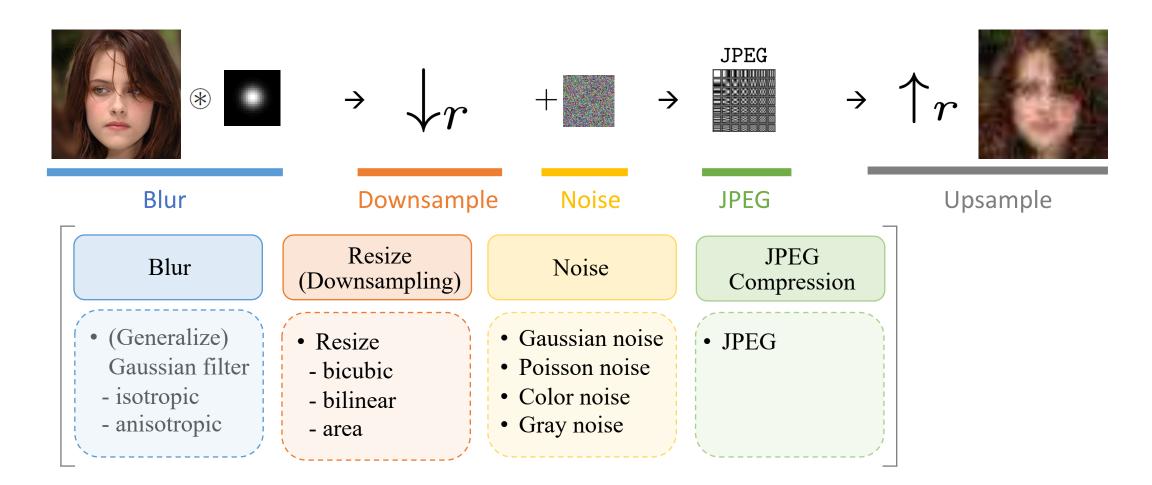
Stage III: Controllable Feature Transformation



 $\hat{F}_d = F_d + (\alpha \odot F_d + \beta) \times w; \quad \alpha, \beta = \mathcal{P}_\theta(c(F_d, F_e))$

Degradation model

 $I_l = \{ [(I_h \otimes k_\sigma)_{\downarrow_r} + n_\delta]_{\text{JPEG}_q} \}_{\uparrow_r}$



Degradation model

 $I_l = \{ [(I_h \otimes k_\sigma)_{\downarrow_r} + n_\delta]_{\text{JPEG}_a} \}_{\uparrow_r}$ JPEG \rightarrow \rightarrow \rightarrow Blur Downsample Noise **JPEG** Upsample Resize JPEG Noise Blur (Downsampling) Compression • (Generalize) • Gaussian noise • Resize • JPEG • Poisson noise Gaussian filter - bicubic - isotropic • Color noise - bilinear - anisotropic • Gray noise - area

Gaussian noise: Gaussian noise has a probability density function equal to that of the Gaussian distribution

Poisson noise: model the sensor noise caused by statistical quantum fluctuations, that is, variation in the number of photons sensed at a given exposure level

Not a silver bullet - merely extends the solvable degradation boundary of previous blind SR methods through modifying the data synthesis process

Evaluation on blind face restoration

Real Input

DFDNet

GFP-GAN

GPEN

CodeFormer (Ours)

Evaluation on blind face restoration

Real Input

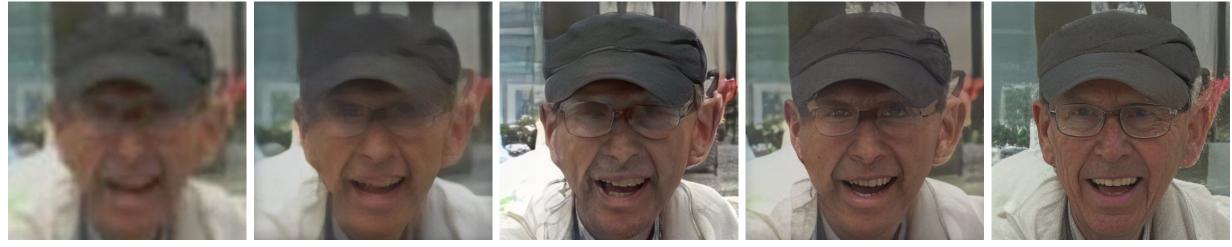
DFDNet

GFP-GAN

GPEN

CodeFormer (Ours)

Evaluation on blind face restoration



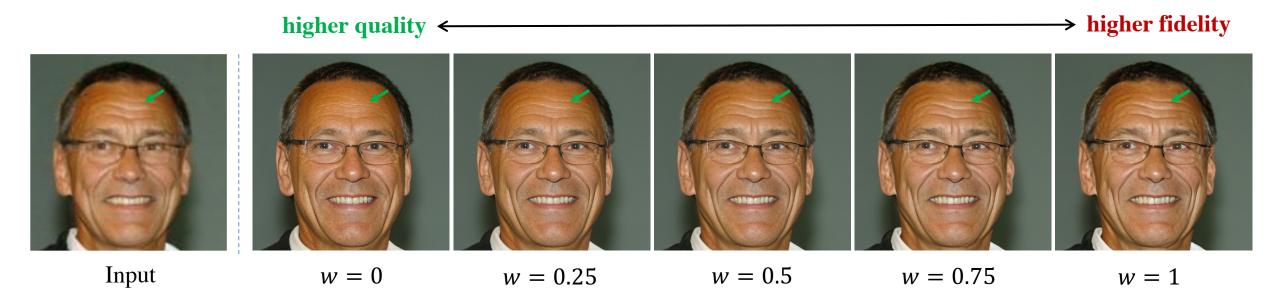
Real Input

DFDNet

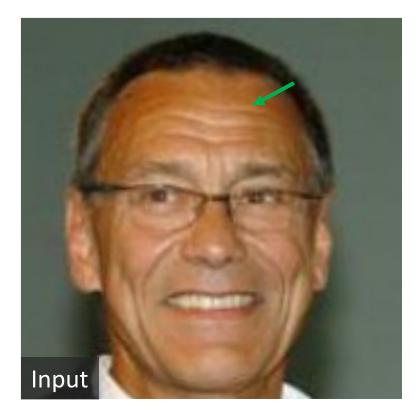
GFP-GAN

GPEN

CodeFormer (Ours)

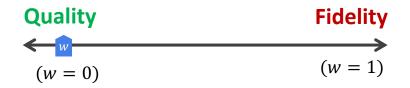


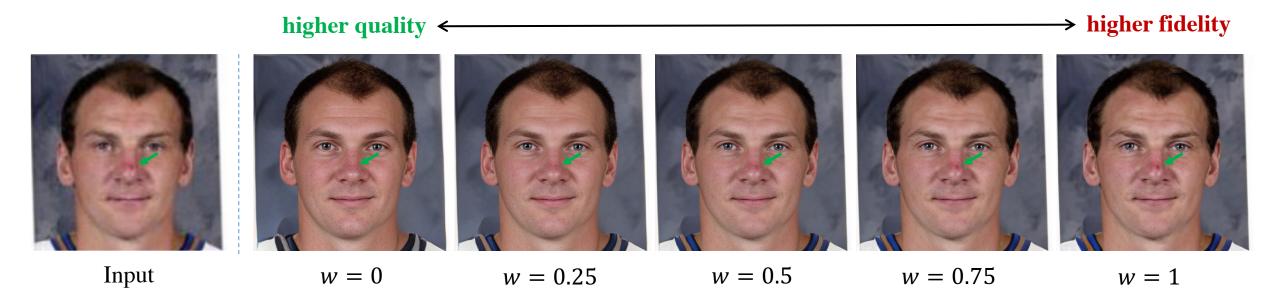
Continuous Transitions between Image **Quality** and **Fidelity** via **Controllable Feature Transformation Module**



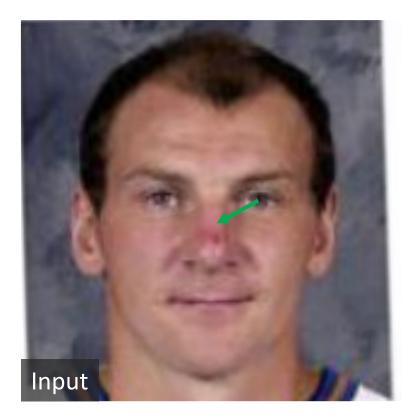
Mild Degradation



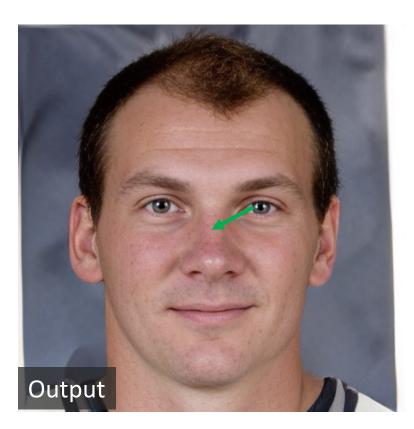


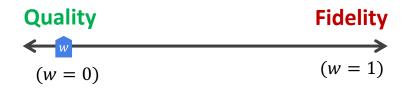


Continuous Transitions between Image **Quality** and **Fidelity** via **Controllable Feature Transformation Module**

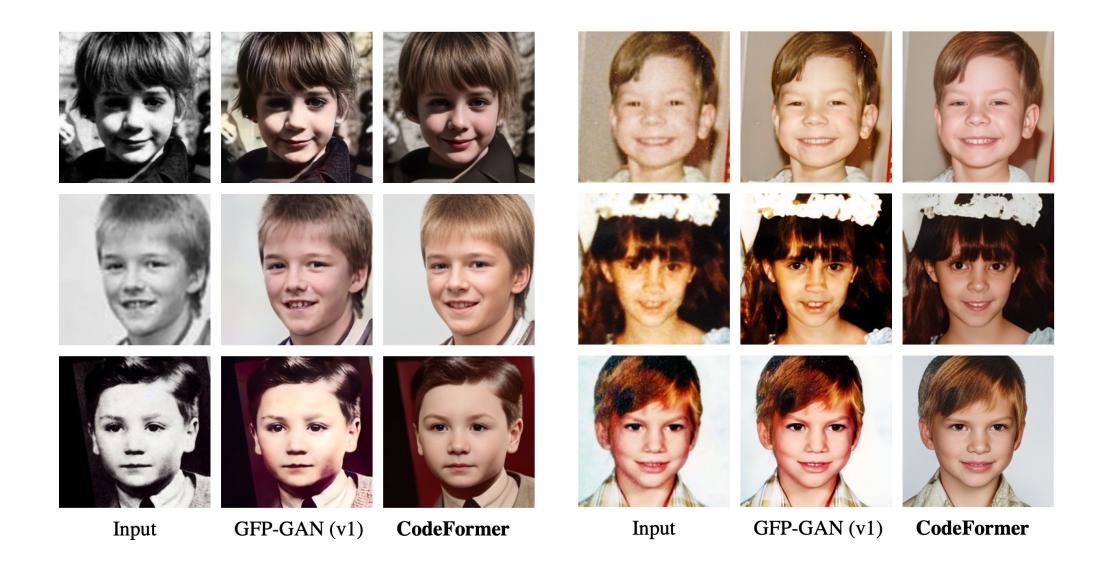


Mild Degradation





Face color enhancement



Face inpainting

Masked Input

CTSDG

GPEN

CodeFormer

GT

Face inpainting (extremely large mask)

Masked Input (extremely large mask)

CTSDG

GPEN

Old Photo

Old Photo

Old Photo

Old Photo

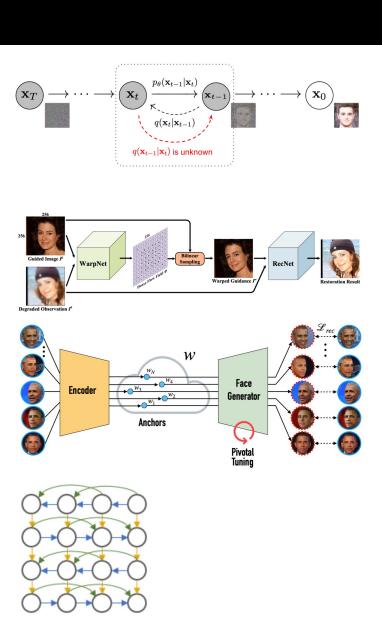
AI-Generated Face



AI-Generated Face

Discussions

- Next generation of generative priors
 StyleGAN2 -> VQGAN -> Diffusion Model?
- Identity inconsistency issue
 Training Setting; Network Structure;
 Reference-based model (e.g., Li et al);
 Personalized model (e.g., MyStyle)
- Video face restoration
 Recurrent networks (e.g., BasicVSR series)



QA & Thanks!

Official Gradio demo for <u>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</u>. A CodeFormer is a robust face restoration algorithm for old photos or Al-generated faces. Try CodeFormer for improved stable-diffusion generation!

0.7

Background_Enhance

Clear

Face_Upsample
Rescaling_Factor (up to 4)

Codeformer_Fidelity (0 for better quality, 1 for better identity)

Download the output		
out.png	1.7 MB	Download

https://github.com/sczhou/CodeFormer