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Multimodal biometrics

• Different biometric
modalities developed  

–finger print
–iris
–face (2D, 3D)
–voice
–hand
–lips dynamics
–gait

Different traits- different properties
•usability
•acceptability
•performance 
•robustness in changing environment
•reliability
•applicability (different scenarios)
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Benefits of multimodality

n Motivation for multiple biometrics
n To enhance performance
n To increase population coverage by reducing the failure to enrol rate
n To improve resilience to spoofing
n To permit choice of biometric modality for authentication
n To extend the range of environmental conditions under which authentication 

can be performed
n To enable seamless switching/fusion of different biometrics in dynamic 

acquisition scenarios



5

OUTLINE

n Fusion architectures
n Problem formulation
n Estimation error
n Case study: Multimodal and cross-modal 

person re-identification
n Conclusions

The aim: To discuss the purpose of multimodal 
biometrics fusion, and to introduce basic fusion 
architectures and underlying mathematical models
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Fusion architectures

n Integration of multiple biometric modalities
n Sensor (data) level fusion

n Linear/nonlinear combination of registered variables
n Representation space augmentation

n Feature level fusion
n Soft decision level fusion
n Decision level fusion
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Decision-level fusion
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Decision-level fusion
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Decision-level fusion
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Decision-level fusion
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Score-level fusion
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Levels of Fusion
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Data level fusion
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Feature level fusion
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Feature level fusion
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Score level fusion
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Biometric system

Pattern representation
Pattern recognition problem
N – number of classes
b  - biometric trait
x  - feature vector

-priori probability of
class 
-measurement distri-
butions of patterns in 
class 
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Bayesian decision making

P(ω1 | bk)

P(ω2 | bk)

xk

Aposteriori class 
probabilities

P(ω3 | bk)

Bayes minimum 
Error rule
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Problem formulation

n Given 

n Bayes decision rule
n Assign  subject to class ω if 
P(ω| b1,…, bK) = max P(   | b1,…, bK)

n Note
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Fusion options

n

n The integration over    is marginalisation
over the distribution 
n x is a feature vector determined by all traits
n Implicitly a multiple classifier fusion

• Bagging, boosting, drop out, hard sample mining
n Marginalised estimate of class posterior 

Tutorial on anomaly detection
Josef Kittler Member, IEEE

Abstract—

Anomaly detection, classifier decision incongruence,
Bayesian surprise Notation: P (✓) and p(xk|✓) and p(bk|✓)
class ✓

bk ! ! if
P (✓ = !|bk) = max✓ P (✓|bk)

(1)

P (!|b1, ...., bK) =
p(b1, ...., bK)P (!)

normalisation factor
(2)

p(b1, ...., bK!) =
R
x̂ p(x̂, b1, ...., bK |!)R
x̂ P (!|x̂)p(x̂|b1, ...., bK)
P̂ (!|x)

(3)

p(x̂|b1, ...., bK)
P̂ (!|x)

p(b1, ...., bK |!) =
Q

i

R
x̂i
p(x̂i, bi|!)Q

i

R
x̂i
P (!|x̂i)p(x̂i|bi)

P̂ (!|x)
(4)

p(b1, ...., bK |!) =
R
x̂1,.,x̂K

p(x̂1, ., x̂K , b1, ...., bK |!)R
x̂1,.,x̂K

P (!|x̂1, ., x̂K)p(x̂1, ., x̂K |b1, ...., bK)

P̂ (!|x)
(5)

I. MACHINE LEARNING

• Machine learning is a field of study concerned with the
development of algorithms that can learn from and make
predictions on data.

• The aim of machine learning is to give computers the
ability to learn (find solutions to problems) without being
explicitly programmed.

• A typical task is to generate response to input data so as
to achieve a required functionality. Examples include:

– regression (prediction of output given input)
– classification (prediction of class membership of

input)
– cluster assignment (association of input to data struc-

ture model)
– anomaly detection (identification of input as an out-

lier)
• Mathematically, the machine is realising an appropriate

function F
y = F (x,W ) (6)

The authors are with the Centre for Vision, Speech and Signal
Processing,University of Surrey, Guildford, GU2 7XH, UK. E-mail:
J.Kittler@surrey.ac.uk

where x is the input vector, and y is the output. W
denotes parameters of function F

• Linear regression y = Wx where y
• Multivariate regression
• Classification
• Clusterin
• Anomaly detection
• Machine learning problem formulation: we have a set

of training data, representing input and corresponding
output, when available

• The task is to learn parameters W , so the the predicted
values F (x,W ) correspond to the ground truth values
z.

• The learning task is accomplished by defining an objec-
tive function, e.g. |z�F (x,W )|2, andfinding parameters
W so that this function is minimised

• Z = {z1, ....., zN}

•

• y =

2

664

wT
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.

.
wT

d

3

775x

• [y � z]T [y � z]
• �

Pm
j=1 yj log zj

•

F (x) =
X

j(support vectors)

↵jzj(x
T
j x) + b (7)

•

F (x) =
X

j(support vectors)

↵jzjk(xj ,x) + b (8)

• `p norm of a = [a1, ...., ad]T

`p = [
dX

j=1

|a|p]
1
p (9)

• `0 ...... counts the number of nonzero elements
• `1 ...... induces sparsity
• `2 ...... length of vector a
• `1 ...... selects argmaxj aj
• k(xj ,x)
• for example, a radial basis function

II. DISTANCE-BASED OUTLIERS

• According to Hawkins: An outlier is an observation that
deviates so much from other observations so as to arouse
suspicions that it was generated by a different mechanism

• Most outlier detection test are
– univariate
– distribution based

1
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Fusion options

n Feature level fusion

n Each modality has its own set of features  xi

n Score is a function of all xi jointly
n Fusion process marginalisation is over the joint 

distribution of all modalities
n In addition, there could be modality specific 

marginalisation at the feature extraction level
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Fusion options

n Score level fusion

n Each modality has its own set of features  xi

n The fused score is a product of individual 
modality specific scores

n Fusion process marginalisation is over modality 
specific distributions
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– regression (prediction of output given input)
– classification (prediction of class membership of

input)
– cluster assignment (association of input to data struc-

ture model)
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– anomaly detection (identification of input as an out-
lier)

• Mathematically, the machine is realising an appropriate
function F

y = F (x,W ) (7)

where x is the input vector, and y is the output. W
denotes parameters of function F

• Linear regression y = Wx where y
• Multivariate regression
• Classification
• Clusterin
• Anomaly detection
• Machine learning problem formulation: we have a set

of training data, representing input and corresponding
output, when available

• The task is to learn parameters W , so the the predicted
values F (x,W ) correspond to the ground truth values
z.

• The learning task is accomplished by defining an objec-
tive function, e.g. |z�F (x,W )|2, andfinding parameters
W so that this function is minimised
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Problem formulation: comments

n basic score level fusion is by product
n product can be approximated by a sum if 

does not deviate much from
i.e.  

n the resulting decision rule becomes

Tutorial on anomaly detection
Josef Kittler Member, IEEE

Abstract—
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Effect of estimation errors

P(ω1 | xk)
P(ω2 | xk)

margin

xk

Aposteriori class probabilities

Estimation error
distribution
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Sources of estimation errors

Feature vector output by sensor i

Training set for the i-th expert
Classifier model

Distribution of models
Parameters for expert i
Distribution of expert i parameter
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Coping with estimation errors

P(ω1 | xk)

P(ω2 | xk)

margin

xk

Aposteriori class 
probabilities

Estimation error
distribution

A

Reducing 
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variance
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Direct score fusion: score 
normalisation

n Aposteriori class probabilities are 
automatically normalised to [0,1]

n Some systems compute a matching 
score     , rather than

n Scores have to be normalised to 
facilitate fusion by simple rules
n aposteriori probability estimate
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Score normalisation (cont)

n Motivation for score normalisation
n Non-homogeneous scores (distance, similarity)
n Different ranges
n Different distributions

n Desirable properties
n Robustness
n Efficiency

n Most effective methods
n Nonlinear mapping with saturation for very large/small scores
n Increased sensitivity near the boundaries (Ross and Jain)
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Score normalisation (cont)

n Median

n Double sigmoid

n Tanh

n Min-max, Z-score and tanh are efficient, 
median, double-sigmoid and tanh are 
robust

n Min-max

n Scaling

n Z-score  
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Abstract—Ensembles of one-class classifiers (OCCs) have been
shown to exhibit promising performance in a variety of machine
learning applications. The ability to assess the similarity or
the correlation between the output of various OCCs is an
important step towards the building a meaningful ensemble of
OCCs. However, this aspect of the OCC fusion problem has
been mostly ignored so far. In this paper, we propose a new
method of constructing an ensemble of OCCs with two major
contributions: (a) we investigate the problem of normalising the
scores of different OCCs such that they become comparable and
advocate a robust two-sided score normalisation method (b) we
propose a novel fitness function to evaluate the competency of
OCCs without requiring anomalous samples c) We build our
proposed ensemble using a weighted averaging approach whereby
the weights are optimised using a particle swarm optimisation
algorithm. We evaluate the merits of the proposed method on
10 benchmarking datasets from different application domains,
including medical, anti-spam and face spoofing detection. The
comparison of the proposed approach with the state-of-the-art
and the statistical analysis confirms the effectiveness of the
proposed model.

I. INTRODUCTION

MAD = median|s�median(s)| (1)

Recently, anomaly detection has been attracting consid-
erable attention in various areas of machine learning. The
term anomaly detection refers to the problem of identifying
patterns/observations, which appear to be inconsistent from
a population of normal data. Anomalies are also referred to
as outliers, deviants, noise or abnormalities in the machine
learning literature. In some cases examples of anomalies are
available and one can define the problem of anomaly detection
as a multi-hypothesis classification problem. The alternative is
to pose the anomaly detection problem as a one-class classi-
fication task. One class formulation of the anomaly detection
problem has several advantages, including (a) insulation from
the decision system being biased by a small set of available
anomalies at the expense of its ability to detect unknown
concepts, and generalisation to unseen types of anomalies [1]–
[3] (b) the training set can be extended more easily since only
normal data is required for training [4], [5].

In this paper, we focus on the one-class classification
approach to anomaly detection. To further enhance the gener-
alisation capabilities of an anomaly detection system, multiple

One-Class Classifiers (OCC) have been used to create an
ensemble with improved performance [3]–[6]. Such inves-
tigations were commonly directed to specific applications.
A very few studies in the literature have been devoted to
developing a general methodology of OCC ensemble design
and examined its effectiveness on a range of applications. In
this paper, we aim to redress this deficiency. We propose
a generic weighted averaging (WA) OCC ensemble fusion
method which can be applied to different domains, including
medical, anti-spam detection and biometrics. We build the Pool
Of Classifiers (POC) using five different One-Class Classifier
(OCC) including One-Class SVM (OCSVM), Support Vector
Data Description (SVDD), one-class Mahalanobis Distance
(MD), one-class Gaussian Mixture Model (GMM), and one-
class Sparse Representation Classification (SRC).

Since the outputs (scores) of component classifiers of a
POC may vary considerably, in the range of values they span,
it is essential to perform some form of score normalisation.
The fundamental motivation for normalisation is to map the
score of an OCC to a specific interval to make the outputs of
different OCCs comparable [7]. In this respect, a normalised
score of each POC member is rendered independent from
the application specific data distribution, without distorting
or losing information [8]. The majority of anomaly detec-
tion approaches adopt a popular normalisation method which
transforms the scores onto the interval [0-1] [9]–[11]. Only,
a very few consider the effect of population outliers on the
normalisation process, which is particularly acute in the case
of heavy-tailed distributions. As a heavy-tailed distribution
goes to zero slower than exponential distributions, there will be
more bulk under the tails of the probability density function.
This may skew the normalisation process. To mitigate such
cases, we propose a novel score normalisation approach to
enhance the performance of anomaly detection. Specifically,
we define two normalisation points at both tails of the score
distribution to ensure that a certain percentage of data will
always lie within a specific range.

In the case of OCC ensemble fusion by weighted averaging
the fundamental task is to find a set of optimal weights to
maximise the anomaly detection performance. The difficulty
of solving this problem has been recognised and highlighted
numerous times in the literature [12]. It an objective function



Face spoofing attack detection

n The problem
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n The approach – anomaly detection

n Client specific solution 
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One class normalisation method

3D Assisted 2D Face Recognition                                                  Presented by: Soroush Fatemifar             May 2019 43

n Two-sided normalization
n r% tail cut-off
n cut-off points mapped to [0,1]

n Heavy tail distribution

the data point which is greater than 97% of the given data and less than the
remaining 3%. According to eq. 4, su will be mapped to the unity. This has
been motivated by the binary nature of the anomaly detection task, where
the key region of interest is close to the decision boundary which is unity in
our case. However, it is pertinent to ask whether two-sided normalisation
would benefit the fusion process. For that, we propose a novel two-sided
score normalisation approach with the following equation:

s̃i =
si � sl

su � sl
(5)

where sl is a normalisation point cutting o↵ the ⇢ percentage of data lying
under the the lower tail of a score distribution. We show the upper tail and
lower tail normalisation points in Fig. 2.

Figure 2: The normalisation points (su and sl) with a sample ⇢ are applied to the given
score distributions.

As mentioned earlier, we want to improve the robustness of the pro-
posed two-sided score normalisation method against outliers and extreme
cases which are more frequent in the heavy-tailed distributions. A distribu-
tion is said to have a heavy tail if the tail probabilities decay more slowly
than those of any exponential distribution. The heavier the tail is, the larger
the probability to get one or more disproportionate values in data. We show
the example of Gaussian and heavy-tailed distributions in Fig. 3.

We argue that outliers in the upper tail of a heavy-tailed distribution are
likely to overlap with anomalies. A successful control of false negatives will
require a sacrifice in terms of false rejection of nonanomalous obesrvations.
We redress this deficiency by using the proposed two-sided normalisation
method. Let us provide an example to clarify the whole purpose of our
optimisation task in which the proposed score normalisation method plays
an important. Assume the optimised ⇢ is found to be 3%. In this respect,

10

Figure 3: A sample of Gaussian distribution and heavy-tailed distribution are shown.

we normalise all OCC scores in such a way that 3% of the data is above the
unity. This 3% of the data which is considered as outliers. By fusing the
normalised OCC scores we hope that the resultant WA model will have a
lower percentage of data (less than a given ⇢ = 3%) above the unity. In this
respect, we expect to obtain a better separation between outliers (of a given
distribution) from anomalous samples (di↵erent from a given distribution).
The optimisation procedure which is working directly with the proposed two-
sided normalisation will be discussed next.

3.2. The weighted average fusion problem formulation

Once a pool of normalised OCCs is constructed, the task of designing
an ensemble of OCC anomaly detectors involves their fusion and decision
threshold selection. In this paper we assume that we do not have enough
anomalous samples to contemplate using a conventional binary classification
framework to learn a trained fusion rule. This contrasts with the common
approach in the literature [10, 9, 8], where the fusion of OCCs is accomplished
using anomalous samples for its training. In this conventional approach the
weights and decision thresholds are optimised using binary classification met-
rics such as Area Under Curve (AUC), Half Total Error Rate (HTER), Ge-
ometric Mean (G-Mean), EER and Precision to evaluate the performance of
WA in the validation stage. We will introduce some of these metrics, which
assume the availability of anomalous samples, later in Section 4.

In this paper we adhere to the pure OCC ensemble design philosophy even
for the design of the fusion rule. In the absence of anomalous samples for
its training, we are limited to the choice of a very simple fusion rule, such as
simple averaging (SA), or weighted averaging (WA). Even for the WA fusion
we need to optimise the weights of the fusion system. For that purpose we
need an objective function that will be introduced in Section 3.3.

11
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Case study in multimodal 
soft biometric fusion

n Multimodal biometric traits
n Multimodal sensing of the same biometric trait

n Different spectral bands
n Voice/image sensed lips dynamics
n Visual/language modalities for person re-identification
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Background and motivation

n Video surveillance very important tool for crime 
prevention and detection
n Watch list
n Forensic video analysis

n Hard biometrics (face) not always available
n Other video analytics tools are useful alternatives

n Soft biometrics (clothing, gait)
n Tracking

88



Soft biometrics and re-
identification

n Person Re-Identification
n Recognising a person from non-

overlapping cameras

n Formulated as a ranking problem



Re-ID with V&L

n The majority of existing methods are 
vision only
n Images or videos

n Joint vision and language modelling
n Image and video captioning, Visual 

question answering, Image synthesis 
from language, …

n Can language help vision in Re-ID?



Language annotation

n Augmenting existing datasets
n CUHK03: ~2700 descriptions
n VIPeR: ~1300 descriptions

n Crowd-sourced, 8 annotators
n Annotation

n Free style sentences, not attributes
n Encouraged to cover details
n On average 45 words per description
n Per image rather than per identity



Language annotation

A front profile of a young, slim and average 
height,  black female with long brown hair. She 
wears sunglasses and possibly earrings and 
necklace. She wears a brown t-shirt  with a golden 
coloured print on its chest, blue jeans and white 
sports shoes.
A short and slim young woman carrying a tortilla 
coloured rectangular shoulder bag with caramel straps, 
on her right side. She has a light complexion and long, 
straight auburn hair worn loose. She wears a dark 
brown short sleeved top along with bell bottomed ice 
blue jeans and her shoes can’t be seen but she might 
be wearing light colored flat shoes.



Person Re-ID

n Crossmodal & multimodal matching facilitated by 
CAA

n Performance gain due to
n Joint training
n Fusion of modalities

94

Re-ID System overview

7

A tall, slim man, probably an Asian in
his early twenties. He has dark short
hair. He is wearing spectacles and he
is holding something in his hand,
probably a letter or envelope cover.
He is wearing a multi-colour polo t-
shirt with blue, white, black and red
stripes on it. He is wearing a pair of
dark colour pants and brown shoes.

SE-ResNet based Vision 
Model

(50 layers , [ 3 X 3 ] kernel)

SE-ResNet based Language 
Model

(50 layers , [ 1 X 2 ] kernel)

fimg

ftxt

LID
Vision

LID 
Text

Joint CCA 
Embedding 

Space Learning 

A tall, slim man, probably an Asian in his
early twenties. He has dark short hair. He is
wearing spectacles and he is holding
something in his hand, probably a letter or
envelope cover. He is wearing a multi-
colour polo t-shirt with blue, white, black
and red stripes on it. He is wearing a pair of
dark colour pants and brown shoes.

Pull

Push
A girl, probably an Asian in her middle 
twenties. She has long dark hair. She is 
wearing a black colour top and a pair of  
black colour pants with black colour boots. 
She is holding a big red colour bag on her 
right shoulder.

A boy in his mid teens, with his left hand on
the back of his head, he appears to be
wearing eye glasses and is carrying a bright
yellow colour backpack. He is wearing a
black and white tshirt with horizontal stripes
on it. He wears a pair of blue or grey jeans
with brown colour leather slippers.

Push

Joint Embedding Space Learning 

fimg ftxt



Canonical correlation analysis

n Consider features x and y extracted from 
two biometric modalities

n Basic principle – find direction in the 
respective feature spaces that yield 
maximum correlation 
n Gauging linear relationship between two 

multidimensional random variables (feature 
vectors of two biometric modalities)

n Finding two sets of basis vectors such that the 
projection of the feature vectors onto these 
bases is maximised

n Determine correlation coefficients
96



CAA problem formulation

n Training set of pairs of vectors
n Maximisation of the correlation of the projections

n Leads to an eigenvalue problem

n With cov matrices regularised by 97



Re-ID with V&L

n Three sets:
n Training, query, gallery

n Training: image and language pairs

n Various settings, query x gallery:
n V x V, L x L, V x L, V x VL, VL x VL

n Asymmetric settings:
n Transfer language info. With CCA

n XQDA as metric learning



Person is male, 
wearing a dark 
colored blazer 

with a white 
dress shirt, dark 

pants and brown 
shoes. He is 

carrying a box 
and is wearing 

glasses

Multimodal and cross-modal image 
retrieval 

AXM-Net: Semantic Alignment and Context 
Sharing for Cross-Modal Person Re-identification



Person is 
male, wearing 
a dark colored 

blazer with a 
white dress 

shirt, dark 
pants and 

brown shoes. 
He is carrying 

a box and is 
wearing 
glasses

Semantic 
alignment of 
cross-modal 

features



Attentive Local 
Feature 
Learning

AXM-block 
based Visual & 
Textual Feature 

Learning 
Network 

Non-Local 
Align

F
C

F
C

LID-
Joint

A young boy is 
wearing green 
shirt with black 
and green shorts. 
He has black bag 
strap over his 
body. His shoes 
are blue sports 
joggers.
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Ammarah Farooq, etal., "AXM-Net: Cross-Modal Context Sharing Attention Network for Person Re-ID", Arxiv, 2021. 
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Visual Feature Maps Textual Feature Maps

R = 3 R = 3
R = 5 R = 7 R = 9

R = 5 R = 7 R = 9

Global 
Average 

Pool
Semantic 

Concepts in 
Vision

Semantic 
Concepts in Text

Context sharing 
semantic alignment 

network

. . . . . . . . . .

Fused Feature Maps to Next Layer

Adaptive cross-
modal context
sharing semantic
alignment (AXM)-
Block

AXM-block based
Visual and 

Textual Feature 
Learning Network 





Rejection of noisy information

The lady wears a black long jacket 
and black boots. She is carrying a 
black should bag.

This person is wearing a black and 
red tartan sweatshirt, cuffed jeans, 
and red converses.

The woman wears a black 
sleeveless top. She wears a black 
leather skirt with black boots and has 
a curly brown afro.



Focus on discriminative information

The man is looking over his shoulder 
to his right. He has short cut black 
hair. He is wearing a horizontally 
striped short sleeved short with khaki 
pants and dark shoes. The man is 
holding a white shopping bag 
in his right hand.

The man is wearing a navy blue
shirt with black pants. He has on 
brown shoes. He is carrying a 
green bag.

A man carries a brown package 
inside a white tote bag with green 
graphics while wearing a white t-
shirt with a red-and-yellow 
animal face centered on 
the front over blue shorts with a 
white stripe on the sides and gray 
shoes.



Conclusions and future research

n Training distribution
n augmentation
n balancing distribution biases
n feature distribution augmentation
n boosting
n unlabelled data

112

n Parameter distribution  
n Domain adaptation/shift
n Testing and evaluation
n Quality dependent distributions

n Conclusions
n We have provided an information theoretic underpinning of machine learning
n The properties of information measures impact on performance

• Function properties of measures, data distribution models

n Future directions of research



Take home message

n Role of multimodal biometrics
n Fusion levels
n Math formulation of different alternatives
n The concept of marginalisation/multiple classifier 

systems
n Notion of quality based, user specific and cohort 

based extensions of fusion
n Multimodal sensing and fusion of a single 

biometric
n Example: fusion of vision/language modalities 

for soft biometrics
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