

Fusion of Multimodal Biometrics

Josef Kittler

Centre for Vision, Speech and Signal Processing University of Surrey, Guildford GU2 7XH

J.Kittler@surrey.ac.uk

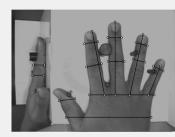
Acknowledgements: Dr Norman Poh

Multimodal biometrics

- Different biometric modalities developed
 - -finger print -iris
 - -face (2D, 3D)
 - -voice
 - -hand
 - -lips dynamics
 - -gait

Different traits- different properties •usability

- acceptability
- •performance
- robustness in changing environmentreliability
- •applicability (different scenarios)



Benefits of multimodality

Motivation for multiple biometrics

- To enhance performance
- To increase population coverage by reducing the failure to enrol rate
- To improve resilience to spoofing
- To permit choice of biometric modality for authentication
- To extend the range of environmental conditions under which authentication can be performed
- To enable seamless switching/fusion of different biometrics in dynamic acquisition scenarios

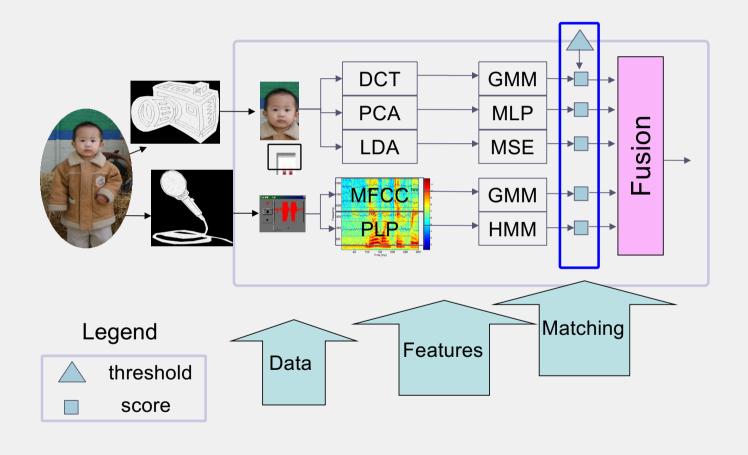
OUTLINE

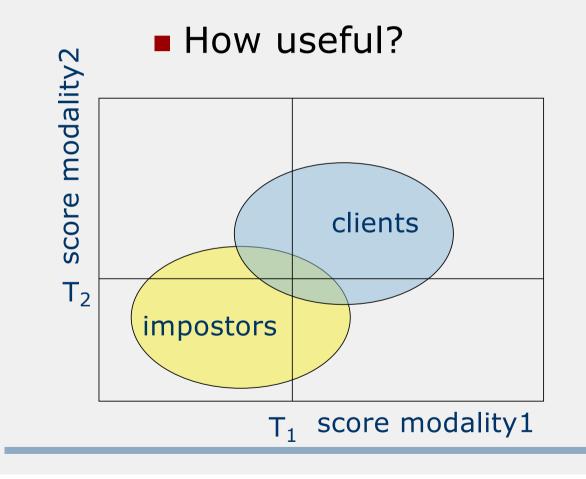
- Fusion architectures
- Problem formulation
- Estimation error
- Case study: Multimodal and cross-modal person re-identification
- Conclusions

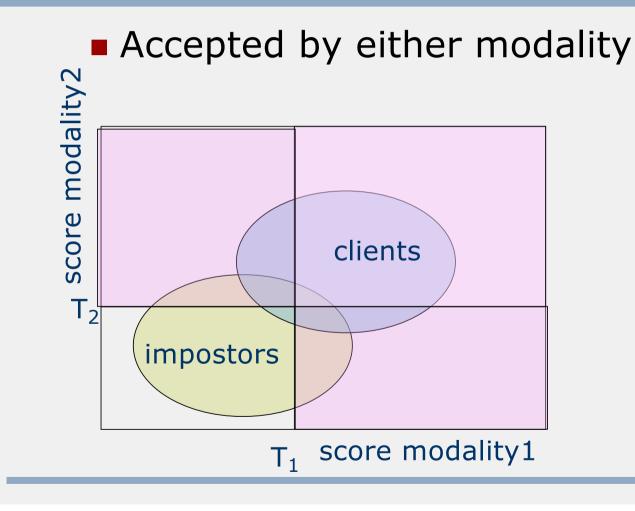
The aim: To discuss the purpose of multimodal biometrics fusion, and to introduce basic fusion architectures and underlying mathematical models

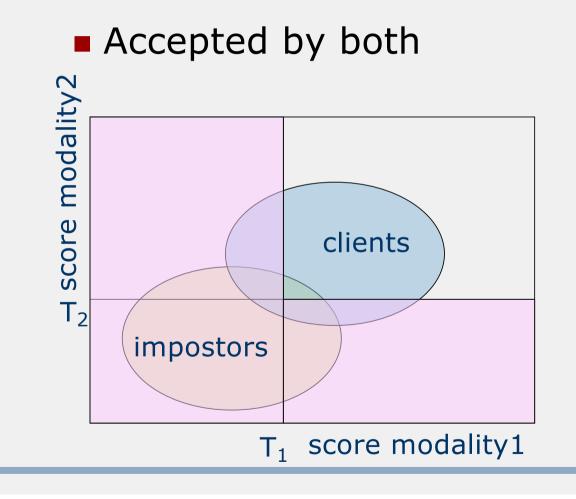
Fusion architectures

- Integration of multiple biometric modalities
- Sensor (data) level fusion
 - Linear/nonlinear combination of registered variables
 - Representation space augmentation
- Feature level fusion
- Soft decision level fusion
- Decision level fusion

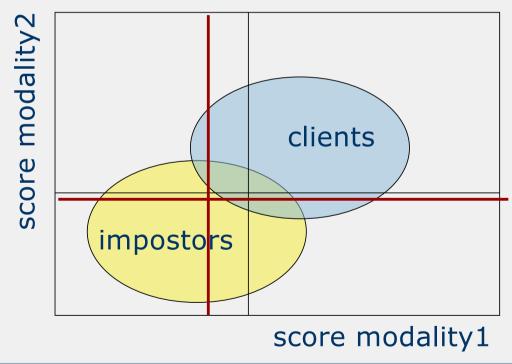






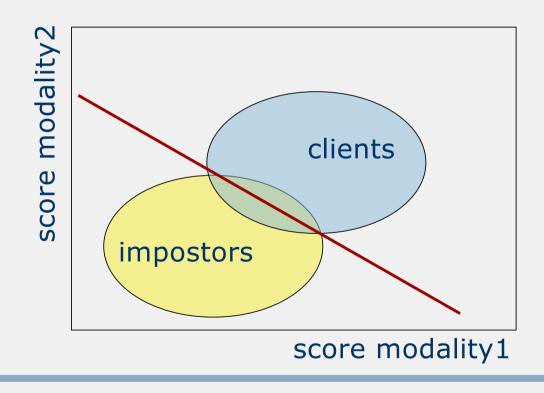


Better performance by adapting the thresholds

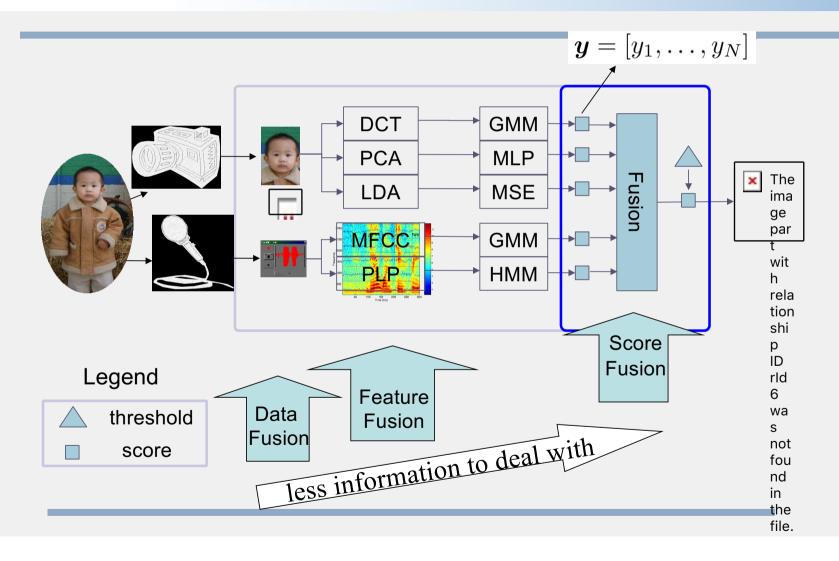


Score-level fusion

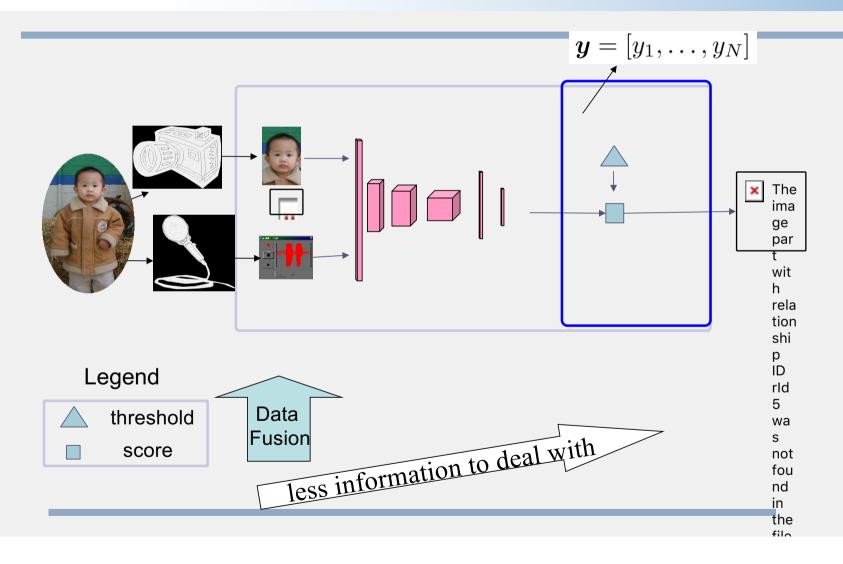
Should improve performance



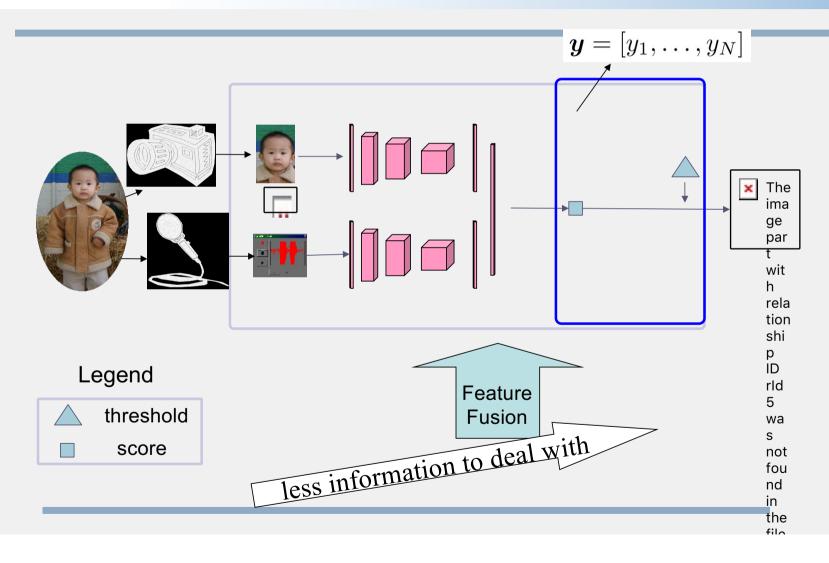
Levels of Fusion



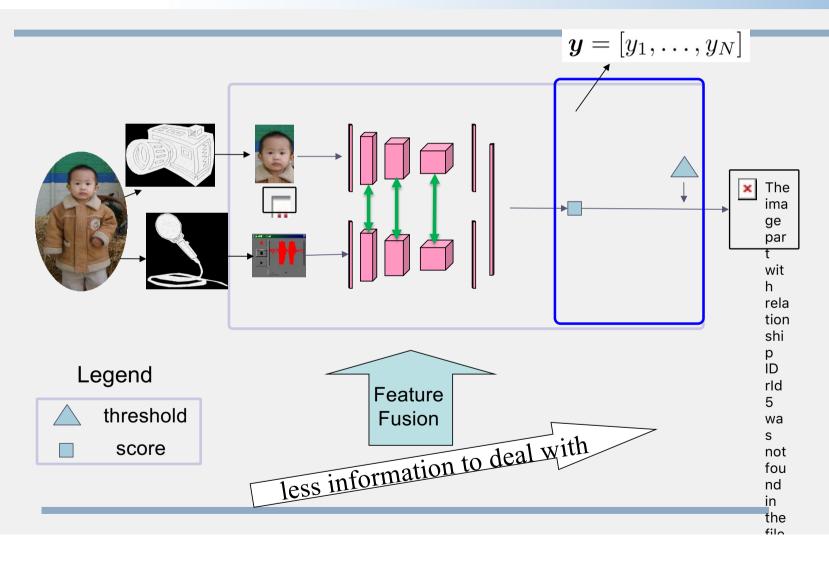
Data level fusion



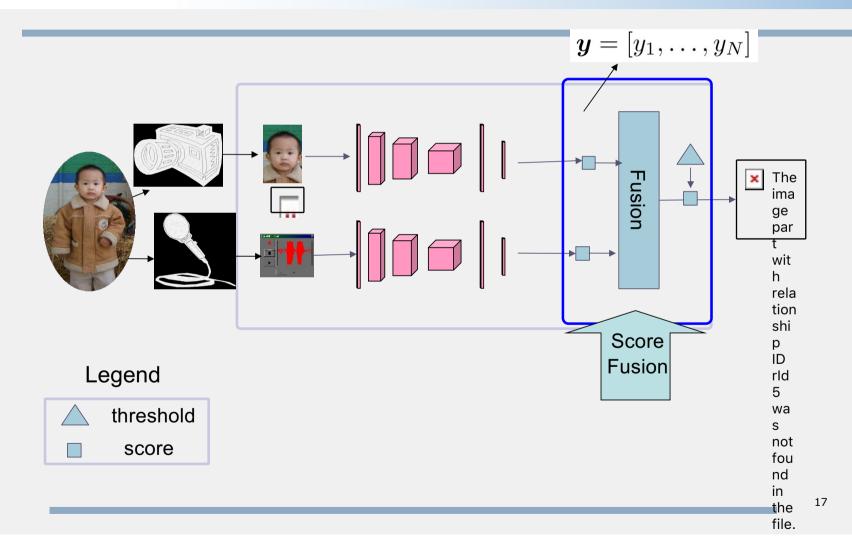
Feature level fusion



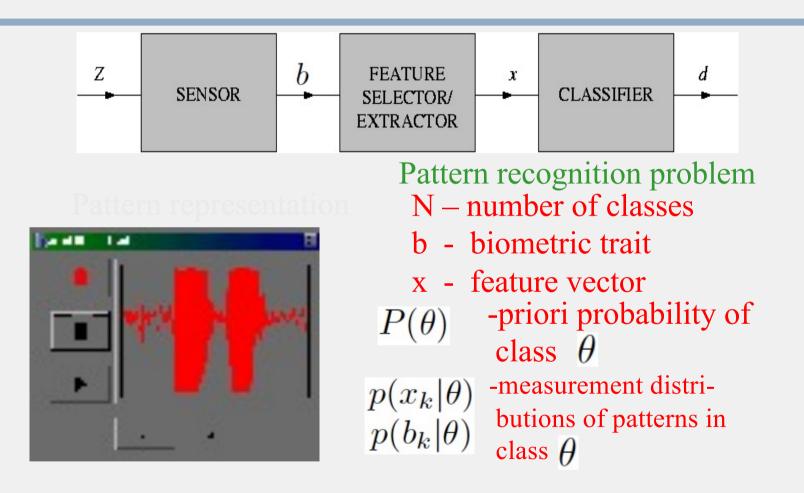
Feature level fusion



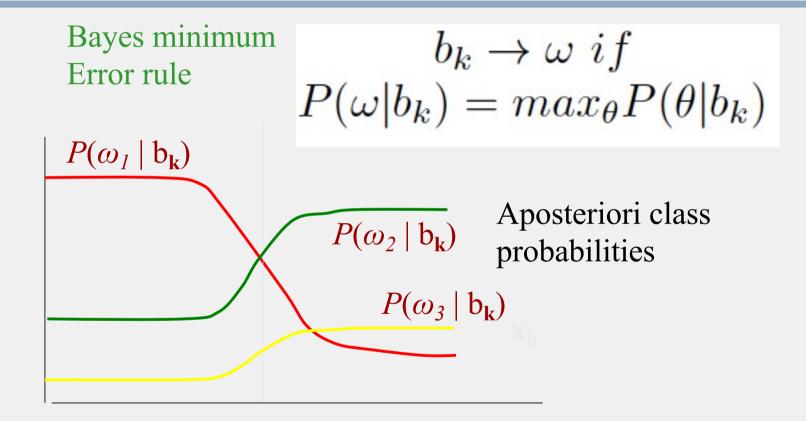
Score level fusion



Biometric system



Bayesian decision making



Problem formulation

 Given biometric traits: biometric features: identities:

$$\begin{bmatrix} b_1, ..., b_K \end{bmatrix} \\ \begin{bmatrix} x_1, ..., x_K \end{bmatrix} \\ \begin{bmatrix} \theta_1, ..., \theta_R \end{bmatrix}$$

Bayes decision rule

Assign subject to class ω if
 P(ω| b₁,..., b_K) = max P(θ | b₁,..., b_K)
 Note

$$P(\omega|b_1,...,b_K) \propto \frac{p(b_1,...,b_K|\omega)P(\omega)}{normalisation\ factor}$$

Fusion options

Signal level fusion

$$p(b_1, \dots, b_K | \omega) \propto \int_{\hat{x}} p(\hat{x}, b_1, \dots, b_K | \omega)$$

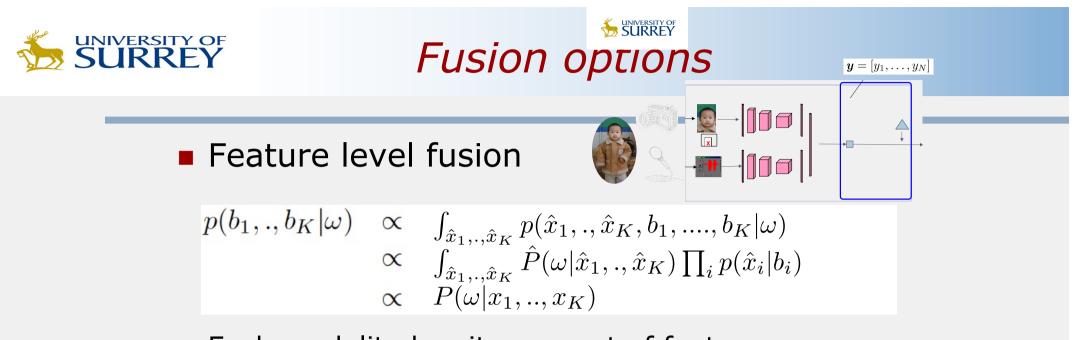
$$\propto \int_{\hat{x}} \hat{P}(\omega | \hat{x}) p(\hat{x} | b_1, \dots, b_K)$$

$$\propto P(\omega | x)$$

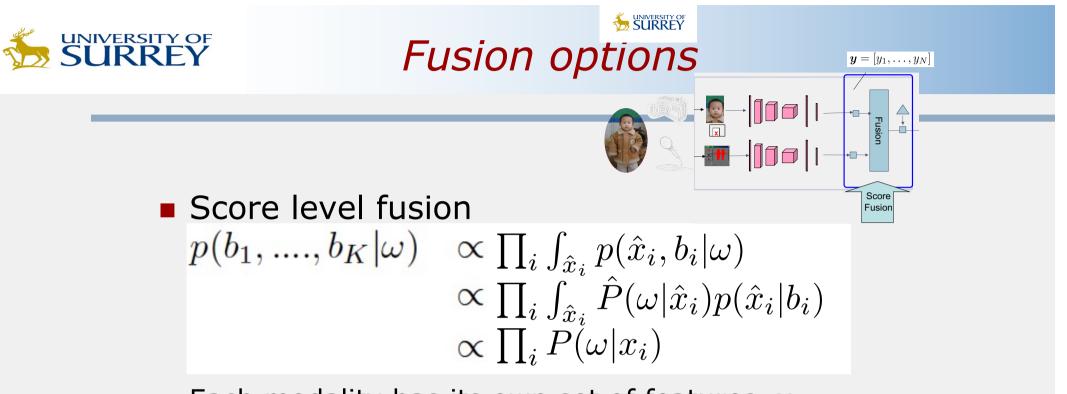
- The integration over \hat{x} is marginalisation over the distribution $p(\hat{x}|b_1,...,b_K)$
 - x is a feature vector determined by all traits
 - Implicitly a multiple classifier fusion
 - Bagging, boosting, drop out, hard sample mining
 - Marginalised estimate of class posterior $P(\omega|x)$

 $\boldsymbol{y} = [y_1, \ldots, y_N]$

 \land



- Each modality has its own set of features x_i
- Score is a function of all x_i jointly
- Fusion process marginalisation is over the joint distribution of all modalities
- In addition, there could be modality specific marginalisation at the feature extraction level



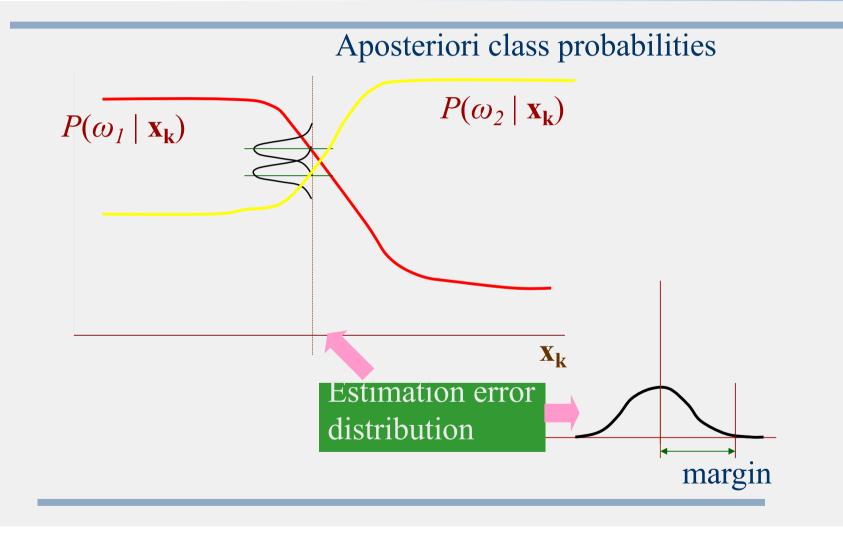
- Each modality has its own set of features x_i
- The fused score is a product of individual modality specific scores
- Fusion process marginalisation is over modality specific distributions

I.e.
$$P(\theta|x_k) = P(\theta) + \Delta_k$$

the resulting decision rule becomes

$$p(b_1, \dots, b_K | \omega) \propto \prod_i P(\omega | x_i) \\ \propto \sum_i P(\omega | x_i)$$

Effect of estimation errors



Sources of estimation errors

$$\tilde{P}(\omega|\mathbf{x}_i) = \int \int P(\omega|\mathbf{x}_i, X_i, M, \gamma_i) p(M) p(\gamma_i) dM d\gamma_i$$

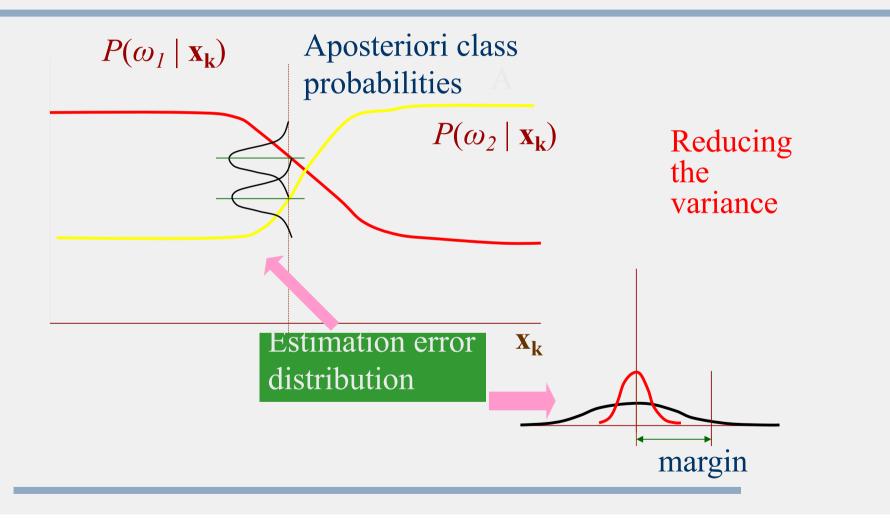
- \mathbf{X}_i Feature vector output by sensor i
- X_i Training set for the i-th expert
- M Classifier model

 γ_i

 $p(\gamma_i)$

- p(M) Distribution of models
 - Parameters for expert i
 - Distribution of expert i parameter

Coping with estimation errors



Direct score fusion: score normalisation

- Aposteriori class probabilities are automatically normalised to [0,1]
- Some systems compute a matching score s_i , rather than $P(\omega_i | \mathbf{x})$
- Scores have to be normalised to facilitate fusion by simple rules

aposteriori probability estimate

$$P(\omega_i|s) = \frac{p(s|\omega_i)P(\omega_i)}{\sum_{k=1}^{R} p(s|\omega_k)P(\omega_k)}$$

Score normalisation (cont)

- Motivation for score normalisation
 - Non-homogeneous scores (distance, similarity)
 - Different ranges
 - Different distributions
- Desirable properties
 - Robustness
 - Efficiency
- Most effective methods
 - Nonlinear mapping with saturation for very large/small scores
 - Increased sensitivity near the boundaries (Ross and Jain)

Score normalisation (cont)

Min-max

$$\widehat{s} = rac{s - \min s}{\max s - \min s}$$

Scaling

$$\hat{s} = \frac{s}{\max s}$$

Z-score

$$\hat{s} = \frac{s - \mu}{\sigma}$$

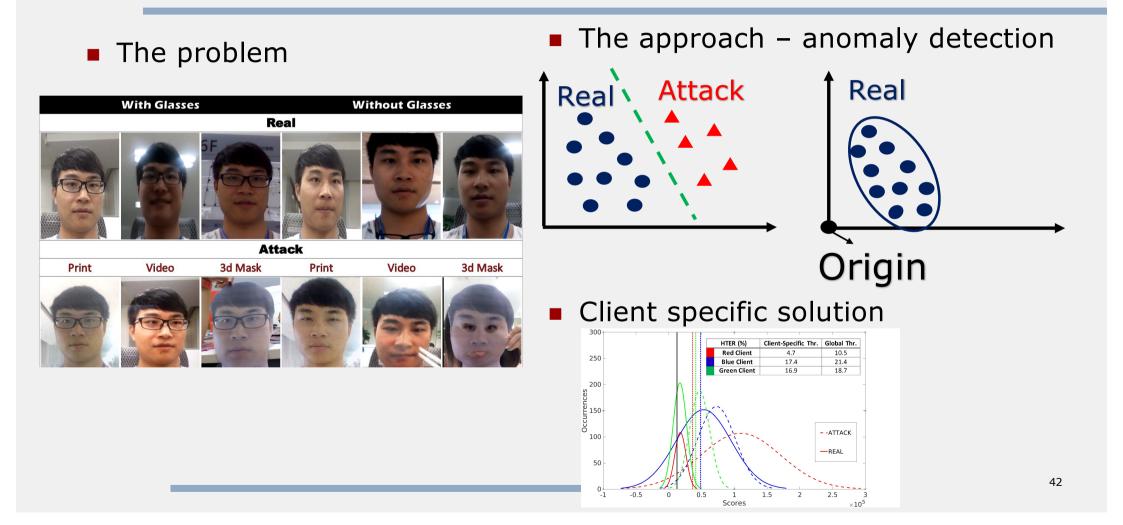
• Median $\hat{s} = \frac{s - median \ s}{MAD}$ MAD = median|s - median(s)|Double sigmoid $\widehat{s} = \frac{1}{1 + \exp\{-2(\frac{s-t}{r})\}}$ r has different values for scores greater/smaller than threshold t

Tanh

$$\widehat{s} = 0.5[anh\{0.01rac{s-\mu}{\sigma}\}+1]$$

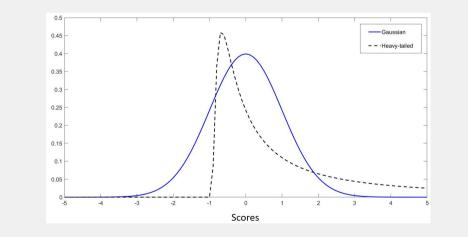
Min-max, Z-score and tanh are efficient, median, double-sigmoid and tanh are robust 41

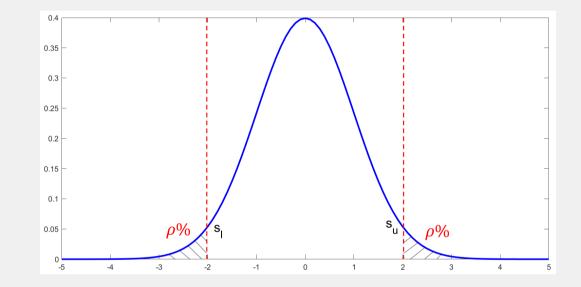
SURREY Face spoofing attack detection



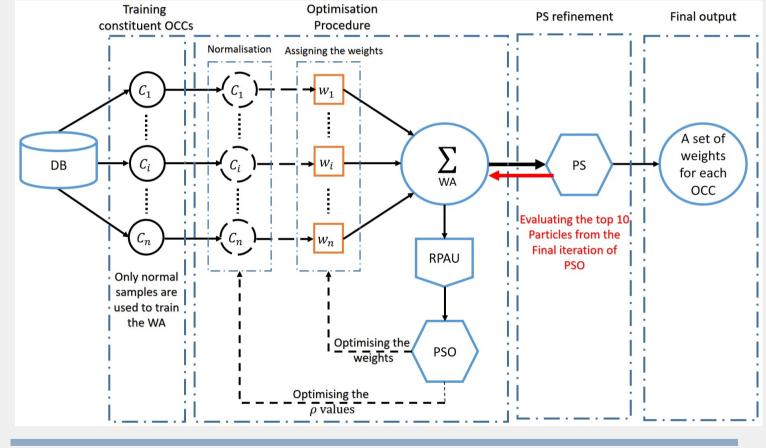
One class normalisation method

- Two-sided normalization
 - ρ% tail cut-off
 - cut-off points mapped to [0,1]
- Heavy tail distribution





Fusion of anomaly detectors



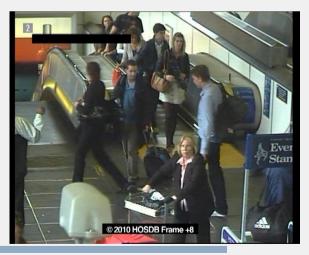
Presented by: Soroush Fatemifar

Case study in multimodal soft biometric fusion

- Multimodal biometric traits
- Multimodal sensing of the same biometric trait
 - Different spectral bands
 - Voice/image sensed lips dynamics
 - Visual/language modalities for person re-identification

Background and motivation

- Video surveillance very important tool for crime prevention and detection
 - Watch list
 - Forensic video analysis
- Hard biometrics (face) not always available
- Other video analytics tools are useful alternatives
 - Soft biometrics (clothing, gait)
 - Tracking



Soft biometrics and reidentification

Person Re-Identification

- Recognising a person from nonoverlapping cameras
- Formulated as a ranking problem

Re-ID with V&L

- The majority of existing methods are vision only
 - Images or videos
- Joint vision and language modelling
 - Image and video captioning, Visual question answering, Image synthesis from language, ...
- Can language help vision in Re-ID?

Language annotation

- Augmenting existing datasets
 - CUHK03: ~2700 descriptions
 - VIPeR: ~1300 descriptions
- Crowd-sourced, 8 annotators
- Annotation
 - Free style sentences, not attributes
 - Encouraged to cover details
 - On average 45 words per description
 - Per image rather than per identity

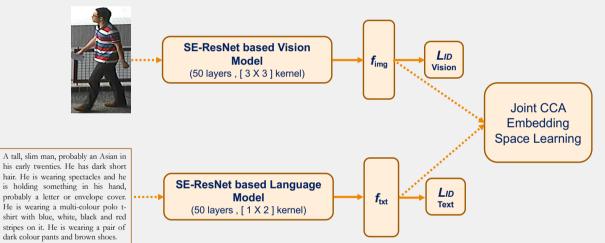
Language annotation

A front profile of a young, slim and average height, black female with long brown hair. She wears sunglasses and possibly earrings and necklace. She wears a brown t-shirt with a golden coloured print on its chest, blue jeans and white sports shoes.

A short and slim young woman carrying a tortilla coloured rectangular shoulder bag with caramel straps, on her right side. She has a light complexion and long, straight auburn hair worn loose. She wears a dark brown short sleeved top along with bell bottomed ice blue jeans and her shoes can't be seen but she might be wearing light colored flat shoes.

Person Re-ID

 Crossmodal & multimodal matching facilitated by CAA



- Performance gain due to
 - Joint training
 - Fusion of modalities

- Consider features x and y extracted from two biometric modalities
- Basic principle find direction in the respective feature spaces that yield maximum correlation
 - Gauging linear relationship between two multidimensional random variables (feature vectors of two biometric modalities)
 - Finding two sets of basis vectors such that the projection of the feature vectors onto these bases is maximised
 - Determine correlation coefficients

CAA problem formulation

- Training set of pairs of vectors $(x_i, y_i), i = 1, n$
- Maximisation of the correlation of the projections

$$\max_{w_x, w_y} E\{w_x^T x y^T w_y\} = \max_{w_x, w_y} w_x^T C_{xy} w_y \ s.t. \\ E\{w_x^T x x^T w_x\} = w_x^T C_{xx} w_x = 1 \\ E\{w_y^T y y^T w_y\} = w_y^T C_{yy} w_y = 1$$

Leads to an eigenvalue problem

$$\begin{bmatrix} 0 & C_{xy} \\ C_{yx} & 0 \end{bmatrix} \begin{bmatrix} w_x \\ w_y \end{bmatrix} =$$
$$= \lambda \begin{bmatrix} (1-\kappa)C_{xx} + \kappa I & 0 \\ 0 & (1-\kappa)C_{yy} + \kappa I \end{bmatrix} \begin{bmatrix} w_x \\ w_y \end{bmatrix}$$

• With cov matrices regularised by κI

Re-ID with V&L

Three sets:

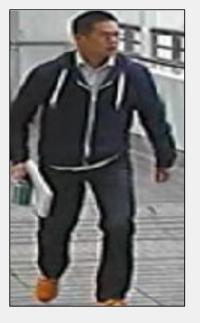
- Training, query, gallery
- Training: image and language pairs

Various settings, query x gallery:

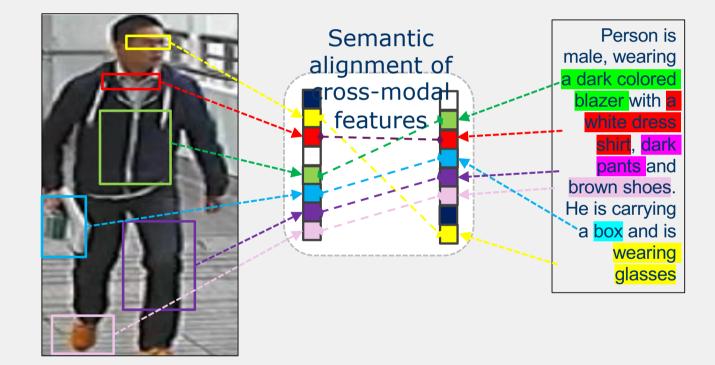
- V x V, L x L, V x L, V x VL, VL x VL
- Asymmetric settings:
 - Transfer language info. With CCA
- XQDA as metric learning

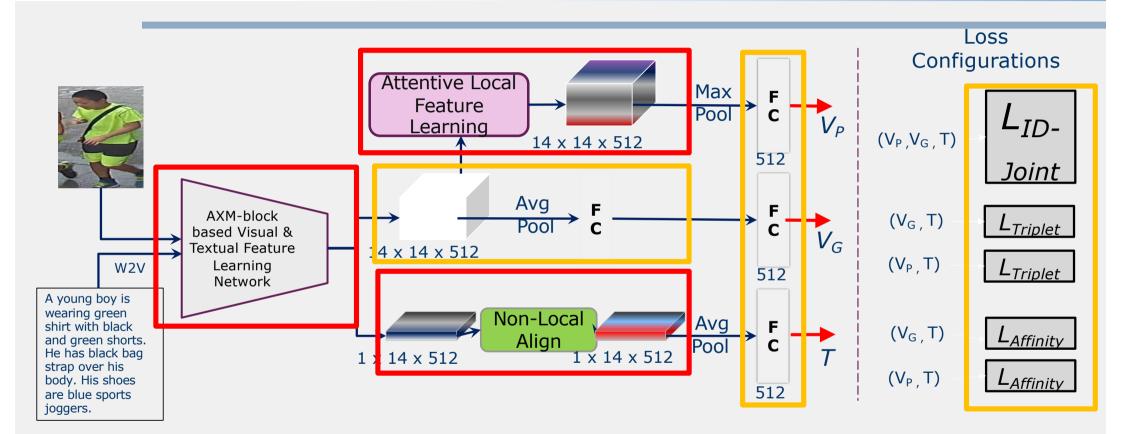
Multimodal and cross-modal image retrieval

AXM-Net: Semantic Alignment and Context Sharing for Cross-Modal Person Re-identification

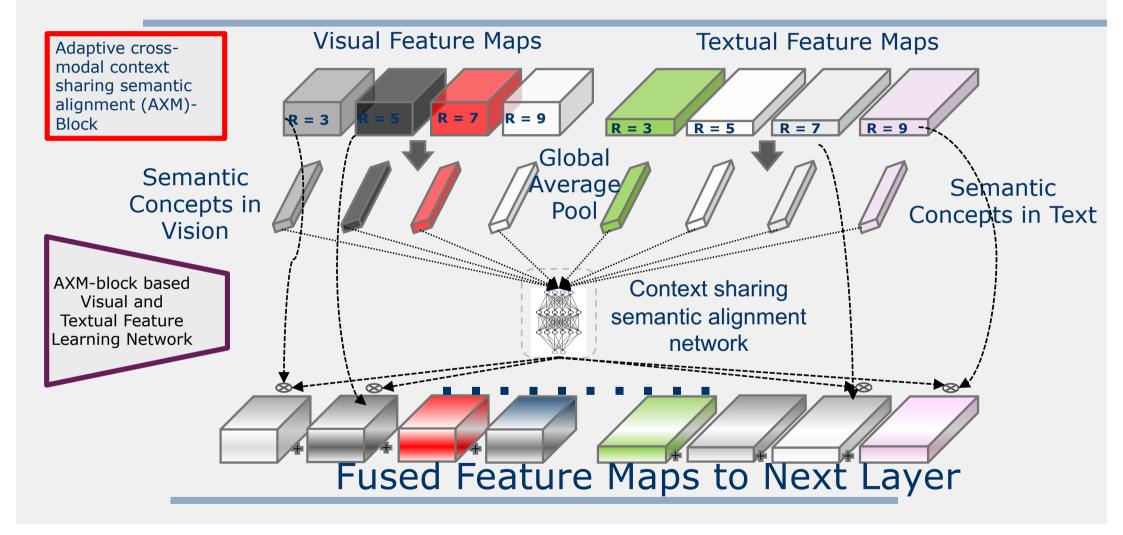


Person is male, wearing a dark colored blazer with a white dress shirt, dark pants and brown shoes. He is carrying a box and is wearing glasses





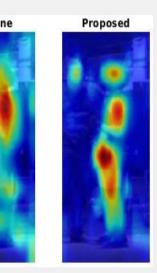
Ammarah Farooq, etal., "AXM-Net: Cross-Modal Context Sharing Attention Network for Person Re-ID", Arxiv, 2021.

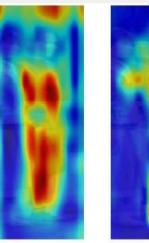


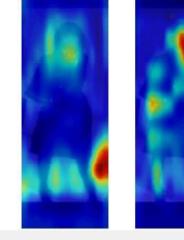
	CrossRe-ID						CUHK-SYSU					
Model	$V \rightarrow V$		$T \rightarrow V$		$VT \rightarrow V$		$V \rightarrow V$		$T \rightarrow V$		$VT \rightarrow V$	
	Rank@1	mAP	Rank@1	mAP	Rank@1	mAP	Rank@1	mAP	Rank@1	mAP	Rank@1	mAP
JT + CCA [12]	86.77	88.90	33.61	39.40	88.59	87.95	74.13	77.16	11.37	15.78	77.68	75.8
AXM-Net + joint ID + affinity	95.14	96.04	44.66	50.49	95.26	95.22	86.00	87.75	19.93	24.82	88.72	87.02
AXM-Net + joint ID + triplet	95.02	96.00	47.33	52.58	95.75	95.41	86.24	88.02	20.93	26.04	87.86	86.40
AXM-Net + joint ID + affinity + triplet	94.29	98.9	46.48	52.21	94.05	93.93	85.86	87.70	21.44	26.77	88.62	86.73

Table 3. Performance comparison on cross-modal Re-ID. Query \rightarrow Gallery

Rejection of noisy information

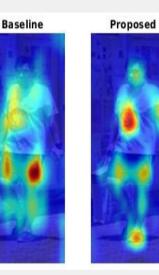






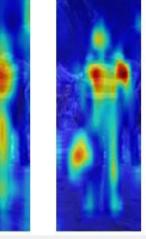
The woman wears a black sleeveless top. She wears a black leather skirt with black boots and has a curly brown afro. This person is wearing a **black and** red tartan sweatshirt, cuffed jeans, and red converses. The lady wears a **black long jacket** and **black boots**. She is carrying a **black should bag**.

Focus on discriminative information



A man carries a brown package inside a white tote bag with green graphics while wearing a white tshirt with a red-and-yellow animal face centered on the front over blue shorts with a white stripe on the sides and gray shoes.

The man is wearing a navy blue shirt with black pants. He has on brown shoes. He is carrying a green bag.



The man is looking over his shoulder to his right. He has short cut black hair. He is wearing a horizontally striped short sleeved short with khaki pants and dark shoes. The man is holding a white shopping bag in his right hand.

Survey Conclusions and future research

Conclusions

- We have provided an information theoretic underpinning of machine learning
- The properties of information measures impact on performance
 - Function properties of measures, data distribution models

Future directions of research

- Training distribution
 - augmentation
 - balancing distribution biases
 - feature distribution augmentation
 - boosting
 - unlabelled data

- Parameter distribution
- Domain adaptation/shift
- Testing and evaluation
- Quality dependent distributions

Take home message

- Role of multimodal biometrics
- Fusion levels
- Math formulation of different alternatives
- The concept of marginalisation/multiple classifier systems
- Notion of quality based, user specific and cohort based extensions of fusion
- Multimodal sensing and fusion of a single biometric
- Example: fusion of vision/language modalities for soft biometrics

References

- N. Poh, A. Martin, and S. Bengio. Performance Generalization in Biometric Authentication Using Joint User-Specic and Sample Bootstraps. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(3):492-498, 2007.
- N. Poh and J. Kittler. Incorporating Variation of Model-specic Score Distribution in Speaker Verication Systems. IEEE Transactions on Audio, Speech and Language Processing, 16(3):594-606, 2008.
- N. Poh, T. Bourlai, J. Kittler and al. A Score-level Quality-dependent and Cost-sensitive Multimodal Biometric Test Bed. Pattern Recognition, 43(3):1094{1105, 2010.
- N. Poh, T. Bourlai, J. Kittler and al. Benchmarking Quality-dependent and Cost-sensitive Multimodal Biometric Fusion Algorithms. IEEE Trans. Information Forensics and Security,4(4):849{866, 2009.
- N. Poh, J. Kittler and T. Bourlai, Quality-based Score Normalisation with Device Qualitative Information for Multimodal Biometric Fusion", IEEE Trans. on Systems, Man, Cybernatics Part A : Systems and Humans, 40(3):539{554, 2010.
- Tresadern, P., et al., Mobile Biometrics: Combined Face and Voice Verification for a Mobile Platform. Pervasive Computing, IEEE, 2013. 12(1): p. 79-87.
- Poh, N. and S. Bengio, F-ratio Client-Dependent Normalisation on Biometric Authentication Tasks, in IEEE Int'l Conf. Acoustics, Speech, and Signal Processing (ICASSP)2005: Philadelphia. p. 721-724.
- Poh, N. and J. Kittler, *Incorporating Variation of Model-specific Score Distribution in Speaker Verification Systems.* IEEE Transactions on Audio, Speech and Language Processing, 2008.
 16(3): p. 594-606.

- Poh, N., et al., Group-specific Score Normalization for Biometric Systems, in IEEE Computer Society Workshop on Biometrics, CVPR2010. p. 38-45.
- Poh, N. and M. Tistarelli. Customizing biometric authentication systems via discriminative score calibration. in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012. IEEE.
- Poh, N. and J. Kittler, A Biometric Menagerie Index for Characterising Template/Modelspecific Variation, in Proc. of the 3rd Int'l Conf. on Biometrics2009: Sardinia. p. 816-827.
- Poh, N. and J. Kittler, A Methodology for Separating Sheep from Goats for Controlled Enrollment and Multimodal Fusion, in Proc. of the 6th Biometrics Symposium2008: Tampa. p. 17-22.
- Poh, N., et al., *A User-specific and Selective Multimodal Biometric Fusion Strategy by Ranking Subjects.* Pattern Recognition Journal, 46(12): 3341-57, 2013:
- Poh, N., G. Heusch, and J. Kittler, On Combination of Face Authentication Experts by a Mixture of Quality Dependent Fusion Classifiers, in LNCS 4472, Multiple Classifiers System (MCS)2007: Prague. p. 344-356.
- Poh, N. and J. Kittler, A Unified Framework for Multimodal Biometric Fusion Incorporating Quality Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.
 34(1): p. 3-18.

- Poh, N., A. Rattani, and F. Roli, *Critical analysis of adaptive biometric systems*. Biometrics, IET, 2012. 1(4): p. 179-187.
- Merati, A., N. Poh, and J. Kitter, Extracting Discriminative Information from Cohort Models, in IEEE 3rd Int'l Conf. on Biometrics: Theory, Applications, and Systems (BTAS)2010. p. 1-6.
- Poh, N., A. Merati, and J. Kitter, Making Better Biometric Decisions with Quality and Cohort Information: A Case Study in Fingerprint Verification, in Proc. 17th European Signal Processing Conf. (Eusipco)2009: Glasgow. p. 70-74.
- Merati, A., N. Poh, and J. Kittler, User-Specific Cohort Selection and Score Normalization for Biometric Systems. Information Forensics and Security, IEEE Transactions on, 2012.
 7(4): p. 1270-1277.
- Poh, N., A. Merati, and J. Kittler. *Heterogeneous Information Fusion: A Novel Fusion Paradigm for Biometric Systems*. in *International Joint Conference on Biometrics*. 2011.
- Poh, N., A. Martin, and S. Bengio, *Performance Generalization in Biometric Authentication Using Joint User-Specific and Sample Bootstraps.* IEEE Trans. on Pattern Analysis and Machine, 2007. **29**(3): p. 492-498.
- Poh, N. and J. Kittler, A Method for Estimating Authentication Performance Over Time, with Applications to Face Biometrics, in 12th IAPR Iberoamerican Congress on Pattern Recognition (CIARP)2007. p. 360-369.

- Poh, N. and S. Bengio, Can Chimeric Persons Be Used in Multimodal Biometric Authentication Experiments?, in LNCS 3869, 2nd Joint AMI/PASCAL/IM2/M4 Workshop on Multimodal Interaction and Related Machine Learning Algorithms MLMI2005: Edinburgh. p. 87-100.
- Poh, N., et al., Benchmarking Quality-dependent and Cost-sensitive Score-level Multimodal Biometric Fusion Algorithms. IEEE Trans. on Information Forensics and Security, 2009. 4(4): p. 849-866.
- Poh, N., et al., An Evaluation of Video-to-video Face Verification. IEEE Trans. on Information Forensics and Security, 2010. 5(4): p. 781-801.
- M. Tistarelli, Y. Sun, and N. Poh, On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition, IEEE Trans. on Information Forensics and Security, 2014.