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 Deployed biometrics practical applications
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Border Control

Door Access Control
Touch ID (iPhone)

SBB for buying ticket



 Face Recognition Technology

Source: china.com and iomniscient.com

face-recognition payment Alipay

MIT Technology Review: 
10 breakthrough technologies 2017



5https://www.youtube.com/watch?v=9HHW0mj2EDc

https://www.youtube.com/watch?v=9HHW0mj2EDc


6Image from https://www.huaweicloud.com/zhishi/frs3.html

Passenger flow analysis

Image from http://www.yunbiao.tv/web/news/casenavdetail195.html Pay-per-laugh: the comedy club that charges punters having fun



7News from https://www.sohu.com/a/347612078_115479

Student spoof the face recognition system of auto courier cabinet with a photo print

Is Face Recognition Secure?



What happens if 
a face recognition system is NOT secure?



 Vulnerabilities: Ratha et al. [IBM Sys J 2001] pointed out 
eight possible attacks on biometric systems

9
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the channel
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Sensor
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Extraction
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Results

Human face

1, 6: specific for biometric systems 



 Face Presentation Attack Detection (PAD)
 Face information can be easily acquired (facebook, twitter) and abused
 3 popular attacks: Print (image), Replay (video), and 3D mask

Low Cost High cost, but hard 
to detect    



 Review on existing approaches

 Appearance-based

 Motion-based

 Deep Representation Learning

 Domain Adaptation and Generalization
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Feature 
extraction Learning

Feature vector ClassifierInput

 Anti-spoofing approach: Appearance-based

 Spoof media (print and screen) and genuine face has different appearance

Real Face

Fake FaceTexture feature [Maatta et.al, IJCB 11 ]

Image Distortion Analysis [Di et.al, TIFS 15 ]

…
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 Anti-spoofing approach: Appearance-based
 Spoof media (Prints and screen) has different texture, comparing with genuine 

face

Jukka Maatta, Abdenour Hadid, Matti Pietikainen, “Face Spoofing Detection From Single Images Using Micro-Texture Analysis”, IJCB 2011
Di Wen, Hu Han, Anil K. Jain, “Face Spoof Detection with Image Distortion Analysis”, TIFS 2015
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 Anti-spoofing approach: Motion-based
 2D spoofing medium cannot move, or has different motion pattern compare with 

real face 
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 Anti-spoofing approach: Motion-based
 Eyeblink-based anti-spoofing in face recognition from a generic web-camera 

(G.Pan et al., ICCV’07)

 Real-time face detection and motion analysis with application in liveness 
assessment. (K. Kollreider et al., TIFS’07)

 A liveness detection method for face recognition based on optical flow field (W. 
Bao et al., IASP’09)

 Face liveness detection using dynamic texture (Pereira et al., JIVP’14)

 Detection of face spoofing using visual dynamics (S. Tirunagari et al., TIFS’15)

 Rank-pooling-based visual dynamics (Z. Yu et al., PAMI’20) 

 Spatial gradient and temporal depth (Z. Wang et al., CVPR’20)
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 Performance on traditional face spoofing attack

[S. Tirunagari et al., TIFS’15]
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Datasets Year Modality #Subjects #Data #Sensor Spoof type 

Replay-Attack [1] 2012 RGB 50 1,200 (V) 2 Print + Replay

CASIA-MFSD [2] 2012 RGB 50 600 (V) 3 Print +Replay

3DMAD [3] 2014 RGB/Depth 14 255 (V) 2 3D mask

MSU-MFSD [4] 2015 RGB 35 440 (V) 2 Print + Replay 

Msspoof [5] 2015 RGB/IR 21 4,704 (I) 2 Print

HKBU-MARs V2 [6] 2016 RGB 12 1,008 (V) 7 3D masks

MSU-USSA [7] 2016 RGB 1,140 10,260 (I) 2 Print + Replay

Oulu-NPU [8] 2017 RGB 55 5,940 (V) 6 Print + Replay

SiW [9] 2018 RGB 165 4,620 (V) 2 Print + Replay

CASIA-SURF [10] 2018 RGB/IR/Depth 1,000 21,000 (V) 1 Paper Cut

CSMAD [11] 2018 RGB/IR/Depth/LWIR 14 246 (V),17 (I) 1 silicone mask 
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Datasets Year Modality #Subjects #Data #Sensor Lighting Cond. Spoof type 

SiW-M [13] 2019 RGB 493 1,628 (V) 4 Room Light
Print + Replay +3D Mask 

+ Make Up 

WMCA [14] 2019
RGB/NIR/Depth/L

WIR
72 1679 (V) 4

Room Light/LED-
lamps/Day Light

3D Mask made of (Plastic, 
Silicone, Paper)

CelebA-Spoof 
[15]

2020 RGB 10,177 625,537 (I) >10
Room Light/Strong Front 

Light/Back Light/Dark
3 Print, 3 Replay

1 3D Mask, 3 Paper Cut

HQ-WMCA [16] 2020
RGB/NIR/Depth/S

WIR/LWIR
51 2904 5

Room Light/Halogen-
lamps/LED-lamps/Day 

Light/

Print. Replay, 3D masks: 
(Rigid, Paper, Flexible), 
Mannequine, Glasses, 
Makeup, Tattoo, Wig

CASIA-SURF 
3DMask [17]

2020 RGB 48 1152 (v) 3
Room Light/Back Light/

Front-light/Sidelight/Sun-
light/Shadow

3D masks

HiFiMask [18] 2021 RGB 75 54600 7

Room Light/Dim 
Light/Bright Light/Back 

Light//Side Light/Top 
Light

Transparent Mask
Plaster,

Hi-Fidelity 3D Masks
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Deep Representation Learning
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Pixel-wise supervision with auxiliary tasks
 Auxiliary tasks encourage the network to learn “fine-grained”  details.

Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision, CVPR 2018

Y. Qin, et al. Meta-Teacher For Face Anti-Spoofing. TPAMI 2021.

Generate better pixel-wise label



Central Difference Convolutional Network (CDCN) and Variations
 A new convolution kernel inspired by the rationale of LBP

 Aim to learn detailed patterns via aggregating both intensity and gradient information

21

Z. Yu, et al. Searching central difference convolutional networks for face anti-spoofing. CVPR 2020.
Z. Yu, et al. Nas-fas: Static-dynamic central difference network search for face antispoofing. TPAMI 2020
Yu, Zitong, et al. Dual-cross central difference network for face anti-spoofing. IJICAI 2021.

Static-dynamic Image
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Noise Modeling
 Inversely decompose a spoofed face into a spoof noise and a live face, 

and then utilizing the spoof noise for classification. 

 Real face: no spoof noise vs. Fake face: clear spoof noise

Y. Liu, A. Jourabloo, and X. Liu. Face De-Spoofing: Anti-Spoofing via Noise Modeling, ECCV 2018
Y. Liu, et al. On disentangling spoof trace for generic face anti-spoofing. ECCV 2020.



 Spoof Trace Disentanglement Network (STDN)
 Disentangled spoof trace via adversarial learning and hierarchical combination of patterns at 

multiple scales.

23Y. Liu, et al. On disentangling spoof trace for generic face anti-spoofing. ECCV 2020.

Final result: Average of the spoof prediction map and intensity of spoof trace



 Data Augmentation
 Simulate digital medium-based face 

spoofing attacks to obtain a large 
amount of training data well reflecting 
the real-world scenarios

 Synthetic reflection artifacts

24
Yang X, Luo W, Bao L, et al. Face Anti-Spoofing: Model Matters, So Does 
Data, CVPR 2019

 Patch Exchange Augmentation
 Exchange face patches from different domains
 Random mixup of live and PA patches
 Corresponding pixel-wise supervision for augmented 

data

Yu, Zitong, et al. Dual-cross central difference network for face anti-
spoofing. IJICAI 2021.
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Domain Adaptation and Generalization
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 Domain adaptation approach
 Learn a mapping function to align the eigenspaces between source domain data and 

target domain data.
 Maximum Mean Discrepancy between the source and target latent features is 

minimized

H Li, W Li, H Cao and et al. Unsupervised domain adaptation for face anti-spoofing, TIFS 2018



 Adaptive Inner-update Meta learning
 Aim to quickly adapt to new spoofing types by learning from both the predefined attacks and a 

few examples of the new spoofing types.

27Y. Qin, et al. Learning Meta Model for Zero- and Few-shot Face Anti-spoofing. AAAI 2020.

Zero-shotFew-shot 



 Single-side domain generalization
 Learn a generalized space where the feature distribution of real faces is compact 

 Fake faces are separated among domains but compact within each domain.

28Y. Jia, et al. Single-side domain generalization for face anti-spoofing. CVPR 2020.



 Self-domain adaptation with unlabeled testing data
 Using the information of the test domain to improve the performance at inference stage

 Meta learning framework with domain adaptor

 Domain adaptor is also updated at inference stage

29

Self-domain Adaptation Supervised classification loss

on meta-train domain

Unsupervised adaptor loss 

on meta-test domain

Supervised 

classification loss 

on meta-test domain

J. Wang, et al. Self domain adaptation for face anti-spoofing. AAAI 2021.



 Unknown domain label: Domain dynamic adjustment meta-learning
 Training data always contains mixture domains, where the domain label is unknown

 Iteratively assign pseudo domain labels and be trained using meta-learning

30Z. Chen, et al. Generalizable representation learning for mixture domain face anti-spoofing. AAAI 2021.



 Source-free Domain Adaptation
 Update a FAS model using only target domain data, so that the upgraded model can perform 

well in both the source and target domains

31X. Guo, et al. Multi-domain Learning for Updating Face Anti-spoofing Models. ECCV 2022.



 Source-free Domain Adaptation
a) Given feature extractor: 𝑓𝑠 (pretrained on source data) ,finetune it with SRE on target data-> 𝑓𝑇
b) Two teacher models 𝑓𝑠, 𝑓𝑇 train 𝑓𝑛𝑒𝑤 with adversarial learning

▪ 𝐿𝑆, 𝐿𝑇 :Transfer knowledge from two teacher model via adversarial losses

▪ 𝐿𝑠𝑝𝑜𝑜𝑓: Prevents divergence between estimated spoof traces to combat catastrophic forgetting

c) Inference stage

32X. Guo, et al. Multi-domain Learning for Updating Face Anti-spoofing Models. ECCV 2022.

SRE: Spoof Region Estimator (pixel level                           
supervision)

SCE: Spoof Cue Estimator (classifier)



 Adaptive ViT for FAS
 ViT captures the long-range dependency among different patches via the global self-attention mechanism

 Steps:

a) ViT backbone is pretrianed on ImageNet, only MLP head is trained for FAS with cross entropy loss

b) Insert Ensemble Adaptors and FWT (feature wise transform)

c) FWT layers are removed during testing

33H.P. Huang, et al. Adaptive Transformers for Robust Few-shot Cross-domain Face Anti-spoofing. ECCV 2022.

Red: trainable  
Green: fixed



 Adaptive ViT for FAS
 Ensemble Adaptors

▪ Inspired by adapterBERT

▪ Cosine similarity loss constrains multiple outputs of adapters to be complementary

 Feature Wise Transform (FWT)

▪ Feature-level data augmentation

▪ Apply affine transformations to intermediate features

34H.P. Huang, et al. Adaptive Transformers for Robust Few-shot Cross-domain Face Anti-spoofing. ECCV 2022.



 Generative Domain Adaptation: Stylize target data to source data
a) Typical solution: Fit the trained models to the target domain via aligning the distribution of 

semantic high-level features

b) New perspective: Stylizes the target data to the source-domain style via image translation

35Q. Zhou et al. Generative Domain Adaptation for Face Anti-Spoofing. ECCV 2022.



 Stylize target data to source data
 Two Consistency constraints

▪ Neural statistic consistency (NSC)

▪ dual-level semantic consistency (DSC)

 Expand target data distribution

▪ Spectrum Mixup

36Q. Zhou et al. Generative Domain Adaptation for Face Anti-Spoofing. ECCV 2022.



 Fine-Grained Patch Recognition FAS
▪ Patch-type classes: Capture device, Presenting material

▪ Asymmetric Angular Margin Softmax Loss: larger angular margin on live classes

▪ Self-Supervised Similarity Loss:  enforce the patch feature invariance within a single 

37C.Y. Wang et al, PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition. CVPR 2022.



 Feature Generation and Verification for Reliable FAS
▪ Generate real-face feature g and spoofing-attack feature h with constraints:

▪ Variance constraint (VAR): Input face feature and real-face hypothesis tend to be similar

▪ Relative Correlation Constraint (RCC): Triplet-loss-like constraint for real face feature, real-face 

hypothesis, and attack hypothesis 

▪ Distribution Discrimination Constraint (DDC): Enlarge distance between real-face hypothesis and attack 

hypothesis 

38S. Liu et al, Feature Generation and Hypothesis Verification for Reliable Face Anti-spoofing. AAAI 2022.
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FaceID in iPhone X

Announced on 12 September 2017
3D Face Recognition:

Employed Structured-light 3D technology

https://matterandform.net/blog/how-do-3d-scanners-work

https://matterandform.net/blog/how-do-3d-scanners-work


 3D Mask Attack
 With the advanced development on 3D reconstruction and 3D printing technology, 

3D face model can easily be constructed and used to spoof recognition systems

Mask is made from ThatsMyFace.com

Source: idiap.ch



 Super-realistic 3D Mask

Life face Real-F hyper real mask

Which one is real face?

Source: real-f.jp
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The test, by artificial intelligence 

company Kneron, involved visiting 

public locations and tricking facial 

recognition terminals into allowing 

payment or access. For example, in 

stores in Asia—where facial 

recognition technology is deployed 

widely—the Kneron team used high 

quality 3-D masks to deceive AliPay

and WeChat payment systems in order 

to make purchases.

More alarming were the tests deployed at 

transportation hubs. At the self-boarding 

terminal in Schiphol Airport, the Netherlands' 

largest airport, the Kneron team tricked the 

sensor with just a photo on a phone screen. The 

team also says it was able to gain access in this 

way to rail stations in China where commuters 

use facial recognition to pay their fare and 

board trains.



 The 3DMAD dataset
 Score distributions of genuine, impostor, and mask attack scores  of 3DMAD 

using ISV for 2D face verification

[Erdogmus et al., BTAS’13 ]



 Deep Dictionary Learning approach
 Detecting Silicone Mask-based Presentation Attack.

 Multilevel deep dictionary learning-based presentation attack detection algorithm

45

Manjani I, Tariyal S, Vatsa M, et al. Detecting silicone mask-based presentation attack via deep dictionary learning, 
TIFS 2017



 Zero-shot learning approach
 Investigate the Zero-Shot Face Anti-spoofing problem in a wide range of 13 

types of spoof attacks including  3D masks.

 A novel Deep Tree Network is proposed to partition the spoof samples into 
semantic sub-groups

46Liu Y, Stehouwer J, Jourabloo A, et al. Deep Tree Learning for Zero-shot Face Anti-Spoofing, CVPR 2019



 Custom Silicone Masks Datasets
 Consider PAs performed using custom-made flexible silicone masks..

 A new dataset based on six custom silicone masks

47Bhattacharjee S, Mohammadi A, Marcel S. Spoofing deep face recognition with custom silicone masks, BTAS 2018
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Nikisins O, George A, Marcel S. Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face 
Anti-Spoofing, ICB 2019

 Domain adaptation approach
 Transfer the knowledge of facial appearance from RGB to multi-channel domain.

 Learn the features of individual facial regions



 PhotoPlethysmoGraphy based Approach

 Deep Dynamic Feature Approach

 Domain Generalization Approach

 Federated Learning Approach

49
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Pic. from UCLA Lung Cancer Program http://lungcancer.ucla.edu/adm_tests_electro.html





(a) rPPG signal can be extracted from genuine face skin.

(b)  rPPG signals will be too weak to be detected from a masked face. 
• light source needs to penetrate the mask before interacting with the blood vessel.
• rPPG signal need to penetrate the mask before capturing by camera



genuine face 

masked face 



55

Temporal 
Filtering

FFT

SVM
Feature Vector

[Er EgEb Γ rΓg Γb]a. Face Detection and ROI tracking
• Use Viola-Jones face detector on the first frame
• Find 66 facial landmarks [CVPR’13 Asthana et.al] within the face 

bounding box. Use 9 of them to define the ROI
• ROI is tracked through all frames  using KLT

X Li, J Komulainen, G Zhao, P C Yuen and M Pietikainen, “Generalized face anti-spoofing by detecting pulse from face videos” 
ICPR 2016
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Temporal 
Filtering

FFT

SVM
Feature Vector

[Er EgEb Γ rΓg Γb]

b. Three raw pulse signals rraw graw and braw are computed; one from 
each RGB channel, respectively.
• FIR bandpass filter with a cutoff frequency range of [0.7; 4] Hz 

([42; 240] beat-per-minute)
• Use fast Fourier transform (FFT) to convert the pulse signals 

into frequency domain-> PSD curve: 𝑓
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Temporal 
Filtering

FFT

SVM
Feature Vector

[Er EgEb Γ rΓg Γb]

c. Feature Extraction [Er EgEb Γ rΓg Γb]
• 𝐸 = max(𝑒(𝑓))

• Γ =
𝐸

σ∀𝑓∈[0.7,4] 𝑒(𝑓)



 Data: 

 3DMAD [Erdogmus et.al  TIFS’14]

▪ 255 videos recorded from 17 subjects

▪ Masks made from ThatsMyFace.com

 2 REAL-F Masks

▪ 24 videos recorded from 2 subjects

▪ Hyper real masks from REAL-F
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 Results on REAL-F (cross dataset)
 Randomly select 8 subjects from 3DMAD for training and the other 8 subjects as 

the development set

59

REAL-F

Method HTER(%) EER(%)
FPR

(@FNR=0.1%)
FPR

(@FNR=0.01%)

Pulse (ours) 4.29 1.58 0.25 3.83

LBP-blk 26.3 25.08 37.92 48.25

LBP-blk-color 25.92 20.42 31.5 48.67

LBP-ms 39.87 46.5 59.83 73.17

LBP-ms-color 47.38 46.08 86.5 95.08



 Observations:

 LBP-based texture method gives 
zero error for 3DMAD dataset but 
very large error in REAL-F

 Global rPPG method (pulse)  
provides very small errors in both 
3DMAD and REAL-F datasets
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3DMADREAL-F



 Global rPPG signal is sensitive to certain variations such as 
illuminations, head motion and video quality

 rPPG signal strength may vary with different subjects
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How to increase the robustness of 
rPPG-based Face Anti-spoofing?



S Q Liu, P CYuen, S P Zhang and GY Zhao, “3D Mask Face Anti-spoofing with Remote Photoplethysmography” ECCV 2016



(a) Local ROIs are pre-defined based on the facial landmarks. Local rPPG signals are extracted from these local face 
regions.

(b) Extract Local rPPG patterns through the proposed local rPPG correlation model.

(c) Training stage: local rPPG confidence map is learned, and then transformed into distance metric for classification.

(d) Classifier: SVM



FFT

 Local rPPG on genuine face

Due to noise

Consistency of local rPPG

Heart Beat





Generic map of blood vessels on the face

The distribution of local rPPG signals should be considered 



How to accurately obtain the liveness evidence from the 
observed noisy rPPG signals?



691. S Q Liu, X Y Lan and P C Yuen, “Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection”, ECCV 2018
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1. S Q Liu, X Y Lan and P C Yuen, “Multi-Channel Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection”, 
IEEE Transactions on Information Forensics and Security (TIFS), 2021.



x

Existing rPPG-based 3D mask PAD methods are based on spectrum analysis
 Require long observation time (8-10 seconds) to identify heartbeat information



Reference:
1. S Q Liu, X Y Lan, and P C Yuen, “Temporal Similarity Analysis of Remote Photoplethysmography (TSrPPG) for Fast 3D Mask Face 
Presentation Attack Detection”, WACV, 2020.
2. S Q Liu, X Y Lan and P C Yuen, “Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack 
Detection”, IEEE Transactions on Information Forensics and Security (TIFS), In press, 2022.



 Rationale
 Correlation of local rPPG signals on genuine 

faces is higher compared with those on 
masked faces.

 The periodicity information is not available 
within short observation time.
▪ Hard to adopt spectrum analysis 

 Design liveness feature in temporal space



Extract features on the result pattern
Min, Mean, Std (… etc.)



1. The TSrPPG obtain the similarity which can adapt 
the variation ofamplitude and phase for different 
subject
 Better generalizability

2. The TSrPPG operator obtained the detailed 
heartbeat variation between local rPPG signals 
(refer our paper for details)

 Better discriminability

Final result is obtained through score-level-fusion





 Learnable rPPG estimator:
 Learn robust rPPG feature through 3D convolution



 Learnable rPPG estimator:
 Learn robust rPPG feature through 3D convolution

 Further boost the discriminability of TSrPPG
▪ Genuine face: Enhance the temporal similarity

▪ Fake face: Reduce the temporal similarity



 Learnable rPPG estimator:
 Learn robust rPPG feature through 3D convolution

 Further boost the discriminability of TSrPPG
▪ Genuine face: Enhance the temporal similarity

▪ Fake face: Reduce the temporal similarity

Facial TSrPPG Background TSrPPG

 Improve TSrPPG in rPPG extraction stage

▪ Enhance the consistency of local rPPG signals

▪ Reduce the correlation of background rPPG and facial rPPG

▪ Can be trained without fake face samples



 Experimental Setting: 

 Evaluation Protocols:
 Intra-dataset evaluation

▪ Leave one subject out cross validation (LOOCV)

 Cross-dataset evaluation
▪ Train and test on different datasets



 Intra dataset evaluation with short observation time (1 second) : 

3DMAD HKBU-MARsV1+

Ablation study of learnable rPPG extractorPerformance (AUC) with different length of observation



 Overall comparison with state of the arts for both intra and cross dataset evaluation (1 second)

 TSrPPG and LeTSrPPG achieve the best robustness and top-level discriminability



Real-time Implementation of our rPPG-based Face Anti-spoofing Method



84

Reference:

1. R Shao, X Y Lan and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability 

for 3D Mask Face Anti-spoofing”, IAPR/IEEE International Joint Conference on Biometrics (IJCB), Oct 2017

2. R Shao, X Y Lan and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-
spoofing”, IEEE Transactions on Information Security and Forensics (TIFS), Vol. 14, No. 4, pp. 923-938, 2019.



• Eye blinking

real

fake

Frame 1 Frame 5 Frame 10 Frame 15 Frame 20 Frame 25

 Basic Idea

85

Joint Discriminative Learning of Deep Dynamic Textures 
[IJCB 2017, TIFS 2019]

• Lip movements 

• Some other facial components movements 

Captured by dynamic textures

1. R Shao, X Y Lan and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face Anti-spoofing”, IAPR/IEEE International 

Joint Conference on Biometrics (IJCB), Oct 2017

2. R Shao, X Y Lan and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing”, IEEE Transactions on Information Security and 
Forensics (TIFS), Vol. 14, No. 4, pp. 923-938, 2019.
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Deep Dynamic Texture Extraction

...
...

V1

Vi

VK
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...
...

V1
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Si

S1

Joint Discriminative Learning of Deep Dynamic Textures 
[IJCB 2017, TIFS 2019]

1. R Shao, X Y Lan and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face Anti-spoofing”, IAPR/IEEE International 

Joint Conference on Biometrics (IJCB), Oct 2017

2. R Shao, X Y Lan and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing”, IEEE Transactions on Information Security and 
Forensics (TIFS), Vol. 14, No. 4, pp. 923-938, 2019.



Can we develop a generalized detection method in 
which the attack type is not known?
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Reference:
1. R Shao, X Y Lan, J W Li and P C Yuen, “Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack 

Detection” Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),  2019.
2. R Shao, X Lan, P C Yuen, “Regularized Fine-grained Meta Face Anti-spoofing”, The Thirty-Fourth AAAI Conference on Artificial Intelligence 

(AAAI), 2020. 88
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 Domain Generalization:

Source Domains

Model

Domain 
GeneralizationDomain 1

CASIA

Domain 2

Idiap

Domain 3

MSU

Unseen Domain

Multi-adversarial Discriminative  Deep Domain Generalization 
for Face Presentation Attack Detection [CVPR2019]

R Shao, X Y Lan, J W Li and P C Yuen, “Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection” Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
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• The generalized feature space learned
by the domain generalization approach
should be:
 Shared by multiple source domains
 Discriminative

 Generalized feature space 

Multi-adversarial Discriminative  Deep Domain Generalization 
for Face Presentation Attack Detection [CVPR 2019]

R Shao, X Y Lan, J W Li and P C Yuen, “Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection” Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.



 Framework

Feature 
Extractor_1Feature 

Extractor_2

Discriminators_1

Oulu

Domain 1

CASIA

Domain 2

Idiap

Domain N

 Multi-adversarial Deep Domain Generalization

Feature
Generator

Depth
Estimation

Z
Feature 

Embedder

F1
F2

Fn

Triplet
Loss

Depth
Loss

Adv
Loss

Real Depth

Fake Depth

...

Discriminators_2

Discriminators_N

..
.

..
.

Classifier
Cls

Loss

Feature 
Extractor_N

...

Dual-force 
Triplet Mining

 A unified multi-adversarial discriminative deep 
domain generalization framework (MADDG):

𝑚𝑖𝑛
𝐺,𝐸,𝐶,𝐷𝑒𝑝

max
𝐷1,𝐷2,…,𝐷𝑁

ℒ𝑀𝐴𝐷𝐷𝐺 =

ℒ𝐷𝐺 + ℒ𝑇𝑟𝑖𝑝 + ℒ𝐷𝑒𝑝 + ℒ𝐶𝑙𝑠

Multi-adversarial Discriminative  Deep Domain Generalization 
for Face Presentation Attack Detection [CVPR 2019]
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Regularized Fine-grained Meta Face Anti-spoofing [AAAI2020]

The first paper to address problem of domain generalization for face
anti-spoofing in a meta-learning framework.

R Shao, XY Lan and P CYuen, “Regularized fine-grained meta face anti-spoofing”. AAAI, 2020.



 Two issues if directly applying existing vanilla meta-learning for 
DG algorithms on face anti-spoofing：

 First issue:

Face anti-spoofing models only with binary class supervision discover arbitrary
differentiation cues with poor generalization [1].

Learning directions in the meta-train and meta-test steps will be arbitrary and 
biased, which makes it difficult for the meta-optimization step to find a generalized 
learning direction.
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Regularized Fine-grained Meta Face Anti-spoofing [AAAI2020]

R Shao, XY Lan and P CYuen, “Regularized fine-grained meta face anti-spoofing”. AAAI, 2020.



 Two issues if directly applying existing vanilla meta-learning 
for DG algorithms on face anti-spoofing：

 Second issue:

Coarsely divide multiple source domains into two groups to form one aggregated 
meta-train and one aggregated meta- test domains in each iteration of meta-
learning

Only a single domain shift scenario is simulated in each iteration

95

Regularized Fine-grained Meta Face Anti-spoofing [AAAI2020]

R Shao, XY Lan and P CYuen, “Regularized fine-grained meta face anti-spoofing”. AAAI, 2020.



 Idea：
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Regularized Fine-grained Meta Face Anti-spoofing [AAAI2020]

 For first issue:

Incorporate the domain knowledge of face anti-
spoofing as regularization into feature learning 
process 

Meta-learning is conducted in the feature space 
regularized by the auxiliary supervision of domain 
knowledge.

Regularized meta-learning can focus on more 
coordinated and better-generalized learning 
directions in the meta-train and meta-test

R Shao, XY Lan and P CYuen, “Regularized fine-grained meta face anti-spoofing”. AAAI, 2020.



 Idea：
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Regularized Fine-grained Meta Face Anti-spoofing [AAAI2020]

 For second issue:

Fine-grained learning strategy divides source
domains into multiple meta-train and meta-test
domains, and jointly conducts meta-learning
between each pair of them in each iteration.

A variety of domain shift scenarios are
simultaneously simulated and thus more abundant
domain shift information can be exploited

R Shao, XY Lan and P CYuen, “Regularized fine-grained meta face anti-spoofing”. AAAI, 2020.
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Regularized Fine-grained Meta Face Anti-spoofing [AAAI2020]

R Shao, XY Lan and P CYuen, “Regularized fine-grained meta face anti-spoofing”. AAAI, 2020.
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Experimental Results

 Binary_CNN pays most attention to
extracting the differentiation cues in
the background (row 1-2) or on paper
edges/holding fingers (row 3-5).

 Our method is more able to focus on
the region of internal face for searching
generalized differentiation cues.



Federated Learning Based Approach:
Addressing Generalization Issue for Unseen Attacks and Data Privacy
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References:

1. R Shao, B Zhang, P C Yuen, V M Patel, “Federated Test-Time Adaptive Face Presentation Attack Detection with Dual-

Phase Privacy Preservation”, IEEE International Conference on Automatic Face & Gesture Recognition (FG), Dec 2021.

2. R Shao, P Perera, P C Yuen and V M Patel, “Federated Generalized Face Presentation Attack Detection”, IEEE

Transactions on Neural Network and Learning Systems (TNNLS), In press, 2022.
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Background and Motivation

Traditional fPAD (top):

• Two types of stakeholders: Data center and User

• Problem: Lacks generalization ability in each data

center

• Solution: Combine data from all centers

• Issue: Due to data sharing agreements and privacy

policies, data centers are not allowed to share data.



102

Federated Learning (middle):

• Nice framework for distributed and privacy

preserving machine learning technique

• Data stays local client. Each client trains their own

local model.

• Server aggregates local models and generates a

global model without getting access to private data

in data centers.

• The updated global model deploys to local client.

This process is repeated until the global model is

trained.

• All clients carry out inference locally and clients in

the testing are usually seen during the training.

Background and Motivation
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 FedPAD - Federated Presentation Attack Detection

(bottom):

• Only data centers carry out local model training and

share their models with the server to aggregate the

global model.

• Users download the global model and carry out

inference.

• The downloaded model will encounter various unseen

face presentation attacks from the users.

• Proposed FedPAD focuses on exploring the

generalization of FL model which aims to generalize

well to unseen attacks from users in the testing.

Background and Motivation
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FedPAD

Federated Generalization Face PAD

Training 
Phase

Test Time Adaptation

Test 
Phase



Federated domain 

disentanglement 

strategy: 

- Local domain 

disentanglement 

learning

- Domain-invariant 

model parameters 

communications
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R Shao, P Perera, PC Yuen and V M Patel, “Federated Generalized Face Presentation Attack Detection”, IEEE Transactions on Neural Network

and Learning Systems (TNNLS), In press, 2022.
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Local Domain Disentanglement Learning

 Feeding data into domain-invariant and domain-specific feature

extractors

 Train a domain-invariant fPAD model using the domain-invariant

features by minimizing the cross-entropy classification loss

 Face depth map as the auxiliary supervision to regularize the

domain-invariant feature learning => depth estimation loss

 Domain-invariant features + domain-specific features should

encode the complete features from the input data, =>

reconstruction loss

 Domain-invariant and domain-specific encoders should encode

different aspects of the input data, => a soft subspace orthogonal

constraint via a difference loss
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 Datasets

• Oulu-NPU  (O for short) [Zinelabinde et.al FG2017]

• CASIA-MFSD  (C for short) [Zhang et.al ICB2012]

• Idiap Replay-Attack (I for short) [Chingovska et.al BIOSIG 2012]

• MSU-MFSD (M for short) [Wen et.al TIFS 2015]

• SiW (S for short) [Liu et.al CVPR 2018]

Experiments: Datasets
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 Experimental Setting

• Evaluate the generalization ability of fPAD models under the FL framework.

• Leave-one-dataset-out: Choose one dataset at a time to emulate the role of users and 

consider all other datasets as data centers.

• Real images and spoof images of data centers are used to train a fPAD model. The 

trained model is tested considering the dataset that emulates the role of users.

• Evaluation metrics:

o Half Total Error Rates (HTER)

o Equal Error Rates (EER)

o Area Under Curve (AUC)

Experiments: Setting
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• Single: fPAD model trained from a

single data center and users from one

of the data centers.

• Fused: fuse the prediction scores of

the trained model from various data

centers by calculating the average.

• FedPAD: The simple federated

framework

• FedGPAD: Proposed method

• All: fPAD model is trained with data

from all available data centers

Experimental Results 
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Experimental Results
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 FedGPAD performs very 
well. Generalization is very 
hard to unseen test data

 Conduct test-time 
adaptation 

R Shao, B Zhang, P C Yuen, V M Patel, “Federated Test-Time Adaptive Face Presentation Attack Detection with Dual-Phase Privacy

Preservation”, IEEE International Conference on Automatic Face & Gesture Recognition (FG), Dec 2021.
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To reduce the probability of overfitting during test-

time adaptation, minimize the above entropy with

respect to affine transformation parameters of all

batch normalization layers in the fPAD model

Given the testing data presented to user 𝑈, and the

fPAD model 𝐹𝑡 calculate the entropy of fPAD

model prediction:

After test time adaptation,

updated fPAD model for the final

real/fake classification.
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TABLE II

COMPARISON WITH MODELS TRAINED BY DATA FROM SINGLE DATA CENTER AND VARIOUS DATA CENTERS.

Methods Data Centers User HTER (%) EER (%) AUC (%) Avg. HTER Avg. EER Avg. AUC

Single

O M 41.29 37.42 67.93

41.61 36.66 67.07

C M 27.09 24.69 82.91
I M 49.05 20.04 85.89
O C 31.33 34.73 73.19
M C 39.80 40.67 66.58
I C 49.25 47.11 55.41
O I 42.21 43.05 54.16
C I 45.99 48.55 51.24
M I 48.50 33.70 66.29
M O 29.80 24.12 84.86
C O 33.97 21.24 84.33
I O 46.95 35.16 71.58

Fused

O&C&I M 34.42 23.26 81.67

35.75 31.29 73.89
O&M&I C 38.32 38.31 67.93
O&C&M I 42.21 41.36 59.72
I&C&M O 28.04 22.24 86.24

FedPAD

O&C&I M 19.45 17.43 90.24

32.17 28.84 76.51
O&M&I C 42.27 36.95 70.49
O&C&M I 32.53 26.54 73.58
I&C&M O 34.44 34.45 71.74

All

O&C&I M 21.80 17.18 90.96

27.26 25.09 80.42
O&M&I C 29.46 31.54 76.29
O&C&M I 30.57 25.71 72.21
I&C&M O 27.22 25.91 82.21

Ours

O&C&I M 14.70 16.64 90.57

23.18 23.88 83.40
O&M&I C 26.33 29.75 77.77
O&C&M I 28.61 26.04 82.07
I&C&M O 23.09 23.09 83.21

TABLE III

COMPARISON WITH MODELS TRAINED BY DATA FROM SINGLE DATA CENTER AND VARIOUS DATA CENTERS.

Methods Data Centers User HTER (%) EER (%) AUC (%) Avg. HTER Avg. EER Avg. AUC

Single
+Test-Time-Adaptation

O M 28.81 31.35 74.77

35.09 36.43 68.00

C M 34.49 35.64 69.46
I M 12.11 16.53 90.23
O C 30.37 30.35 74.69
M C 41.20 42.10 60.69
I C 43.53 42.91 59.21
O I 47.88 46.76 56.71
C I 60.02 65.26 36.34
M I 17.40 17.04 89.65
M O 23.24 23.30 83.65
C O 31.63 31.08 74.34
I O 36.94 37.16 66.60

Ours

O&C&I M 14.70 16.64 90.57

23.18 23.88 83.40
O&M&I C 26.33 29.75 77.77
O&C&M I 28.61 26.04 82.07
I&C&M O 23.09 23.09 83.21
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Fig. 5. ROC curves of models trained by data from single data center and various data centers.

Moreover, we further consider the case where a model is

trained with data from all available data centers, which is

denoted as All in Table II. Note that this baseline violates

the assumption of preserving data privacy, and therefore is

not a valid comparison for FL for fPAD. Nevertheless, it

indicates the upper bound of performance for the federated



114

o FedPAD: Increasing one data center with 3D mask attacks (H: HKBUMARsV2) within the

FL framework can improve the generalization ability of fPAD model to the novel 3D mask

attacks (3: 3DMAD).

o Ours: after adapted with novel 3D mask attack data by test-time adaptation during testing,

fPAD model trained with FL in the training phase is more able to generalize well to the novel

types of 3D mask attacks



 http://rds.comp.hkbu.edu.hk/mars
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http://rds.comp.hkbu.edu.hk/mars


 PAD is an important and un-solved issue in biometric systems

 Rapid progress in the past 5 years, still a lot issues needed to 
be solved

 Face PAD has high academic and commercial values

 Very good topic for PhDs or early stage researchers
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 Outstanding applicants (top students from top 
universities) will be recommended for nomination to the 
HKPFS scheme

* Visit http://www.comp.hkbu.edu.hk/hkpfs for a detailed breakdown

http://www.comp.hkbu.edu.hk/hkpfs
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