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Background and Motivations

Deployed biometrics practical applications

®eee0 Swisscom = 20:32 @ 7123%0 )

( Einstellungen

K SBB CFF FFS

Touch ID registrieren

Hier kénnen Sie Ihr Ticketshop Passwort fiir die
Verwendung von Touch-ID registrieren.

Falls Sie Touch-ID nicht mehr verwenden mochten,
dies deaktivieren, oder ihr gespeichertes SBB
Ticketshop Passwort wieder &ndern wollen, kénnen
sie dies unter "Mehr" --> "Einstellungen" einstellen

Bitte geben Sie das SBB Ticketshop Passwort ein fiir
den User:

Passwort Uberprifen

Touch-ID nicht verwenden

Border Control

Door Access Control

Touch ID (iPhone)

SBB for buying ticket



Background and Motivations

Face Recognition Technology

Jack Ma's first unmanned supermarket M IT Tec h n O I Ogy ReVi eW:

Today, on a street in Hangzhou (Zhejiang province), Jack Ma's first
3 & u

unmanned supermarket officially opened for business. Because there are b kt h h t h I

no costs for manpower, the expenses for running the unmanned 1 0 re a ro U g e c n O O g I e S 20 17

supermarket only add up to about a quarter of those of traditional _

supermarkets. The shop owner just needs to replenish the inventories I |
every morning - nothing else needs to be done. !

et
%

face-recognition payment Alipay

Entrance to the unmanned supermarket

Source: china.com and iomniscient.com



E-payment using Facial Recognition Technology in China

https://www.youtube.com/watch?v=gHHWomj2EDc



https://www.youtube.com/watch?v=9HHW0mj2EDc

Background and Motivations

Passenger flow analysis

Videor from httpsw/yplayer.vimeo. com/video/974

Pay-per-laugh: the comedy club that charges punters having fun

Image from http://www.yunbiao.tv/web/news/casenavdetail1gs.html
Image from https://www.huaweicloud.com/zhishi/frs3.html




Background and Motivations

Is Face Recognition Secure?

i o CKUP i RS P
\ND DROP- ,
SERVICE OF., '

£ \w - I
Student spoof the face recognition system of auto courier cabinet with a photo print

News from https://www.sohu.com/a/347612078_115479 7



What happens if
a face recognition system is NOT secure?



Background and Motivations

Vulnerabilities: Ratha et al. 18msysi2001] pointed out
eight possible attacks on biometric systems

_ 6. Modify
3. Override Feature Database template
extractor
7. Intercept
-
the channel
Human face v

Feature Matchin Results
Sensor > g
- Extraction
‘ 8. Override
1. Fake 2. Replay 4 Synthesized 5. Override final decision
biometric | o!d data Feature vector matcher

1, 6: specific for biometric systems




Background and Motivations

Face Presentation Attack Detection (PAD)
Face information can be easily acquired (facebook, twittery and abused
3 popular attacks: Print (image), Replay (video), and 3D mask

K - %

v/ Real Face X Prints Attack X Replay Attack X 3D Mask Attack

Low Cost High cost, but hard
to detect



Image and Video Face PAD

Review on existing approaches
Appearance-based
Motion-based
Deep Representation Learning
Domain Adaptation and Generalization



Image and Video Face PAD

Anti-spoofing approach: Appearance-based

Feature vector Classifier

Feature Real Face
= extraction Learr“ng

= Luthjmdmhhl

Texture feature [Maatta et.al, 1JCB 11] Fake Face
Image Distortion Analysis [Diet.al, TIFS 15]
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Image and Video Face PAD

Anti-spoofing approach: Appearance-based

Input image

Jukka Maatta, Abdenour Hadid, Matti Pietikainen, “Face Spoofing Detection From Single Images Using Micro-Texture Analysis”, I/JCB 2011
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DiWen, Hu Han, Anil K. Jain, “Face Spoof Detection with Image Distortion Analysis”, TIFS 2015
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Image and Video Face PAD

Anti-spoofing approach: Motion-based




Image and Video Face PAD

Anti-spoofing approach: Motion-based

Eyeblink-based anti-spoofing in face recognition from a generic web-camera
(G.Panetal., ICCV'07)

Real-time face detection and motion analysis with application in liveness
assessment. (K. Kollreider et al., TIFS'07)

A liveness detection method for face recognition based on optical flow field (W.
Bao et al., IASP’09)

Face liveness detection using dynamic texture (Pereira et al., JIVP'14)

Detection of face spoofing using visual dynamics (S. Tirunagari et al., TIFS'1g
Rank-pooling-based visual dynamics (Z.Yu et al., PAMI'20)
Spatial gradient and temporal depth (Z. Wang et al., CVPR'20)
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Image and Video Face PAD

Performance on traditional face spoofing attack

Replay Attack Print attack

Pipelines Dev Test Dev Test
DMD+SVM (face region) 8.50 7.50 0.00 0.00
DMD+LBP+SVM (face region) 5.33 3.75 0.00 0.00
PCA+SVM (face region) 20.00  21.50 16.25 15.11
PCA+LBP (face region) 11.67 17.50 9.50 5.11

DMD+LBP+SVM (entire video)  0.50 0.00 0.00 0.00
PCA+LBP+SVM (entire video) 21.75  20.50 11.50  9.50

[S. Tirunagari et al., TIFS'15]
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Public Datasets of Face PAD

Datasets Modality #Subjects #Sensor Spoof type
Replay-Attack [1] 2012 RGB 50 1,200 (V) 2 Print + Replay
CASIA-MFSD [2] 2012 RGB 50 600 (V) 3 Print +Replay

3DMAD [3] 2014 RGB/Depth 14 255 (V) 2 3D mask

MSU-MFSD [4] 2015 RGB 35 440 (V) 2 Print + Replay
Msspoof [5] 2015 RGB/IR 21 4,704 (1) 2 Print
HKBU-MARsV2 [6] 2016 RGB 12 1,008 (V) 7 3D masks
MSU-USSA [7] 2016 RGB 1,140 10,260 (I) 2 Print + Replay
Oulu-NPU [8] 2017 RGB 55 5,940 (V) 6 Print + Replay
SiW [9] 2018 RGB 165 4,620 (V) 2 Print + Replay
CASIA-SURF [10] 2018 RGB/IR/Depth 1,000 21,000 (V) 1 Paper Cut

CSMAD [11] 2018 RGB/IR/Depth/LWIR 14 246 (V),17 (1) 1 silicone mask




Datasets

SiW-M [13]

WMCA [14]

CelebA-Spoof
[15]

HQ-WMCA [16]

CASIA-SURF
3DMask [17]

HiFiMask [18]

Public Datasets of Face PAD (con’t)

2019

2019

2020

2020

2020

2021

Modality

RGB

RGB/NIR/Depth/L
WIR

RGB

RGB/NIR/Depth/S
WIR/LWIR

RGB

RGB

#Subjects

493

72

10,177

51

75

1,628 (V)

1679 (V)

625,537 (1)

2904

1152 (v)

54600

#Sensor

>10

Lighting Cond.

Print + Replay +3D Mask

Room Light + Make Up
Room Light/LED- 3D Mask made of (Plastic,
lamps/Day Light Silicone, Paper)
Room Light/Strong Front 3 Print, 3 Replay

Light/Back Light/Dark 13D Mask, 3 Paper Cut

Room Light/Halogen-  Print. Replay, 3D masks:
lamps/LED-lamps/Day  (Rigid, Paper, Flexible),
Light/ Mannequine, Glasses,
Makeup, Tattoo, Wig

Room Light/Back Light/
Front-light/Sidelight/Sun- 3D masks
light/Shadow
Room Light/Dim
Light/Bright Light/Back Transgg'i’;tr Mask
Light//Side Light/Top '

. Hi-Fidelity 3D Masks



Image and Video Face PAD

Deep Representation Learning



Image and Video Face PAD

Generate better pixel-wise label

Living Funny Eye Paper Mask Transparent Mask Imperson. Paper Glasses.

A\
|

Face

Handcrafted
pixel-wise label

Meta-Teacher’s
pixel-wise output

100

Y. Qin, et al. Meta-Teacher For Face Anti-Spoofing. TPAMI 2021. 58\ —@
; Demmp | : — Loss

I
1
256%256%x6%5 | T T T 32=32 Loss
(RGB+HSV) 1 Block 1 Block 2 Block 3 128 64 1 JI |

Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision, CVPR 2018 20




Image and Video Face PAD

Central Difference Convolutional Network (CDCN) and Variations

A new convolution kernel inspired by the rationale of LBP
Aim to learn detailed patterns via aggregating both intensity and gradient information

Live Print Replay

Input Feature Map Output Feature Map

Central Difference
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Z.Yu, et al. Searching central difference convolutional networks for face anti-spoofing. CVPR 2020.
Z.Yu, et al. Nas-fas: Static-dynamic central difference network search for face antispoofing. TPAMI 2020 Static-dynamic Image
Yu, Zitong, et al. Dual-cross central difference network for face anti-spoofing. IJICAI 2021.

Static

Dynamic

A4
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Image and Video Face PAD

Noise Modeling

Inversely decompose a spoofed face into a spoof noise and a live face,
and then utilizing the spoof noise for classification.

Real face: no spoof noise vs. Fake face: clear spoof noise

I I Spoof ¥ las d Live
\ \ ' - ' *a
Seamsarasarsssssssssssssssssssssassrsssssessssssssssssasesssnas I Images - ' mal Images
- —-’ — - i
: ——— — — — — — — — — | t ",
1 Fa Y FE=men T (=l - -
: | =

1 | | ; <y ‘?:..w B T
1 | | e ———— — Estimated ’:&3\? v " S et I 5 G Estimated | : ‘

I n I 1 Noise -~ i o ’ i

I I —— e _l & m::'-i — Noise

Repetitive Loss I
o\ o\l Magnitude Loss | M ot
| MapNet [ | Map I ] I D l mel‘j:t(j o 'l - Estimated %) g
i |

IDS Net J I : -~ ‘L:‘ l | 1ve

Parameters to update I DQ Net

M=

No parameters to update

Y. Liu, A. Jourabloo, and X. Liu. Face De-Spoofing: Anti-Spoofing via Noise Modeling, ECCV 2018

Y. Liu, et al. On disentangling spoof trace for generic face anti-spoofing. ECCV 2020. 22



Image and Video Face PAD

Spoof Trace Disentanglement Network (STDN)

Disentangled spoof trace via adversarial learning and hierarchical combination of patterns at
multiple scales.

o

Input Face

Spoof Trace Elements Reconstructed Live . ]

Real Live
Input Face
l - VS.
I Fake Live

Synthesized Spoof

J Real Spoof]

Spoof Trace

warping —+ Vs.

Fake Spoof

live / spoof

\

Final result: Average of the spoof prediction map and intensity of spoof trace

New Live Face

Y. Liy, et al. On disentangling spoof trace for generic face anti-spoofing. ECCV 2020. -



Image and Video Face PAD

Data Augmentation Patch Exchange Augmentation
Simulate digital medium-based face Exchange face patches from different domains
spoofing attacks to obtain a large Random mixup of live and PA patches
amount of training data well reflecting Corresponding pixel-wise supervision for augmented
the real-world scenarios data
Synthetic reflection artifacts ‘D

' Live

' Domain2
\ Augmentation1

. Print :

, Attack IS ;

. Domain2 i

. Reney E
. Attack o

Augmentatlonz

' Domain2

Yang X, Luo W, Bao L, et al. Face Anti-Spoofing: Model Matters, So Does Yu, Zitong, et al. Dual-cross central difference network for face anti-
Data, CVPR 2019 spoofing. IJICAI 2021. 24



Image and Video Face PAD

Domain Adaptation and Generalization



Image and Video Face PAD

Domain adaptation approach

Learn a mapping function to align the eigenspaces between source domain data and
target domain data.

Maximum Mean Discrepancy between the source and target latent features is
minimized

Feature RKHS Mapping

Extraction Embedding Learning

Source
Domain
y Data

Learn
Classifier

MMD

Testing
Target h ‘

2 LA " ad b

H Li, W Li, H Cao and et al. Unsupervised domain adaptation for face anti-spoofing, TIFS 2018
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Image and Video Face PAD

Adaptive Inner-update Meta learning

Aim to quickly adapt to new spoofing types by learning from both the predefined attacks and a
few examples of the new spoofing types.

Test Set
Real2 Replay2 Real IR Mask1 Mask2

ero-shot

Train Set
Reall

AL

Y. Qin, et al. Learning Meta Model for Zero- and Few-shot Face Anti-spoofing. AAAI 202o0. 27



Image and Video Face PAD

Single-side domain generalization

Learn a generalized space where the feature distribution of real faces is compact
Fake faces are separated among domains but compact within each domain.

Fake

Fake Real
Forward propagation of the real T T T e~ T T T ) Domain 1 __________ .
| Pre ﬂ \\\ ! : 1
Forward propagation of the fake 3 ~~_ | . i | |
propag : },// ~— !\\\ | é@ f"')( A " Domain 2 ! . | X |
, N T gy Asmmetri ‘ooles L xAA s A X
a 4 /{ vl Triplet Loss / y S A A
|- - /
: Feature Bl o i | X
Source It A | A’
Generator | 7
|

for Fake Faces

%‘

T _ = a4 Asymmetric
. \ u ,
2 4% %

—_ — — . I % Triplet Mining
= Weight Sharing Normalize @ Cross-Entropy i m H

Loss . Dl AT
: ..‘“x__’_-__.x‘/r.‘ ;.3 “

|
L
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|

Real !
I for Real Faces I G . | ) _.-’. ]
| | | R Domain | Adversarial : u [}
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| | ' =
|
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Adversarial Learning J % );( )(,,-'

Y. Jia, et al. Single-side domain generalization for face anti-spoofing. CVPR 202o0. ,8



Image and Video Face PAD

Self-domain adaptation with unlabeled testing data

Using the information of the test domain to improve the performance at inference stage
Meta learning framework with domain adaptor
Domain adaptor is also updated at inference stage

| DGMethods | DAMethods | Self-domainAdaptation Supervised classification loss
Source omains _ | Source Domains Source Domains on meta_traln doma|n

==

CASIA | (Msu-MFsD CASIA ) MSU-MFsD

VLagap(T) ~
VLies(T)

I

|

I

|

|

I

|

I .
|Target Domain
|

I

|

|

I

|

I

I

|

Al::ss = = -
diap 9 - e VLAdap(T)
. | 1 Vi)
e . e
] | /
\ me )| / + +
N /| ™ N .
e P \ t+ | _+ti-/ Unsupervised adaptor loss
e e | i i
| Source data: Target data: + = Classifier: | on meta-test domain

J. Wang, et al. Self domain adaptation for face anti-spoofing. AAAI 2021. 29



Image and Video Face PAD

Unknown domain label: Domain dynamic adjustment meta-learning

Training data always contains mixture domains, where the domain label is unknown

lteratively assign pseudo domain labels and be trained using meta-learning

Conventional DG method

E L;’:I-.l Model
E h‘ training

|
1

— 1
\ [

- )
.- )
1

'

]

)

OULU

Our method

Mixture domains D2AM: Iteratively dividing and training

Z. Chen, et al. Generalizable representation learning for mixture domain face anti-spoofing. AAAI 2021. 30



Image and Video Face PAD

Source-free Domain Adaptation

Update a FAS model using only target domain data, so that the upgraded model can perform
well in both the source and target domains

Live vs. Spoof Live vs. Spoof Live vs. Spoof
SCE Layers SCE Layers SCE Layers
G | |
t 1 $
MsFE MsFE ‘ FAS-wrapper

.qz‘m
oD

{’f.-;”‘G]'."

=

Target Train Source Train Target Train Source Train Target Train

S TN
ASE 22O

t
e <
M) 893

893

X. Guo, et al. Multi-domain Learning for Updating Face Anti-spoofing Models. ECCV 2022. 31



Image and Video Face PAD

Source-free Domain Adaptation

Given feature extractor: f; (pretrained on source data) ,finetune it with SRE on target data-> f7
Two teacher models f, fr train f;,.,, with adversarial learning

Lg, Lt : Transfer knowledge from two teacher model via adversarial losses
Lgpoof: Prevents divergence between estimated spoof traces to combat catastrophic forgetting

Inference stage

Live vs. Spoof
Lyre

Live vs. Spoof

SCE Layers

Live vs. Spoof

I:I:HCE Layers SRE: Spoof Region Estimator (pixel level

supervision)
SCE: Spoof Cue Estimator (classifier)

Lr
t
I . | i | . |
* 3 Scale Dis 3% Scale Dis
E 3% Seale Layers i 3 Seale Layers i l 39 Scale Layers i
20d Seale Dis

E ]

| Feature )_.| SRE |

3 Seale Layers

3 Scale Lavers

i

204 Seale Dis =

22d Scale Layers E 2md Scale Layers i i 22d Scale Layers f |_2”ﬂ Scale La}-‘emj 20d Seale Layers
2 [ 1% Scale Dis [ i [ 1% Scale Dis | K|

1%t Scale Layers 1%t Scale Layers DisS 1%t Scale Layers DisT I 1% Scale La}'er_s i 1%t Seale Layers

}r_‘i f—'? fnew J1("] f‘new
JR—— =
i Input Image I FAS-wrapper | __ _ _ " Frozen : d Input Image I U Input Image |
(a) (b) ()

X. Guo, et al. Multi-domain Learning for Updating Face Anti-spoofing Models. ECCV 2022. 32



Image and Video Face PAD

Adaptive ViT for FAS

ViT captures the long-range dependency among different patches via the global self-attention mechanism
Steps:

ViT backbone is pretrianed on ImageNet, only MLP head is trained for FAS with cross entropy loss
Insert Ensemble Adaptors and FWT (feature wise transform)

FWT layers are removed during testing

[ s
L.e L‘ce +Lcos \ L"_ T FWT |
Live/Spoof Live/Spoof 1= _é‘_ - Live/Spoof
1 € Eimemiie
Ir' MLP | MLP |\ _adapters |

Ensemble
MLP
MLP
Transformer

adapters
R SR ' E@E} Transformer
- " mg
: tl:ai:llzzgle Linear projection

Ensemble |

] ] | _adapters _| "
ARG

Ensemble
: m‘n—liT] Linear projection ] ., ;f::l: :1
cls) rm .tﬂi.'ﬁir cls) iii T TR TN
(a) Pre-training (b) Fine-tuning

(c) Testing
H.P. Huang, et al. Adaptive Transformers for Robust Few-shot Cross-domain Face Anti-spoofing. ECCV 2022
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Image and Video Face PAD

Adaptive ViT for FAS

Ensemble Adaptors
Inspired by adapterBERT
Cosine similarity loss constrains multiple outputs of adapters to be complementary

Feature Wise Transform (FWT) o
Lﬂ'ﬂS(h['«h‘;}

Feature-level data augmentation I
: : , =~ M —
Apply affine transformations to intermediate features / ht @ N Eé‘lj \
Linear (m, n) Linear (m, n)
GELD
Linear (n, m) Linear (n, m)

'h
K Ensemble adapters /

H.P. Huang, et al. Adaptive Transformers for Robust Few-shot Cross-domain Face Anti-spoofing. ECCV 2022. 34




Image and Video Face PAD

Generative Domain Adaptation: Stylize target data to source data

Typical solution: Fit the trained models to the target domain via aligning the distribution of
semantic high-level features

New perspective: Stylizes the target data to the source-domain style via image translation

ercal x fake decision boundary

I
source data model fit | source da target data fit
’ 2
High-level (\ : ” '\ =
Alignment I ‘ A ->
. , = Feature | _[F]s
Feature _:B
targetdata | pytractor —3 : target data source-style data | Extractor | ' F
' stylization
I
(a) Previous UDA in FAS: Model fit to Target data UDA in FAS: Target data fit to Model

Q. Zhou et al. Generative Domain Adaptation for Face Anti-Spoofing. ECCV 2022.
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Image and Video Face PAD

Stylize target data to source data

Generator F Feature Extractor = H Classifier R Depth Estimator Stored BN

Two Consistency constraints
. ) Training Phase: Target Data Fitting to Model -------------~------- -~ e
Neural statistic COﬂSlStency (NSC)  S——" P——— Face Anti-spoofing Model 6}]
Image

Target Image

’ 1 ) " H Lent1
N » N F
e - omm (o R Lonss

NSC

dual-level semantic consistency (DSC)
Expand target data distribution
Spectrum Mixup

SpecMix

DSC

Inter-domain Neural Statistic Consistency (NSC)

Dual-level Semantic Lonsntcncy (DSC)

Intra-domain Spectrum Mnup (SpecMix)
Image-level
Low-level High-level
‘1 Phase ‘ . $l““ Lph . o : .
Stored BN in FAS Model
FFT - |l~l"l ____________________________________ % Loy L
- u o

Feature-level
Source-style Image BN
3 VGG ¢ Lper T

Phase

Inference Phase: Source-style Data Prediction - - - - -

Unlabeled Source-style : H Real 7 Atiack
Target Image Image

7 S S g

Q. Zhou et al. Generative Domain Adaptation for Face Anti-Spoofing. ECCV 2022. 36



Image and Video Face PAD

Fine-Grained Patch Recognition FAS

Patch-type classes: Capture device, Presenting material
Asymmetric Angular Margin Softmax Loss: larger angular margin on live classes
Self-Supervised Similarity Loss: enforce the patch feature invariance within a single

Capture Presenting Fine-Grained
Devices Materials Patch Classes Non-Distorted Normalized
O Device 1: Live Pat&h Extraction Feature Asymmc_tric Angular
D -+ - ﬁ‘, - Margin Penalty
O7'e !.i: m,, mq

Device 2: Live

,+ C)"W"’Q j;
Device lSpo!Mdlml l I‘ I
+ & _’ ""' o ve z;(clc nput
iw
Device 1 : Spool Mediu m‘l ’
D+ o | -+ 59 sl JE

, 4 e = . ) - : e
@+ F et ok W

Spoof Face Input
X2

Decision Boundary
" for Live Classes

, Decision Boundary
for Spoof Classes

C.Y.Wang et al, PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition. CVPR 2022. 37



Image and Video Face PAD

Feature Generation and Verification for Reliable FAS

Generate real-face feature g and spoofing-attack feature h with constraints:
Variance constraint (VAR): Input face feature and real-face hypothesis tend to be similar

Relative Correlation Constraint (RCC): Triplet-loss-like constraint for real face feature, real-face
hypothesis, and attack hypothesis

Distribution Discrimination Constraint (DDC): Enlarae distance between real-face hvbothesis and attack

y h KA FGN Standard hy 9 91
:\\; ,\'ormf:..l Dist. \ . |
-, K : ik : f
e FEB 2 /0 | P I\ 92 ~
A=E = l-' ! = ’ ) hZ 92
[Rcc] [VAR] [DDC] z LKL ik s
- - ] \
B= ': REFEGN Y 41 by by H1.02
{ ® - i \ A g 91
5 |2oa - o : i a //\\ = | . DDC= q: .. - % ..
\ [ \ i real  attack )
; ¢ -1 0 1
g S Dist. Fitting E .
image flow known-attack hypotheses flow real-face hypotheses flow
sampling ==== latent vectors optimization (only for test) FEB feature extraction backbone
KA FGN known-attack feature generation network RF FGN real-face feature generation network

S. Liu et al, Feature Generation and Hypothesis Verification for Reliable Face Anti-spoofing. AAAI 2022. 38



3D Face Recognition

Your face is your
secure password.

recorded image

/\ camera
/J/?)

facc IDis v:mt:lc:‘l by the T'ucD:\J:h __/N

onilysa ity gﬂ

R projector target object

FacelD in iPhone X
A ; ] X _, 3D Face Recognition:
nnounced on 12 September 2017 : Employed Structured-light 3D technology

https://matterandform.net/blog/how-do-3d-scanners-work 39



https://matterandform.net/blog/how-do-3d-scanners-work

3D Mask Face PAD

3D Mask Attack

With the advanced development on 3D reconstruction and 3D printing technology,
3D face model can easily be constructed and used to spoof recognition systems

Source: idiap.ch

Mask is made from ThatsMyFace.com



3D Mask Face PAD

Super-realistic 3D Mask

(a) (b)
Life face Real-F hyper real mask

Source: real-f.jp



EEE NEWS

Brazil drug dealer dresses up as
daughter in bungled jail escape

O o5 August 2019  Latin America & Caribbean

y




FI] RT “ NE Airport and Payment Facial Recognition Systems Fooled by Mask... o @ @ Q

Airport and Payment Facial Recognition Systems
Fooled by Masks and Photos, Raising Security
Concerns

By December 12, 2019

The test, by artificial intelligence
company Kneron, involved visiting
public locations and tricking facial
recognition terminals into allowing
payment or access. For example, in
stores in Asia—where facial
recognition technology is deployed
widely—the Kneron team used high
quality 3-D masks to deceive AliPay
and WeChat payment systems in order
to make purchases. 3

More alarming were the tests deployed at
transportation hubs. At the self-boarding
terminal in Schiphol Airport, the Netherlands'’
largest airport, the Kneron team tricked the
sensor with just a photo on a phone screen. The
team also says it was able to gain access in this
way to rail stations in China where commuters
use facial recognition to pay their fare and
board trains.



3D Mask Face PAD

The 3DMAD dataset

Score distributions of genuine, impostor, and mask attack scores of 3DMAD
using ISV for 2D face verification

14
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3D Mask Face PAD

Deep Dictionary Learning approach

Detecting Silicone Mask-based Presentation Attack.
Multilevel deep dictionary learning-based presentation attack detection algorithm

Genuine /
SVM Classifier —®  Spoof

Grey Scale and
Illumination
Normalization

Original Frame Face Detection and
Cropping

Deep Dictionary

Manijani |, Tariyal S, Vatsa M, et al. Detecting silicone mask-based presentation attack via deep dictionary learning,
TIFS 2017 45



3D Mask Face PAD

Zero-shot learning approach

Investigate the Zero-Shot Face Anti-spoofing problem in a wide range of 13
types of spoof attacks including 3D masks.

A novel Deep Tree Network is proposed to partition the spoof samples into
semantic sub-groups
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LiuY, Stehouwer J, Jourabloo A, et al. Deep Tree Learning for Zero-shot Face Anti-Spoofing, CVPR 2019 46



3D Mask Face PAD

Custom Silicone Masks Datasets

Consider PAs performed using custom-made flexible silicone masks..
A new dataset based on six custom silicone masks

Bhattacharjee S, Mohammadi A, Marcel S. Spoofing deep face recognition with custom silicone masks, BTAS 2018 .



3D Mask Face Anti-spoofing

Domain adaptation approach

Transfer the knowledge of facial appearance from RGB to multi-channel domain.
Learn the features of individual facial regions

Bona-fide samples PAI samples
{

™

6 different sessions

¥
"l
"
= )
=
7 = |
F A
) s
N

Print Replay  Fake head
Ty

ini
| Reconstructed HxWx3 I

Nikisins O, George A, Marcel S. Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face
Anti-Spoofing, ICB 2019 48



Our Recent Works

PhotoPlethysmoGraphy based Approach
Deep Dynamic Feature Approach
Domain Generalization Approach

Federated Learning Approach
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PhotoPlethysmoGraphy based Face Anti-

spoofing Approach for 3D Mask Attack

Reference:
S Q Liu, XY Lan and P CYuen, "Multi-Channel Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack
Detection”, IEEE Transactions on Information Forensics and Security (TIFS), In press 2021
S Q Liu, X Lan, P CYuen, "Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack
Detection”, Proceedings of the European Conference on Computer Vision (ECCV), pp. 558-573, Sept. 2018.
S Q Liu, P CYuen, S Zhang and G Zhao, “3D Mask Face Anti-spoofing with Remote Photoplethysmography” European Conference on Computer
Vision (ECCV), Oct 2016.
X Li, J Maatta, G Zhao and P C Yuen and M Pietikdinen, “Generalized face anti-spoofing by detecting pulse from face videos”, International
Conference on Pattern Recognition (ICPR), Dec 2016.
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PhotoPlethysmoGraphy (PPG)

Arterial Supply .
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remote PhotoPlethysmoGraphy (rPPG)

sample over a duration of time

. Image modified from: UCLA Lung Cancer Program: lungcancer.ucla,edufadm_tests_eg'&m

current time timeline
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Principle of rPPG Based Face Anti-Spoofing

capillary vessel

(a)

(@) rPPG signal can be extracted from genuine face skin.

(b) rPPG signals will be too weak to be detected from a masked face.
* light source needs to penetrate the mask before interacting with the blood vessel.
* rPPG signal need to penetrate the mask before capturing by camera



Principle of rPPG Based Face Anti-Spoofing
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Global rPPG-based Face Anti-Spoofing (icpr 20161

0,14
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0,1 E
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0% { | [g=Eg / sum(f)
0,06 \
0,04 |l

Temporal 092 1 A W Nl f
FFT 0" | -
Filterinc

a. Face Detection and ROl tracking
* UseViola-Jones face detector on the first frame
* Find 66 facial landmarks [CVPR’13 Asthana et.al] within the face
bounding box. Use g of them to define the ROI
* ROl is tracked through all frames using KLT

WM ke c. e
:
N W L W W
i ,

X Li, ) Komulainen, G Zhao, P CYuen and M Pietikainen, "Generalized face anti-spoofing by detecting pulse from face videos”
ICPR 2016 55



Global rPPG-based Face Anti-Spoofing

b. Threeraw pulse signalsr,,, g,,,and b,,, are computed; one from
each RGB channel, respectively.

*  FIR bandpass filter with a cutoff frequency range of [0.7; 4] Hz
([42; 240] beat-per-minute)

*  Use fast Fourier transform (FFT) to convert the pulse signals
into frequency domain-> PSD curve: f
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Global rPPG-based Face Anti-Spoofing

WM A Mty
W P & ANV.4 P
. VoW W kAt NN
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Filtering

c. Feature Extraction [E, EgEb [ rrg ]
E = max(e(f))
r— E

Yy fefo.7,4] €(F)
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Experimental Results

Data:
3 DMAD [Erdogmus et.al TIFS'14]

255 videos recorded from 17 subjects
Masks made from ThatsMyFace.com

2 REAL-F Masks

24 videos recorded from 2 subjects
Hyper real masks from REAL-F
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Experimental Results

Results on REAL-F (cross dataset)

Randomly select 8 subjects from 3DMAD for training and the other 8 subjects as
the development set

REAL-F
FPR FPR
Method HTER(%) EER(%)  |(@FNR=0.1%) [(@FNR=0.01%)
Pulse (ours) 429 1.58 0.25 3.83
LBP-blk 26.3 25.08 37.92 48.25
LBP-blk-color 25.92 20.42 31.5 48.67
LBP-ms 39.87 46.5 59.83 73.17
LBP-ms-color 47-38 46.08 6.5 95.08 .




Analysis of Results

Observations:

LBP-based texture method gives
zero error for 3DMAD dataset but

very large error in REAL-F

Global rPPG method (pulse)
provides very small errors in both
3DMAD and REAL-F datasets
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Limitations on Global rPPG method

Global rPPG signal is sensitive to certain variations such as
illuminations, head motion and video quality

rPPG signal strength may vary with different subjects



How to increase the robustness of
rPPG-based Face Anti-spoofing?



Local rPPG based Face Anti-Spoofing Method

[ECCV 2016]
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S QLiu, PCYuen, S P Zhang and GY Zhao' 3D Mask Face Anti-spoofing with Remote Photoplethysmography” ECCV 2016



Local rPPG based Face Anti-Spoofing Method
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(a) Local ROIs are pre-defined based on the facial landmarks. Local rPPG signals are extracted from these local face
regions.

(b) Extract Local rPPG patterns through the proposed local rPPG correlation model.
(c) Training stage: local rPPG confidence map is learned, and then transformed into distance metric for classification.

(d) Classifier: SVM



Contribution 1: Local rPPG Correlation Model

Local rPPG on genuine face

i

Consistency of local rPPG

FFT

Local_rPPG 2 Local_rPPG 1

N\

Due to noise



2. Local rPPG Correlation Model
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Contribution 2: Learning Local rPPG Confidence Map
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Generic map of blood vessels on the face

The distribution of local rPPG signals should be considered



Limitation on Local rPPG Approach

How to accurately obtain the liveness evidence from the
observed noisy rPPG signals?



Improved Method: rPPG Correspondence Feature

[ECCV 2018]
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1. SQLiy, XY Lan and P CYuen, "Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection”, ECCV 2018 ©9



Improved Method: rPPG Correspondence Feature

[TIFS 2021]
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1. SQLiu, XY Lan and P CYuen, “"Multi-Channel Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection”,
IEEE Transactions on Information Forensics and Security (TIFS), 2021. 70



Limitations on existing rPPG Methods

—
o

o

(o]

Observation Time Length(s)
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0 50 100 150 200 (bmp) 0 50 100 150 200 (bmp) Heart Rate(bmp)

Existing rPPG-based 3D mask PAD methods are based on spectrum analysis
—> Require long observation time (8-10 seconds) to identify heartbeat information




Temporal Similarity Analysis of rPPG (TSrPPG) for

Fast 3D Mask Face PAD

|I:r( 8)

Amplitude Gradlent

local rPPG signals

10(8)

Masked Face

local rPPG signals

Reference:
1.SQ Liy, XY Lan, and P CYuen, "Temporal Similarity Analysis of Remote Photoplethysmography (TSrPPG) for Fast 3D Mask Face

Presentation Attack Detection”, WACV, 2020.
2.5 QLiy, XY Lan and P CYuen, “"Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack
Detection”, IEEE Transactions on Information Forensics and Security (TIFS), In press, 2022.



The proposed TSrPPG

Amplitude
g 2| f Rationale
g “’ -' Correlation of local rPPG signals on genuine
5l / / W faces is higher compared with those on
k=l N\ .-
— 7 masked faces.
o0 | 2 The periodicity information is not available
2 (a) within short observation time.

Hard to adopt spectrum analysis

Design liveness feature in temporal space

_local rPPG signals

Masked Face 0




The proposed TSrPPG
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The proposed TSrPPG =

TSrPPG; ;[m] = D(si[t], s;[t +m])dt
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Final result is obtained through score-level-fusion



LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG
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LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG

Learnable rPPG estimator:

Learn robust rPPG feature through 3D convolution
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LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG

Learnable rPPG estimator:

Learn robust rPPG feature through 3D convolution
Further boost the discriminability of TSrPPG

Genuine face: Enhance the temporal similarity
Fake face: Reduce the temporal similarity
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LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG

Learnable rPPG estimator:

Learn robust rPPG feature through 3D convolution

Further boost the discriminability of TSrPPG

Genuine face: Enhance the temporal similarity
Fake face: Reduce the temporal similarity

=

" Facial TSrPPG Background TSrPPG

Improve TSrPPG in rPPG extraction stage
Enhance the consistency of local rPPG signals
Reduce the correlation of background rPPG and facial rPPG
Can be trained without fake face samples



LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG

Experimental Setting:

Lighting Face (pixel)

#Subjects/Masks | #Video Slots | Mask Type | Condition Camera Resolution Compression
3DMAD [13] 17 17 2550 TMF 1(Studio) Kinect 80x 80 Motion JPEG
HKBU-MARsV1+ [15] 12 12 2160 TMF+RF 1(Room) Logitech C920 200x200 H.264
CSMAD [30] 14 6 1582 Silicon 4 RealSense SR300 350350 H.264
HKBU-MARsV2+ 16 16 12480 TMF+RF 6
Summary 59 39 18772 3 12

(a) ThatsMyface (b) REAL-f (c) Silicone

Evaluation Protocols:

Intra-dataset evaluation
Leave one subject out cross validation (LOOCV)

Cross-dataset evaluation
Train and test on different datasets




LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG

Intra dataset evaluation with short observation time (1 second) :

HTER dvlp | HTER_test | EER | AUC
GrPPG 34,1 +5.7 | 33.7+11.6 | 38.3 65.9
PPGSec 33.3+ 3.1 33.0 + 8.1 34.8 69.4
LrPPG 452 + 3.2 448 + 8.8 453 55.7
CFrPPG 328+ 1.7 327+74 32.5 70.8
TransrPPG 20.7 = 2.2 20.6 = 8.3 20.8 84.5
TSrPPG 13.1 =3.0 1344+11.2 | 133 03.8
LeTSrPPG 11.5 + 2.7 11.8 = 8.6 11.9 | 944
3DMAD
3DMAD HKBUMARsV1+
ls 2s 3s 4s Is 2s 3s 4s
GrPPG [14] 659 79.1 84.6 877 72.0 792 803 823
LrPPG [13] 69.4 84.1 89.3 920 | 593 715 788 845
PPGSec [40] 557 683 745 80.0 | 56.2 744 767 798
CFrPPG [15] 70.8  88.1 93.1 944 | 60.8 78.6 858 89.0
TransrPPG [41] 84.5 87.3 89.4  88.1 720 768 T77.6 79.6
TSrPPG 938 97.0 977 984 852 89.0 899 903
LeTSrPPG 9494 971 98.0 986 | 91.5 96.0 973 98.0

Performance (AUC) with different length of observation

HTER_dvip HTER _test EER | AUC
GrPPG 292 +4.7 201 £9.7 | 338 | 72.0
PPGSec 424 4+ 2.1 4294+58 | 43.0 | 593
LrPPG 453437 | 45.1 £ 12.0 | 453 | 56.2
CFrPPG 41.6 + 3.3 42.1+56 | 420 | 60.8
TransrPPG 329+£238 32764 | 33.1 | 72.0
TSrPPG 215126 223 £88 | 22.0 | 85.2
LeTSrPPG 15.3 £ 2.2 158 6.5 | 15.7 | 91.5
HKBU-MARsV1+
HTER_dvlp HTER_test EER  AUC
ﬁ TSrPPG 13.1 & 3.0 134 £11.2 13.3 03.8
= LeTSrPPG-W/oL cnst &L geer 13.1 £ 2.5 13.3 £+ 8.1 13.4 92.9
9, LeTSrPPG 114 £+ 2.7 11.8 - 8.9 11.7 94.5
g + TSrPPG 21.5 £ 2.6 223 + 8.8 22.0 85.2
<= LeTSrPPG-W/0L st &L ge o 16.6 &+ 2.0 17.1 £ 5.7 17.2 90.7
= LeTSrPPG 155 £+ 2.1 15.8 4+ 6.7 15.8 914

Ablation study of learnable rPPG extractor




LeTSrPPG: Learnable rPPG to enhance temporal

similarity of TSrPPG

Overall comparison with state of the arts for both intra and cross dataset evaluation (1 second)
TSrPPG and LeTSrPPG achieve the best robustness and top-level discriminability
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Real time Implementatlon of our rPPG- based Face Anti-spoofing Method




Deep Dynamic Feature Learning Approach

Reference:

1. R Shao, XY Lan and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability
for 3D Mask Face Anti-spoofing”, IAPR/IEEE International Joint Conference on Biometrics (1JCB), Oct 2017
2. R Shao, XY Lan and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-

spoofing”, IEEE Transactions on Information Security and Forensics (TIFS), Vol. 14, No. 4, pp. 923-938, 2019.
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Joint Discriminative Learning of Deep Dynamic Textures

[IJCB 2017, TIFS 2019]

= Basicldea

o
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ke = e=x
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Frame 1 Frame 5 Frame 10 Frame 15 Frame 20 Frame 25
e Eye blinking
* Lip movements Captured by dynamic textures

* Some other facial components movements

. R Shao, XY Lan and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face Anti-spoofing”, IAPR/IEEE International
Joint Conference on Biometrics (IJCB), Oct 2017

. R Shao, XY Lan and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing”, IEEE Transactions on Information Security and
Forensics (TIFS), Vol. 14, No. 4, pp. 923-938, 2019. 85



Joint Discriminative Learning of Deep Dynamic Textures

[1JCB 2017, TIFS 2019]
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1. RShao, XY Lan and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face Anti-spoofing”, IAPR/IEEE International
Joint Conference on Biometrics (IJCB), Oct 2017

2. R Shao, XY Lan and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing”, IEEE Transactions on Information Security and
Forensics (TIFS), Vol. 14, No. 4, pp. 923-938, 2019. 86



Can we develop a generalized detection method in
which the attack type is not known?

\/Rcal Face

X Prints Attack X Replay Attack X 3D Mask Attack
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Domain Generalization Approach

Reference:
R Shao, XY Lan, JW Liand P CYuen, “"Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack
Detection” Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
R Shao, X Lan, P CYuen, “"Reqgularized Fine-grained Meta Face Anti-spoofing”, The Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI), 2020. 88




Multi-adversarial Discriminative Deep Domain Generalization

for Face Presentation Attack Detection [cvrrzo1g]

= Domain Generalization:

Source Domains

S R RN EEEEEEEE NN EEEEEENEREEREE RS

@ Unseen Domain

"
il
"

R Shao, X Y Lan, J W Li and P C Yuen, “"Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection” Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR) 2010.



Multi-adversarial Discriminative Deep Domain Generalization

for Face Presentation Attack Detection [cver 2019]
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R Shao, XY Lan, J W Li and P C Yuen, "Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection” Bsoceedings of IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.



Multi-adversarial Discriminative Deep Domain Generalization

for Face Presentation Attack Detection [cver 2019]

Fake Depth
Depth 1
Estimation . | oSS

Real Depth » A unified multi-adversarial discriminative deep
domain generalization framework (MADDG):

: : :
y+ Domain2
.

: ; Feature Feature o
. » Generator ; E
;EDomainN é —— min maX LMADDG —
ﬁ“ Dual-force G,E,C,Dep D1 D,,...Dn
) Triplet Mining
P LDG + LT'rip + LDep + LClS
\I &;‘e\
Feature -1

| —
! wixactor 2
_»n —_—

:l Feature

:I Extractor_N

==

........................

\ Multi-adversarial Deep Domain Generalization )




Original Binary CNN

Original Binary CNN




Regularized Fine-grained Meta Face Anti-spoofing (aaaiozo

Domain Fake Depth Fake Depth
Knowledge LJ
Real Depth
" Meta-train 1
Meta-train 2
; ' 4 — 4
__________________________________ y
................ ﬁ- ’
r Meta- test
£l :
; § regularized fine-grained meta-
H CASIA ! . =
Mo 5 learning in the feature space

The first paper to address problem of domain generalization for face
anti-spoofing in a meta-learning framework.

R Shao, XY Lan and P CYuen, "Regularized fine-grained meta face anti-spoofing”. AAAI, 2020. 93



Regularized Fine-grained Meta Face Anti-spoofing (aaaiozo

Two issues if directly applying existing vanilla meta-learning for
DG algorithms on face anti-spoofing :

First issue:

Face anti-spoofing models only with binary class supervision discover arbitrary
differentiation cues with poor generalization [1].

Learning directions in the meta-train and meta-test steps will be arbitrary and

biased, which makes it difficult for the meta-optimization step to find a generalized
learning direction.

R Shao, XY Lan and P CYuen, "Regularized fine-grained meta face anti-spoofing”. AAAI, 2020. 94



Regularized Fine-grained Meta Face Anti-spoofing (aaaiozo

Two issues if directly applying existing vanilla meta-learning
for DG algorithms on face anti-spoofing

Second issue:

Coarsely divide multiple source domains into two groups to form one aggregated

meta-train and one aggregated meta- test domains in each iteration of meta-
learning

Only a single domain shift scenario is simulated in each iteration

R Shao, XY Lan and P CYuen, "Regularized fine-grained meta face anti-spoofing”. AAAI, 2020. 95



Regularized Fine-grained Meta Face Anti-spoofing (aaaiozo

(a) Vanilla meta-learning

Fake Depth

Domain
Knowledge

Real Depth

v’-tst *
VLtrn Vi, Vi _ o > 62
vl_t VLt : bl - » v’-t t
* V’-trn

(b) Regularized fine-grained meta-learning

= For first issue:

Incorporate the domain knowledge of face anti-
spoofing as regularization into feature learning
process

Meta-learning is conducted in the feature space
reqularized by the auxiliary supervision of domain
knowledge.

Regularized meta-learning can focus on more
coordinated and better-generalized learning
directions in the meta-train and meta-test

R Shao, XY Lan and P CYuen, "Regularized fine-grained meta face anti-spoofing”. AAAI, 2020. 96



Regularized Fine-grained Meta Face Anti-spoofing (aaaiozo

Fake Dt = Forsecond issue:
Domain
Knowledgeo
“ea'l"e"““ Fine-grained learning strategy divides source
domains into multiple meta-train and meta-test
Vi . . . .
Ve Vgt Ve =¥ 40, domains, and jointly conducts meta-learning
-"\. x between each pair of them in each iteration.
Vl.t ‘-- -2’ tst
V’-tst Vl-tm
A variety of domain shift scenarios are
simultaneously simulated and thus more abundant
(a) Vanilla meta-learning (b) Regularized fine-grained meta-learning domain shift information can be exploited

R Shao, XY Lan and P CYuen, "Regularized fine-grained meta face anti-spoofing”. AAAI, 2020. 97
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N Source Domains

..........................................................

.. Domain N-1 Domain N

Depth :
Estimator |

Meta
Learner

R Shao, XY Lan and P CYuen, "Regularized fine-grained meta face anti-spoofing”. AAAI, 2020. 98
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Experimental Results

= Visualization (comparison with Binary CNN and MADDG (Our CVPR1g))

Ongnmal B nary CNN MADDG

=%
-
i
g

Binary_CNN pays most attention to
extracting the differentiation cues in
the background (row 1-2) or on paper
edges/holding fingers (row 3-5).

Our method is more able to focus on
the region of internal face for searching
generalized differentiation cues.

IEMMEﬂ
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Federated Learning Based Approach:

Addressing Generalization Issue for Unseen Attacks and Data Privacy

References:
1. R Shao, B Zhang, P C Yuen, V M Patel, “Federated Test-Time Adaptive Face Presentation Attack Detection with Dual-

Phase Privacy Preservation”, IEEE International Conference on Automatic Face & Gesture Recognition (FG), Dec 2021.
2. R Shao, P Perera, P C Yuen and V M Patel, “Federated Generalized Face Presentation Attack Detection”, IEEE

Transactions on Neural Network and Learning Systems (TNNLS), In press, 2022. oo




Background and Motivation

[ Inference 4% Model Download - » Model Upload —> ]

Traditional Face Presentation Attack Detectio > Tradlthnal -I:PAD tO :
=) = (=) un (top)

DDDDDDDDD

Two types of stakeholders: Data center and User

* Problem: Lacks generalization ability in each data
center

 Solution: Combine data from all centers

Issue: Due to data sharing agreements and privacy

policies, data centers are not allowed to share data.

Federated Face Presentation Attack Detection
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Background and Motivation

[ Inference 9% Model Download > Model Upload —> ]

» Federated Learning (middle):
= {c;;:::':;z} - -
‘D’ *‘D ‘D D D*D *‘D 'E D » Nice framework for distributed and privacy
gt e preserving machine learning technique

« Data stays local client. Each client trains their own
local model.
e Server aggregates local models and generates a
global model without getting access to private data
"""" Federated Face Presentation Attack Detection in data centers.
o] (et seen  The updated global model deploys to local client.
| This process iIs repeated until the global model is
trained.
 All clients carry out inference locally and clients in
the testing are usually seen during the training.

er#6 User#7 Use



Background and Motivation

[ Inference 4% Model Download ---» Model Upload —> ]

» FedPAD - Federated Presentation Attack Detection
B = (bottom):
D D D D D D D D D * Only data centers carry out local model training and

share their models with the server to aggregate the
global model.
« Users download the global model and carry out

Inference.
Federated Face Presentation Attack Detection ° The downloaded mOdeI Wi I I encou nter Various unseen
[“";ﬁfjfj ’ {‘3"“_.‘,‘_’_:"2’ e e face presentation attacks from the users.

 Proposed FedPAD focuses on exploring the
________________ generalization of FL model which aims to generalize
D“ """" D D*D *D' *E *‘D *D D _— well to unseen attacks from users in the testing.
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Our Work: Federated Learning + Test Time Training

Trai ning | Model Upload
Phase | | Model Download

FedPAD

Classify

=
%

Data User Real or Spoof

k-“i B

€.

55
S |

y . AN A
Data Center #2 Data Center #3 Data Center #K

Federated Generalization Face PAD Test Time Adaptation
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Federated Generalized Face Presentation Attack Detection

(FedGPAD) [TNNLS2022]

Server e Federated domain
b 45 2 =y disentanglement

Domain-Invariant
Part

User Re;l or Spoof Str ate gy:
LLocal domain

Domain-Specific
Part

disentanglement
learning
Domain-invariant
L : : model parameters
B omcewn | mmr owewen | S owemws  COMMUNICAtions

R Shao, P Perera, PC Yuen and VV M Patel, “Federated Generalized Face Presentation Attack Detection”, IEEE Transactions on Neural Network
and Learning Systems (TNNLS), In press, 2022. 105



LLocal Domain Disentanglement Learning

> Feeding data into domain-invariant and domain-specific feature [zk — prk(z) zE = ESk(2)
extractors

] .. ) . o . Lo (Wk(EI) Wk(C))
» Train a domain-invariant fPAD model using the domain-invariant ’ ’

_ k/~k k, ~k
features by minimizing the cross-entropy classification loss = ) ylogC®(Zr) + (1 -y)log(1 - C*(21))

(z,y)~DF

> Face depth map as the auxiliary supervision to regularize the |z, oy<ED yyroe)) 3 HDepk(fo)—MHz

2

domain-invariant feature learning => depth estimation loss (e, M)~DF

» Domain-invariant features + domain-specific features should L rec (WFED WHIES) yyH(Dec))
encode thg complete features from the input data, => _ 3 ‘ Dec*(2F + z’g)—:cH2
reconstruction loss Dk 2

» Domain-invariant and domain-specific encoders should encode o ED Sy g
different aspects of the input data, => a soft subspace orthogonal ~ |[-”*' ’ )= ;k |zhy7(2)
constraint via a difference loss 106
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Experiments: Datasets

Real

Spoof

CASIA-MFSD Idiap Replay-Attack

Oulu-NPU (O for short) [Zinelabinde et.al FG2017]

CASIA-MFSD (C for short) [Zhang et.al ICB2012]

Idiap Replay-Attack (I for short) [Chingovska et.al BIOSIG 2012]
MSU-MFSD (M for short) [Wen et.al TIFS 2015]

SiW (S for short) [Liu et.al CVPR 2018]

MSU-MFSD

/@ E\

]
v‘.“
= _/

Siw

TABLE I: Comparison of five experimental datasets.

Extra Complex Attack Display
Dataset light background type devices
Printed photo
C No Yes Cut photo iPad
Replayed video
Printed photo iPhone 3GS
I Yes Yes Display photo iPad
Replayed video
Printed photo iPad Air
M No Yes Replayed video iPhone 58
Printed photo Dell 1905EP
O Yes No Display photo .
. Macbook Retina
Replayed video
Dell 1905FP
Printed photo iPad Pro
S Yes Yes Display photo iPhone 7
Replayed video Galaxy S8

Asus MB168B




Experiments: Setting

 Evaluate the generalization ability of fPAD models under the FL framework.

» Leave-one-dataset-out: Choose one dataset at a time to emulate the role of users and
consider all other datasets as data centers.

 Real images and spoof images of data centers are used to train a fPAD model. The
trained model is tested considering the dataset that emulates the role of users.

 Evaluation metrics:
o Half Total Error Rates (HTER)
o Equal Error Rates (EER)
o Area Under Curve (AUC)
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Experimental Results

TABLE III: Comparison with models trained by data from single data center and various data centers.

« Single: fPAD model trained from a

Methods Data (cl)enters U;/fr HTEI_{Q 9(%) E];Z})I; 4(;/:;) Alégl 9(3%) Avg. HTER | Avg. EER | Avg. AUC Sln gle d ata Center an d users fl’ om one
I M | 4008 | 3004 | ses of the data centers.
O C 31.33 34.73 73.19
M C 39.80 40.67 66.58
Single o T | w2 | wes | s | ¥4 | M3 | 703 « Fused: fuse the prediction scores of
C 1 45.99 48.55 51.24 . .
M I 48.50 3370 66.29 the trained model from various data
M O 29.80 24.12 84.86 .
C o | 9 2024 | 8433 centers by calculating the average.
I O 46.95 35.16 71.58
0&C&I M 34.42 23.26 81.67
O&M&I C 38.32 38.31 67.93 .
Fused | ogcam | 1 4221 4136 | 5972 3575 3129 78 « FedPAD: The simple federated
1&C&M O 28.04 22.24 86.24
O&C&l1 M 19.45 17.43 90.24 framework
rapap | QMSL | C | on | | 0e g e | e
1&C&M O 34.44 34.45 71.74
O&C&L | M 1273 13.36 91.25 * FedGPAD: Proposed method
FedGPAD 8&‘3’[&&& (1: fg:gg ﬁ’ﬁ gg:gi 18.59 17.48 89.25
1&C&M 0 21.95 17.91 89.85 ] . ]
O0&C&I M 21.80 17.18 90.96 « All: fPAD model is trained with data
O&M&I C 29.46 31.54 76.29 .
All 08&C&M I 30.57 25.71 7221 2726 25.09 80.42 from all available data centers
1&C&M O 27.22 2591 82.21
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Experimental Results

Method O&C&I to M O&M&I to C O&C&M to 1 I&C&M to O Avg,
HTER | AUC HTER | AUC HTER | AUC HTER | AUC HTER | AUC
Without Considering Privacy Issue
MS_LBP [21] 29.76 78.50 54.28 4498 50.30 51.64 50.29 49.31 46.15 56.10
Binary CNN [45] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54 32.05 74.55
IDA [43] 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.59 51.09 47.43
Color Texture [3] 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71 40.66 62.71
LBPTOP [8] 36.90 70.80 42.60 61.05 49.45 49.54 53.15 44.09 45.52 56.37
Auxiliary(Depth Only) [16] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61 28.88 77.08
MMD-AAE [12] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08 36.05 69.93
MADDG [29] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02 23.09 84.39
DR-MD-Net [40] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47 20.64 86.43
RFMeta [33] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16 16.97
NAS_Raceline 04 / R7 AR 0 R R 0 R RA K Q

NAS-Baseline w/ D-Meta [48]
NAS-FAS [48]

NAS-FAS w/ D-Meta [48]
DC-CDN [47]

Considering Privacy Issue

FedPAD
FedGPAD

42.27
28.69

32.53
10.97

73.58
95.34

32.17
18.59

Comparison with the state-of-the-art face presentation attack detection methods
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Federated Face PAD with Test-Time Adaptation rc.c..

/ Model Upload —> Model Updatin |
FedGPAD performs very Model Dowrload > gQ |
well. Generalization is very ((raining Phase ) I
hard to unseen test data

( Testing Phase J

Conduct test-time
adaptation

Classificatoin

s

Data Center #1 Data Center -#2 Data Center #3 Data Center #K

R Shao, B Zhang, P C Yuen, V M Patel, “Federated Test-Time Adaptive Face Presentation Attack Detection with Dual-Phase Privacy
Preservation”, |IEEE International Conference on Automatic Face & Gesture Recognition (FG), Dec 2021. 111



Test-Time Adaptation

Given the testing data presented to user U, and the
fPAD model F; calculate the entropy of fPAD
model prediction:

fPAD Model]-t H(Fi(x)) = Z Fi(x) log Fi(x)+(1—F(x)) log(1—F¢(x))

x~U
Prediction Entrop
—> ‘ — Fi(z) H(Fi(x))
w8 & Wiy,p) — nVH(Fi(z))
A °
Testing Data = ~ U Affine Panfirheters Updating
Entropy Minimization
After test time adaptation, To reduce the probability of overfitting during test-
updated fPAD model for the final time adaptation, minimize the above entropy with
real/fake classification. respect to affine transformation parameters of all

batch normalization layers in the fPAD model
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Experimental Results

Methods | Data Centers

-

HTER (%) | EER (%) | AUC (%) | Avg. HTER | Avg. EER | Avg. AUC

Sser
0 Vi 4129 3742 67.03 - B v —
C M 27.00 24,69 82.01 Real ' 1 Q
| M 49.05 20.04 85.89 e/ A
0 C 31.33 34.73 73.19 I |
M C 30.80 40.67 66.58 Spoof E ﬁ K —&
| | C 49.25 47.11 55.41 4R
Single S | e Pl P 41.61 36.66 67.07 \_ N )
C | 45.99 48,55 51.24
M | 48.50 33.70 66.29
M 0 29.80 24.12 84.86
C 0 33.97 21.24 84.33
| 0 46.95 35.16 7158
O&C& Vi 3442 2306 8167
0&M&I C 38.32 38.31 67.93
Fused 0& C&M | 42.21 41.36 50.72 35.75 31.29 73.89
1&C&M 0 28.04 2224 86.24
O&C&| Vi 19.45 17.43 9024
O&M&I C 42.27 36.95 70.49
FedPAD | 5gcam | 32,53 26.54 73.58 32.17 2884 76.51
1&C&M 0 34.44 34.45 7174 ~\
O&C&| Vi 51.80 17.18 90.96 E
0&M&I C 20.46 3154 76.29
Al 08 C&M | 30,57 25.71 72.21 21.26 25.09 80.42 .
1&.C&M 0 27.22 25.91 82.21 iy
O&C&lI M 14.70 16.64 90.57 - )
0&M&I C 26.33 29.75 7777
Ours 0&C&M | 28.61 26.04 82.07 23.18 23.88 83.40 siw 3DMAD HKBUMARsV2
1&.C&M 0 23.09 23.09 8321
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Experimental Results

» Generalization ability to 3D mask attacks

IMPACT OF ADDING DATA CENTERS WITH DIVERSE ATTACKS

Methods Data Centers User HTER AUC
O0&C&M (2D) 27.21 76.05

FedPAD 0&C&M (2D) &H (3D) | 3 (3D) 34.70 92.35
Ours 0&C&M (2D) &H (3D) 16.97 90.25

o FedPAD: Increasing one data center with 3D mask attacks (H: HKBUMARsV2) within the
FL framework can improve the generalization ability of fPAD model to the novel 3D mask
attacks (3: 3DMAD).

o Ours: after adapted with novel 3D mask attack data by test-time adaptation during testing,
fPAD model trained with FL in the training phase is more able to generalize well to the novel
types of 3D mask attacks 114



Our dataset: HKBU-MARs

http://rds.comp.hkbu.edu.hk/mars

= S

room-ight dim-light bright-light (a) ThatsMyFac
. ‘] u m s &H

Lmlf; ﬂ

warm-light sidelight top-light ) REAL-f



http://rds.comp.hkbu.edu.hk/mars

Conclusions

PAD is an important and un-solved issue in biometric systems

Rapid progress in the past 5 years, still a lot issues needed to
be solved

Face PAD has high academic and commercial values

Very good topic for PhDs or early stage researchers
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