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Biometrics

Automated recognition of individuals based on their behaworal
and biological characteristics [ISO/IEC JTC1 2382-37:2012]

Physiological Modalities
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Main biometric modalities
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Applications of Biometrics

Fingerprint recognition for Face recognition for Iris recognition for
mobile authentication border control coal miner 1dentification

iEerecognition

Finger vein recognition for Voiceprint recognition Signature verification
ATM authentication for payment for credit card security



Fast Growing Market of Biometric Recognition

USD 74.8 Billion

VERIFIED

MARKET RESEARCH
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Fingerprint Recognition

Feature

_ N Ay ) ' e - .
-~ - L E ¥ Preprocessing and feature

extraction

Minutiae matching




SIA INSTITUTE OF AUTOMATION
CHINESE ACADEMY OF SCIENCES

[ s Fingerprint sensing

» 3D fingerprint

’ v Multiple cameras % Structured lighting
/ A illumination
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& } o "\)Q Liu and Zhang PR 2014
Labati et al. TSMC-S 2016

z | Wangetal. TIFS 2010
Huang et al. Opt Laser 2014
= Chatterjee et al. Opt Laser 2017
Gbr' -
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BOX
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P Laser sensing OCT

Galbally et al. IJCB 2017 Costa et al. ICIP 2016
Nehaus et al. Boimed Opt 2017

Anksorius et al. Biomed Opt 2017




Touchless 3D Fingerprint Recognition
(SAFRAN Morph)




Multispectral imaging for anti-spoofing
(Lumidigm)

o RIS




(R et Fingerprint sensing

* Under-screen fingerprint

— Optical based -~ -
 Lighting required ——
« Sensitive to skin conditions A
* Vendors: Synaptics, Goodix

. 2 %
— Ultrasonic based /7 Wumination
* High quality ' -
» High cost Sensor  cMOS Q T
« Vendor: Qualcomm As.,;_w.
OPTICAL ULTRASONIC



Under Display Fingerprint Scanning
(Qualcomm-Vivo, ultrasonic fingerprint solution, MWC2017)
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1C Solution for Live Finger Detection

IC designer Goodix developed Live Finger Detection™
technology on mobile devices, which allows a capacitive sensor
and an optical sensor to be seamlessly combined into one.
Through the detection of fingerprint, blood flow and infrared
signals, this cutting-edge technology embedded within the sensor
1s able to authenticate the user’s identity and reject faked
fingerprints.

3-in-1 integrated sensor of fingerprint authentication,

\
o “/ live finger detection and heart rate monitoring




(R et Fingerprint feature extraction

* Orientation field * Fingerprint pose
— Global dict (Feng et al. TPAMI 2012) * Local dict (vang et al. TPAMI 2014)

— Local dict (vang et al. TPAMI 2014) * Joint singular and pose (vin etal. TIFs

2021)
— Patch classification (cao and Jain icB
2015)

M 1.28 million fingerprint patches
(10,000 with for each class; patch
W\ size: 96x96 pixels) selected from

Constructing localized dictionaries
\\ about 6,000 fingerprints in NIST ‘

SD14 are used for training i | L
¥ 7] - H
‘ L] | }
| e— | Prototype 5 e
| ‘ Learaing  |f orientation
o ! prototype | o | patches and
Registered training ~ orientation | | their spatial Localized dictionaries
orientation ficlds :":ﬁ'h:‘p:l:l:: B3 L ditkTution of orientation patches
distributions | ; |
Off-Line learning
On-Line estimation
Selected
orientation —. < i
5 3 g Candidar
.A cropped Preprocessed latent , Estimated pach &/{J ]Tm'rﬂl:::vrI| s’:ldm
input latent " orientation field
Latent patches Predicted 3
Y : — — .  e—
orientation Initial Pose " Context-based
o -l\ LY W pattern oricntation estimation correction
y Lcaming TR field i =
[3 - e
RN : Fingerprintimage “U™*" Initial Pose
Around 1 million orientation patches from

NN . Final
i 7 orientation field orientation fiel
128 orientation patterns enta eld

NIST SD4 used for learning
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Minutiae

CQ

— FingerNet (rang etal. 1icB 2017)
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Segmentation Score Map

— MinutiaeNet (nguyen et al. IcB 2018)

Fingerprint images

. TRAINING

Minutiae patches

N ek gl gl g

Minutiae
Score Map

Minutiae X
Probability Map

Minutiae Y
Probability Map

Minutiae Direction
Distribution Map

Non-minutiae patches

" TESTING

Input Image

CoarseNet

Minutiae
score map

Candidate patches

FineNet

Minutiae location |

and orientation ;

Fingerprint feature extraction

Traditional processing

!

CNN

CoarseNet
Prior based minutiae distribution

!

FineNet

Local patch fine-tuning
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 Latent fingerprint matching
— LatentAF|S (o anteawi 2019

— Densely sampled points ueta. irs 200
— Fixed-Length representation by DeepPrint

Latent + ROI

(Engelsma et al. TPAMI 2019)
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Fingerprint distortion rectification

* Fingerprint distortion rectification

— Nearest neighbor search (sietal. TPAMI 2015)
— Regression Guetal. TIFs 2018)
— DCNN (Dabouei et al. ICB 2018)

Pose Distortion Transformation
Estimation Field Estimation

|

| Distortion | Distorted
Detection

l Normal
Original Registered Original Estimated Rectified
fingerprint fingerprint fingerprint distortion field fingerprint
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M it Fingerprint dense registration

* Fingerprint dense registration
— Phase demodulation (Cui et al. TIFS 2018)

Z 1 7; :_ 0
4 / U-Net Structure e
Encoder-Decoder o
f\ Displacement field

ﬁ Convolution Layer @7x7
5 Convolution Layer @5x5

Siamese - Convolution Layer @3x3
branches



Fingerprint synthesis and spoof detection
* Fingerprint synthesis

— SFinGe (cappeli et al. ICPR 2000) — IWGAN and Autoencoder (cao et al. ICB 2018)

B
P

Real ﬁngérpriﬁt x

Loss
Input: z € R512~P(z) | funetion
Foref
— . Representation Generated synthetic
fingerprint £ (output)
image, and orientation image
— Variational Autoencoder (attia et al. — IWGAN and Autoencoder with Identity

SMC 2019) LOSS (Mistry et al. 1JCB 2020)

Step 2: Training I-WGAN




Fingerprint synthesis and spoof detection

* Fingerprint spoof detection

— Fingerprint Spoof Buster (chugnh et al. TIFS 2018)

Patch Size = 136 x 136

=

Patch Size =96 x 96

089 094 0.99

Minutiae

7
Detection 1 @
= Local Patch 22 | | S
| Q Extraction 9 e T
o f.‘,\
Fingerprint @ \"’% = Minutiae-centered and Patch Spoofness Scores

Minutiae-centered local patches aligned local patches

Patch

3|mp| Alignment
3 (Rotation &
Cropping)

Trained = - Global
Mobilenet.vi |mp 091 098 0.84 mp| Fusion |[mh| Spoofness
Model : E Score € [0,1]

099 089 094

— Universal Material Generator — GAN-based spoof detection
(Chugh and Jain TIFS 2020) (Engelsma and Jain ICB 2020)
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Open Problems of Fingerprint Recognition
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Open Problems of Fingerprint Recognition

that can unlock digital
fingerprint-secured devices

‘._ : ’ By Astrolane

Computer scientists at New York University and Michigan State University have trained an artificial neural network to create fake digital

fingerprints that can bypass locks on cell phones. The fakes are called “DeepMasterPrints’, and they present a significant security flaw for any
device relying on this type of biometric data authentication. After exploiting the weaknesses inherent in the ergonomic needs of cellular devices,
DeepMasterPrints were able to imitate over /0% of the fingerprints in a testing database.

Philip Bontrager, Aditi Roy, Julian Togelius, Nasir Memon, Arun Ross,
DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable
Evolution, IEEE BTAS 2018.
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Iris Recognition Based on Light Field Imaging

Main lens Microlens array

Image sensor 4D light field data

Light-field Camera (Plenoptic Camera)

P} —
; Focus value variations of refocused

o

A
image regions around human eyes
—
— - 0 _ =
i\
Fake ‘ i
y i [y i dopn !

Extending depth of field Depth perception Liveness detection




Iris Liveness Detection Using Light Field Cameras

Analysis on light field focal stack and the all-in-focus image for iris liveness detection

Light Field
Camera

Feature-level andg
: Score-level

Classifier

—é—

Focus Texture :
Measure Pattern :
+ + :
Classifier  Classifier :

Classﬂ' er

All-in-focus
=

Genuine Fake :
Tl e B @l G W”mm
5 ,.:,ﬁmn ] !? w@Ew i : 1 -!mﬂ E
Digital Refocusing  : : Liveness Analysis : : Feature Fusion

fassssssESNEEEEEEEEEEEEEEEEEEEEEEEEEEE YussssssEEEEEEEEEEEEEEEEEEEEsEEEEEEEEmEEEE s mEsEEEEEEEEEEEEEEEEEEEEEEEEEED

Ping Song, Ling Huang, Yunlong Wang, Fei Liu, Zhenan Sun. Iris Liveness Detection Based on Light Field Imaging, IEEE/CAA
Journal of Automatica Sinica (JAS), vol.45, no.9, pp.1701-1712, 2019.



Iris Liveness Detection using Light Field Cameras
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Fusion of 3D geometric structure and 2D spatial texture in light field focal stack for 1ris
liveness detection

Zhengquan Luo, Yunlong Wang, Nianfeng Liu, Zilei Wang. “Combining 2D texture and 3D geometry features for Reliable iris
presentation attack detection using light field focal stack”, IET Biometrics, 2022.



Open Problems of Iris Recognition

(e) Defocus '

Tnter-sensor mteroperability

(a) ]]lmnmatlon changes

{(c¢) Deformation o (d) Rotation (g) Eveglasses

Poor quality 1r1s 1images
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Face Recognition

3D face Thermogram/

Imaging Face detection

Recognition

results

Popular methods: Gabor/LBP/Ordinal measures/Sparse representations/Deep learning



Accuracy: GCN Based Label Noise Cleansing

This work proposes a graph convolutional network (GCN) method to cleanse the results
of google face search, automatically collected and labelled 18M images, and achieve
SOTA performance on IJB C by training models on the large-scale cleaned dataset.

Few Iabel Model Tralnlng L o0

Massive data Labeled data Feature

L—>s GCN extraction

A Sample relationship \
Go gle [ 18M images ]

of 600K IDs

Video Surveillance face recognition IJB-C

.| GN = [ TN
iti 1JB-C SOTA
J'Celebrltles oo
{:\})} Manual ®- (c “ 9444 %  96.93%

Label "‘)/(.

Yaobing Zhang, Weihong Deng, et al., Global Local GCN: Large-Scale Label Noise Cleansing for Face
Recoonition. CVPR 2020




Accuracy: Noise-Aware Loss Function

This work proposes a novel loss function, named sigmoid constrained hypersphere
loss (SFace), which imposes intra-class and inter-class constraints on a hypersphere

manifold controlled by two sigmoid curves respectively.

+ The optimizing directions are always along the tangent of the hypersphere while the moving speed is
controlled precisely.

« The moving speed of x; and W, decreases gradually as they approaching to each other, while the moving

speed of x; and W; increases rapidly as they start approaching to each other.

Vintra (ﬂyl ): The scale of imtra-class function
75—

a=0.60

Vi vint'ra(gyi)
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(=2}
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! ~

] )

I \ e 45 a=1.00 Ly

! - s 3 a=1.10 [

o X £ 30 =120 .'

: s original scale || |

I : |

! 15 | .'

I [ |

| | ! |

0 |

---------------- | e - E> 0 0.4 0.8 12 157

b=1.20
b=1.25
== b=1.30
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nter ( ) £ 30 b=150

original scale
15
0 0.4 0.8
=» Vintra(Bvi) : The scale of intra-class gradient. Vinrer(.) : The scale of inter-class gradient.

Yaoyao Zhong, Weihong Deng, and et. al., “SFace: Sigmoid-constrained hypersphere loss for robust face recognition,”
IEEE Transactions on Image Processing, vol. 30, pp. 2587-2598, 2021.



Fairness: Feature Disentanglement

[0 Debface adversarially disentangles identity-related features

from demographic information to mitigate bias.

Feature Disentanglement
Feature

Aggregation

Shared Image-to-Feature Encoder Bl falikis)
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shuffled

Trained on BUPT-Balanced and tested on RFW
method Caucasian Indian Asian African Bias

arcface 96.18 94.67 93.72 93 .98 1.11
Debface 95.95 94.78 94.33 93.67 0.83)

Sixue Gong, Xiaoming Liu, Anil K. Jain. Jointly de-biasing face recognition and demographic attribute
estimation. ECCV 2020.




Fairness: Reinforcement margin learning

[0 RL-RBN adopts deep reinforcement learning to adaptively

learn margins for different demographic groups.

@ Adaptive margin loss:

v,

1 N escos(é’yi
Lrpn = — N; log e5cos By +ai(0) 4 ym e\ﬁ(ej)

J=1,j#yi

Where, ;) = i m, if i € Caucasian Marg@ns are learned |
l m;(t),  else adaptively for demographic
groups by deep Q-learning.
@ Deep Q-learning for adaptive learning:

Ethnicity aware training datasets CNN Adaptive margin loss guided by agent Deep Q-learning Offline sampling
T Give actions to change ; _— CNN
O margin for different races Offline samples S
o (st rstony || =012
Train Current state:
= O Adaptive -+ ' s={E M BIT"
> H margin loss 0 Agent 4 dlntter
* istance
O Lrpn(m;(1)) _ \ Next state:
Asian O stH1={G, M**1, Bt}
s = . Reward: O H
Current state for each group: i
Bintra/Binter:  Bias(skewness) of intra/inter-class distance st= {GI’OU.p Margin Bias} DQN " =R -R" (R=-Biptra-Binter)
between Caucasians and non-Caucasians. ? ?

s'={G, M", BY}: G means race group. M means margin and B means skewness ofinter distance.

Mei Wang, Weihong Deng. “Mitigating bias in face recognition using skewness-aware reinforcement
learning.” CVPR 2020



Fairness: Meta Balanced Network

I -

[0 Meta learning enables adaptive margin learning to search
margin parameters continuously leading to fairer performance.

RL-RBN based on -learn n
@ Q ...... e Deep Q-learning

. _______ | . action {0,-1,1}
------ O 4 | Searchlng margins in E “l“ 5 % </ Validation set
discrete space

(@ MBN based on meta learning: Meta learning

ear.ching mall% ||| m“ %] GHI&Dt EMeta dataj

continuous space

meta data
o o e Met+1/,
mg't = my — BV, LY (W1 (m,)) mt Model parameters are
/ TR \the function of margin
\‘ t+1 trainingdata
mg
T~
t+1 o

i
mg

n n
e o gy ot 1 T t £+1 — ot 1 T (o 11
N wti(mL) =w —aﬁzi VLT (w; m._,h_jlwt witl = w —HEZ‘E’WL (w; myf )w‘
1= j=

w

Mei Wang, Yaobin Zhang, Weihong Deng. Meta Balanced Network for Fair Face Recognition. TPAMI
2021.




Adaptiveness: Personalized Convolution
* Motivation

— Vanilla CNN: Fixed kernel, same attention for all faces H i: H B
L4 L Sy |
— Human: impressed by distinct characteristics of different faces H ﬁ m .
A -

Personalized Kernel adaptive to each person can extrac i - _
o]

special distinguishing characteristics of each person for
more accurate face recognition

 Method

— ODbtain personalized kernel by filtering out commonality with a
reference set: Personalized kernel= Ordinary kernel- Commonality kernel

* Ordinary kernel: K, = G(zy)
« Commonality kernel:
a _ 1—«a
K, = argmin—||[KTK, — IKTK,.||>? + —— ||KTK,||?
K n n

. s iy = .
« Personalized kernel: ri@ W 7V R

K}: =K, — Kr(Kx)TKr

Chunrui Han, Meina Kan, Shiguang Shan, Xilin Chen. Personalized Convolution for Face Recognition. International
Journal of Computer Vision (IJCV), 2021 (Accepted).




Adaptiveness: Race-Aware Attention

[0 Adaptive kernels and attention maps are learned for different

demographic groups to meet specific requirements.

decide whether a layer should be adaptive or not

Automation Module

2 2 5

n—nZZuviu T ey l)zzllvzll Tl
4 v

| 1 | lg-

- n Adaptation Module kYT K -
\n Ypemao

Demographic
Attribute Classif

Z¥Ypemo
= f(X # K¥Ypemo) = Sigmoid(M

YDemo

Z¥YDemo

= f(X * KYpemo) = Sigmoid(M,,,___ )z

~~ ~~

Adaptive kernel Attention map

Sixue Gong, Xiaoming Liu, Anil K. Jain.. Mitigating face recognition bias via group adaptive classifier.
| CVPR 2021.



Uncertainty: Probabilistic Face Embeddings

Model each face image as a Gaussian distribution:

p(z[x;) = N(z;p ), o71)

(]

M

fix learn

The representation should have the following properties: Figurel: Probabilistic embedding
1. The center @ should encode the most likely facial features of the input image.
2. The uncertainty o should encode the model’s confidence along each feature dimension.

=== impostor original vs. degraded

=== impostor = original vs. degraded
3400 3400
3000 3000

2600 2600

IIIII SOlved 2200 = 2200
O T e 1 25 a3 &1 48 57 8 7 1800 1800
q H n n " 1 9 17 25 33 41 49 57 65 73
h(' . . Figure3: Repeated experiments on feature ambiguity
Figure2: Illustration of feature ambiguity dilemma dilemma with PFE
Feature Ambiguity Dilemma: The scores of cross-quality genuine pairs
* false accept of impostor low-quality pairs converge to a point that 1s higher than the
* false reject of genuine cross-quality pairs majority of impostor scores.

Shi Y, Jain A K. Probabilistic face embeddings[C]//Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019: 6902-6911.



Uncertainty: Transfterable Adversarial Attacks

Face recognition has achieved great success. However, the existence of transferable
adversarial examples could severely hinder the robustness, since this type of attacks

could be applied in a fully black-box manner without queries on the target system.

0We investigate the transferable adversarial @ Based on the proposed DFANet [1], we generate the

attacks and propose DFANet, which could adversarial images from the well-known LFW database
increase the diversity of surrogate models with visually imperceptible noise, which provides a new
and obtain ensemble-like effects. database, TALFW, to serve as a benchmark to

. Similarity of evaluate the robustness of deep face models.
verage similarity o (0)
Four Commﬁrmal APIs 17 8 A)

! D Model | LFW || TALFW
Amazon 57% Center-loss [3] 08.78 70.65
g Microsoft 63% 25% SOTA SphereFace [4] 99.27 62.47
Baidy 2% 6% Algorithms VGGFace2 [32] 99.43 71.47
o / “0‘\ O\) 49% = ArcFace (MobileNet) [7] 99.35 50.77
o \10 oy ArcFace (ResNet-100) [7] | 99.82]] 63.45
§ Oogl 0 -m@ Amazon [25] 99.47 69.28
o ’ | Micosolt  69% 8% Commercial Microsoft [26] 98.12|| 7093
"t'u' - Baidu 9% 61% APIs Baidu [27] 97.72 72.07
& 62% : Face++ [28] 96.95 73.90
g -m- Fusion of four APIs 99.65[| 72.33
a / 1% No Defense 9978 54.15
Micrasoft % 43% Defensive JPEG Encoding [41] 99.55 73.93
Bkt SHé W Methods Gaussian Blur [41] 99.57 77.95
FAoREE i % Adversarial Training [38] | 99.62 82.17

Average Similarity of s)
Four Commercial APIs 78 . 3 A)

Yaoyao Zhong and Weihong Deng, Towards transferable adversarial attack against deep face
recognition,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1452-1466, 2020.



Recent Work on Face Image Generation

Unconditional

. * IntroVAE [PAMI 2021, NIPS 2018]
Generation

« TP-GAN [ICCV 2017]
Rotation « CAPG-GAN [CVPR2018]
« HF-PIM[IJCV 2019, NIPS 2018]

Super- « Wavelet-SRNet [IJCV 2019, ICCV
resolution 2017]

Make-up « BLAN [AAAI 2018]

_ Cross-spectral < AD-HFR [AAAI 2018][PAMI 2020]
/ ~ R\
T . « FCENet [AAAI 2019][ACM
Photo-realistic Face Completion Mmzozog ;

Image Generation Expression  + G2-GAN [ACM MM 2018]
synthesis « CAFP-GAN [ACM MM 2018]

« Hierarchical Face Aging [ECCV
Agin 2020]
ging « Attribute-aware Face Aging

R i, |



Recent Work on Face Image Generation

« Age Progression and Regression
[AAAI 2020]

« Biphasic Facial Age Translation
[TIFS 2022]

« Controllable Multi-Attribute
Facial Attribute Editing [TIFS 2019]
Editing Reference-guided Face
Component Editing [I[JCAI 2020]

 MegaFS [CVPR 2021]
* |Information Bottleneck
Face Swapping Disentanglement [CVPR 2021]
« Facelnpainter [CVPR 2021]
« AOT [NeurlPS 2020]

« Spatially Disentangled [TCSVT

Aging

Photo-realistic Face

: 2022]
Image Generation TN SR Semantic-aware Noise Driven
[TMM 2022]
Face « Semantic-aware One-shot Face
Reenactment Re-enactment [MIR 2022]

« SEA-T2F [ACM MM 2021]

e w5 i85S ey RaveiC PR 2022]




Generative Models: An Overview

generated distribution true data distribution
A

p(Xx)

\

unit gaussian
generative

Q model .
(neural net) w_[1958]

Z . §
N image space image space

An illustration of the main idea of generative models!']

« Motivation: Learn a parameterized mapping function gg, such that
96(2) = p(x) - p(x)
where z is a latent variable sampled from a generic distribution.
* Problem: How to measure the similarity between the distribution
between generated samples p(x) and true data p(x)?

[1] https://openai.com/blog/generative-models/




Typical Generative Models

» Generative Adversarial Network (GAN)
 Variational Auto-encoder (VAE)

 Flow-based Model

* Diffusion Model
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R e GAN: Main Idea

Generated Data Discriminator Real Data

A _ FAKE REAL —____ [gwsg

Training
Progress

Better 10 . FAKE REAL —__  [rwesy
Quality 2=

LI || REaL

An illustration of the main idea of adversarial training!!

« Motivation: Train an additional network (the discriminator) to
distinguish generated sample from real ones.

[1] https://developers.google.com/machine-learning/gan/gan_structure



GAN: Adversarial Training

Distinguish
p(x) real from fake o
=
o
5 =
Real images »  Sample » 3
o 5
&
o
-
7 Discriminator
= Jdo go(z) = p(x)
Z o
5 3
. Generator » Sample o 8
<) 0w o
] -~
c (o]
© : /. -
14 y Fool the discriminator

A diagram of the GAN model!

 Adversarial Training: the discriminator aims to distinguish gg(z) =
p(x) from p(x), while the generator attempts to fool the discriminator

[1] https://developers.google.com/machine-learning/gan/gan_structure




The Success of GAN

Generative adversarial networks (GANs) have been
successfully applied in image/video/music/art generation,
computer vision and pattern recognition.

Dueling Neural
Dueling Neural Networks Networks
Breakthrough
MI I - Twio Al systemns can spar with each
( ) other to create ultra-realistic onanal

lechnology = ek T

_ Why It Matters
= :::_:-._:-:,_5-:_ ------- This gives machines something akin
g g g g g B B to a sense of imagnation, which may

help them become less reliant on
humans—but also turms them into
alarmingly powerful tools for digital
fakery

Key Players
Google Brain, DespMind, Mvidia

LLUSTRATION BY DEREK BRAHNEY | DIAGRAM COURTESY OF MICHAEL
NIELSEN, *NEURAL NETWORKS AND DEEP LEARNING™, DETERMINATION

PRESS, 2015 Availability

R,



GAN: Progress and Achievements

Synthesis network g
Convolutional 1
Crmvdntrmll : W

Const 4x4x512
Comvolutionsts T mw-ﬂ

(a)

Normalize
Mapping
network f

FC
FC
EC
FC
FC
FC
FC
FC

CycIeGAN 2017[8] — ' - A N
InterFaceGAN, 2022

[1] Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv preprint arXiv:1511.06434. 2015.
[2] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." In CVPR, pp. 4401-4410. 2019.

[3] Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. "Unpaired image-to-image translation using cycle-consistent adversarial networks." In ICCV, pp. 2223-2232. 2017.

[41Y. Shen, C. Yang, X. Tang and B. Zhou, "InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs," in TPAMI, vol. 44, no. 4, pp. 2004-2018, 2022.
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Variational
Inference

encoder

Input Image

-1 0 1

Skin tone: H—A—o—'

-1 0 1

Gender: H—A—H
Beard: ‘—f——f—A&P
Glasses: H—A‘r—»

-1 0 1

Hair color: H—v—-/\v—h
-3

0 1

\\ //",.

Latent attributes

VAE: Main Idea

Sampling &
Reconstruction

decoder

Output Image

A illustration of the main idea of VAE!l

« Motivation: Solve for variational latent components for point-wisely
reconstructing the input data from a probabilistic perspective.

[1] https://lwww.jeremyjordan.me/variational-autoencoders/



S e VAE: Main Idea

Reconstructed
AR~ - - ---------------------o-- Ideally they are identical. ~ ---------------------- - .
) input
X~ X
Probabilistic Encoder
¢ (z|x)
K latent vector

Probabilistic
X >.—> Decoder | ——— X’
po(x|z)
o
Std. dev \

B An compressed low dimensional
Z=p+o0e representation of the input.

e ~N(0,1)

An overview of the framework and training object of VAE!]

* Implementation: Predict the mean and var. from input, sample the
latent code, obtain the output image, and optimize w.r.t the loss

[1] https:/towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



VAE: Progress and Achievements

e|e293 8“ 1
Embedding
Space
1J
r .l\\ o
._/ S !
vL > :
‘4 alz) \@ Ha 1l 8 :
- am—— 3
___,,&__ _ .5 B NN

plxiz,)

(c) Image saturation

(a) Skin colour

;b) Age/gender

N 3 e"’ L
z (x) 2 2 z, M
53

Y

Encoder Decoder

VQVAE, 201712

P Lae
| E~TD’I) ; sy

" qmm A Deep Hierarchical

Variational Autoencoder

Z,~N(0,1)

IntroVAE, 20183 NVAE, 20204!

[1] Higgins, Irina, et al. “beta-vae: Learning basic visual concepts with a constrained variational framework.”. 2016.
[2] Van Den Oord, Aaron, and Oriol Vinyals. “Neural discrete representation learning.” NeurlPS. 2017.
[3] Huang, Huaibo, Ran He, Zhenan Sun, and Tieniu Tan. “Introvae: Introspective variational autoencoders for photographic image synthesis.” NeurlPS. 2018.

[4] Vahdat, Arash, and Jan Kautz. “NVAE: A deep hierarchical variational autoencoder.” NeurlPS. 2020.



Flow-based Model: Main Idea

Pdata (x) __

Training @i p—

I

© 100x 100% 3

=G

¥ =Glz)

" 100x100x3 ’
100x 100 x 3

A illustration of the training and testing process for flow-based methods!'!

« Motivation: Explicitly learns the probability density function of real data
with normalizing flows, a powerful statistics tool for density estimation.

[1] https://zhuanlan.zhihu.com/p/267305869




Representative Flow-based Models
0 o 0 o 0 ’8,‘8 **;’!". e Commn-Wiseii):u::\-l:ttzz:ﬂ convolution
O,

®-e-® OO
ONO (=) '

A
e ° OOO:OO

© ) O®OO0O J—
e O 00 0O
o o OO I
(ONORONONG
(a) Diagonal BiLSTM (b) Skewing operation
(a) Forward propagation (b) Inverse propagation
RealNVP, 2016!'] PixelRNN, 2016

GLOW, 20188

[1] Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using real nvp.” arXiv preprint arXiv:1605.08803. 2016.
[2] Van Den Oord, Aaron, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks.” In ICML. 2016.
[3] Kingma, Durk P., and Prafulla Dhariwal. “Glow: Generative flow with invertible 1x1 convolutions.” In NeurlPS. 2018.



‘Diffusion Model: Main Idea

Generating / Denoising Process

v

Use variational lower bound

A

Reverse Generating Process / Adding Noise
An overview of the framework of diffusion models!'!

 Motivation: Add random noise to data and then learn to reverse the
diffusion process to construct desired data samples from the noise.

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models.” NeurlPS. 2020.



Representative Diffusion Models
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'DALLE2, 202211 Imagen, 202212

- ‘La{eni S ace 1 m Spatiotemporal Decoder Spatiotemporal Spatial
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skip connection concat _

denoising step crossattention  switch
Latent Diffusion Model, 20228I Make-a-video, 20204

[1]1 Ramesh, Aditya, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. “Hierarchical text-conditional image generation with clip latents.” arXiv preprint arXiv:2204.06125. 2022.

[2] Saharia, Chitwan, et al. “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding.” arXiv preprint arXiv:2205.11487. 2022.
[3] Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer. "High-resolution image synthesis with latent diffusion models." In CVPR. 2022.

[4] Singer, Uriel et al. “Make-a-video: Text-to-video generation without text-video data.” arXiv preprint arXiv:2209.14792. 2022.



GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

»
'

D(x)

Encoder

Discriminator

Generator

G(z)

¥

X —> > Z & —>
q¢(2[x) po(x|2z)
% Flow Z Inverse
1 f(x) . 1 (=) }
X0 — X1 X2—77— ...... ——

Comparison of the framework of different generative models!'l

[1] https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Comparison of Generative Models

Different in:

® NMotivation

® Architecture

® Training Objectives



A sl nconditional Generation

TION
CHINESE ACADEMY OF SCIENCES

Introspective VAE (unconditional)

e Generate virtual faces from white noise

e Adversarial distribution matching: use the KL-regularization term as the
adversarial training cost function

e Introspective variational inference: combine the adversarial object with the

ELBO object of VAEs
x— Z i
G |

Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, Tieniu Tan. IntroVAE: Introspective Variational
Autoencoders for Photographic Image Synthesis. NeurIPS 2018: 52-63.



A wezlnconditional Generation

INSTITUTE OF AUTOMATION
CHINESE ACADEMY OF SCIENCES

Dual Variational Generation (unconditional)

e (Generate paired 1mages of one identity from noise
e Data Augmentation: Integrate virtual identities into few-shot HFR data

Few-shot HFR data

R .
A ~ fidom . Generation
[ ) oise

(e) MultiPIE . (f) Tufts Face

Generate large-scale paired data with new identities (d) CUFSF
Achieve the best results on seven datasets

[1] Chaoyou Fu, et al. DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition. IEEE TPAMI, 2021
[2] Chaoyou Fu, et al. Dual Variational Generation for Low Shot Heterogeneous Face Recognition. NeurIPS, 2019
31 Peinel 1.1 et al Dual-structure Disentaneline Variational Generation for Data-limited Face Parsine ACM MM 2020
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Towards High Fidelity Face Frontalization in the Wild

e High Fidelity Pose Invariant Model (HF-PIM) 1s proposed to produce realistic
and identity-preserving frontalized face images with the highest resolution
(256*256) 1n the literature.

Dense Correspondence Field, F'

| acial Part | . |
) [ } V777

A i
[ (i) ﬁ
S
j \\ Frontélized Face
P\ /

Facial Texture Feature Map

Facial Texture Map, T’

Jie Cao, Yibo Hu, Hongwen Zhang, Ran He, Zhenan Sun. Towards High Fidelity Face Frontalization in the
Wild, IJCV, 2019.
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Towards High Fldellty Face Frontahzatlon in the Wild

Table 4: Face recognition/verification performance (%) 100 |
comparisons on [JB-A. The results are averaged over - fid
10 testing splits. “-” means the result is not reported. ) e
2 0.96 1 jerr
2 i
Verification Recognition E Y
@ 0.94 ]
Method FAR=0.01 FAR=0.001 Rank-l  Rank-5 £ i
DR-GAN [53]  77.442.7  53.9+4.3  85.541.5  94.7+1.1 G2 e
FF-GAN [60]  85.241.0  66.3£3.3  90.240.6  95.4%+0.5 e ighiichil
PIM [61] 93.3+1.1  87.5+18  94.4+1.1 : 050+
Light CNN [56]  91.541.0 84.3+2.4  93.0£1.0 False Positive Rate
05.3+0.7 89.9+1.3 96.4:0.5 98.1+0.2

. HF-PIM(Ours)

I Fig. 5: ROC curves on the IJB-A verification protocol.




A s, Face Super Resolution
Wavelet domain CNN and GAN

e Wavelet domain CNN [1] and GAN [2] solutions to face super resolution
e Special design of loss functions to capture both global topology information and

local textual details

Wavelet Real/Fake
DNet

Wavelet Score

A
Reconstruct i v

LR Input Predicted Wavelets

Predicted Image

[1] Huaibo Huang, Ran He, Zhenan Sun, and Tieniu Tan, Wavelet-SRNet: A Wavelet-based CNN for Multi-

scale Face Super Resolution, ICCV, 2017.
[2] Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, Wavelet Domain Generative Adversarial Network for

Multi-scale Face Hallucination, International Journal of Computer Vision, Volume 127, Issue 67, pp.763—
784,2019.
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{a}LR (b) GT  (c) Bicubic (d) WTIP (e) SRCNN (f) SRGAN (g) URDGN(h) SRDense (i) CBN (j) Our-CNN (K) Ours

Table 3 Face verification results on the LFW dataset

Model Settings Metric Original Bicubic WTIP SRCNN SRGAN URDGN SRDense CBN Our-CNN Ours
LightCNN 32x32,4x AUC 99.31 99.16  99.04 99.17 99.22 - 99.21 90.80 99.25 99.28
FAR=1% 97.77 96.10 9583 96.23 96.93 - 96.90 46.77 9740 97.03
FAR=0.1% 96.23 9190 9170 92.87 94.07 - 94.97 3253 9573 96.10
16 % 16,8x AUC 99.31 9068 8997 9142 96.77 93.60 96.35 89.98 9792 98.48

FAR=1% 97.77 4550 4053 48.70 78.83 53.57 77.50 46.90 87.97 90.86
FAR=0.1%  96.23 21.17 24.47 2350 56.60 27.10 57.03 31.13 68.33 81.20
8x8,16x AUC 99.31 60.89 59.40 61.47 77.10 - 74.30 63.00 87.29 89.40
FAR==1%  97.77 3.17 290  2.83 16.40 - 12.67 4.57 3843 42.87
FAR==0.1% 96.23 0.27 047  0.30 4.23 - 3.73 1.30 12.93 22.83
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Hierarchical Face Aging through Disentangled Latent
Characteristics

Disentangled Adversarial Autoencoder (DAAE)

 DAAE is the first attempt to achieve facial age analysis tasks

in a universal framework.

i —— R e R e G S G e e e R R S e e e e e e e R G M e e e e e e e e R G e e e e e e

Task1: Age estimation

1 |
1 I
1 |
1 |
(FAR g X 2
) | .-;'.‘1 B g .';;l - e ! ; ."'.
: \ | : (! I -
£ I i 4 | I
1 | -
1 1 - B
Age/Age group | Regression  Progression I y
; 1 I \ i j

Peipei Li, Huaibo Huang, Yibo Hu, Xiang Wu, Ran He, Zhenan Sun. “Hierarchical Face Aging through
Disentangled Latent Characteristics.” ECCV 2020 (Oral).

Li et al, Hierarchical Face Aging through Disentangled Latent Characteristics, ECCV, 2020.
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Hlerarchlcal Face Aging through Disentangled Latent
Characteristics

Ide lin g
"’I Generator

ﬂdentit&-‘-cunditional BatchNorm \

e I )J
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Disentangled Adversarial Learning Process
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(R ittt Aging
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Hlerarchical Face Aging through Disentangled Latent
Characteristics

Inference and Sampling

c
1) Face aging & = G (24, 27, 2E) 3) Age estimation ¥ = 5 > My

AbigE R

Za~N(target age, l}

2) Exemplar-based face aging & = G (24,21, 2E)
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A Unified Framework for Biphasic Facial Age Translation with
Noisy-semantic Guided GANs

O Fine-grained Face Age Translation
O A Unified Framework for Data-Efficiency

] ProjectionNet ConstraintNet

Leonstraint 4 Age . .‘
Related P 4

-

Age Estimator :
* Attention ‘I. {52

Mask M eature

LGQE-e s &= E MapsF

4X Convs Target 1X Conv 3X Convs
-4 + Age
Age Estimator
cboun =N ®

Feature
Injection

4X Down
AgeUn s .‘ '
Related

Sun et al, A Unified Framework for Biphasic Facial Age Translation with Noisy-semantic Guided GANSs,
TIFS, 2022.




Comparison with Prior Works

Train on MORPH and CACD Dataset

[30-] [30-] [31-40] [41-50]

[51+]

[31-40]

[41-50)

[51+]

”mula
B EEEE E
SEEFEAT

256*256 resolution

[41-50] [514] [31-40] [41-50] [514]

Ilﬁﬁﬁ

[31-40]
HI s@- 8 18

Train on FGNet dataset

y

MORPH CACD

Msthisd i Age Estimation | Identity Verification lmagc Age Estimation | Identity Vernfication lmagc
Error Rate Quality Error Rate Quality

CAAE 2017 10.34 + 5.63 34.83 (71.75) - 5.16 £ 7.08 3.59 (59.90) -

IPC-GAN 2017 1.74 + 7.44 99.86 (94.04) 8.11 £ 9.69 99.19 (91.60)

Dual ¢cGAN | 2018 244 £ 6.03 99.99 (93.15) - 3.28 + 8.01 99.88 (93.85) -
SPT-GAN 2020 1.53 + 6.50 100.00 (95.67) 40.12 1.78 + 7.53 99.92 (96.13) 46.73
NSG-GAN | 2021 1.20 % 6.81 99.99 (95.27) 35.58 40.24

- . 202 : 1 . 2 L 1.45 £ 8.02 99.93 (94.20)



(R Lo, Face Parsing

SIA INSTITUTE OF AUTOMATION
CHINESE ACADEMY OF SCIENCES

Large-scale Image Database Generation for Face Parsing

Motivation

* |t is expensive and time-consuming to construct a large-scale pixel-
level manually annotated dataset for face parsing.
* We propose a D2VG, which can synthesize large-scale paired face

images and parsing maps from a stand Gaussian distribution.

N~ R Generation &s | A
e oise i b *

Peipei Li, Yinglu Liu, Hailin Shi, Xiang Wu, Yibo Hu, Ran He, Zhenan Sun. “Dual-structure Disentangling Variational
Generation for Data-limited Face Parsing.” ACM MM(Oral), 2020.

Li et al, Dual-Structure Disentangling Variational Generation for Data-Limited Face Parsing, ACM MM,
2020.



A san. Facial Attribute Editing

INSTITUTE OF AUTOMATION
CHINESE ACADEMY OF SCIENCES

Controllable Multi-Attribute Editing of High-Resolution Face

Images
Motivation:

e Most of existing methods have two main limitations:
o Only applicable to face images with relative low resolutions
o Undesired changes of image regions not related to the target attribute

Waveler Coefficienrs

=< 1
w Wavelet-based |
perceptual loss :

——

e
«
Banes [ 0] [0] mane=
Blond Hair 1 Blond_ Hair
Bushy_Eyebrows _Change vector 1 | Bushy Eyebrows
Mustache Mustache
No_Beard 1 | No_Beard
Youns [ 1] Younsg

Deng et al, Controllable Multi-Attribute Editing of High-Resolution Face Images, TIFS, 2019.




A san. Facial Attribute Editing

CBINESE C DEM\" OF SCIENCES

Controllable Multi-Attribute Editing of High-Resolution Face
Images

Mustache

Test StarGAN  AttGAN* Ours Test StarGAN  AttGAN* Ours
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A e, Facial Attribute

Editing

Reference-guided Face Component Editing

e e ey

Corrupted Image I, + Mask I,

s S

Generated Image I
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e o

Dilated Residual Block
Example-guided Attention

H

i

E Source -‘D-LH' &'Llﬁl'lll'i}n
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Example-guided Attention Module
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Reference Image I,
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Deng et al, Reference-guided Face Component Editing, [JCAI, 2020.
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Az, Face Manipulation

Problem: Interpolating only in the Style Space would lead to disentangled but
unnatural translation results.

Solution: Combining the translation effect in both Z and S space to make the best
of both worlds.

Interp. in Interp. in

Input Image L-space S-space

-
Ly

h(f(z))

Distribution of z in Z

Liu et al, Towards Spatially Disentangled Manipulation of Face Images with Pre-trained StyleGANs, IEEE-
TCSVT, 2022.



A=z Face Synthesis
Semantic-aware Noise Driven Portrait Synthesis and Manipulation

Sen.lant.lc Label 4 1D Noise 4 Semantic Feature €9 3D Noise ‘ Target
e.g., Pix2pixHD [l e.g., SPADE [2! e.g., SEAN B e.g., LDBR 4]

Nef

Gaussian

AN

Gau551an

How to achieve BD Semant/ Noise
| semantic controllablllty and style dlver3|ty 1

|

e S — ——— T R =

— s o

Deng et al, Semantlc -aware Noise Driven Portralt Synthe31s and Manlpulatlon TMM 2022
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R L Face Synthesis

C

C~

ngh-f ideli ty « Semantic image synthesis

Label BicycleGAN Pix2pixHD SPADE VSPADE CLADE Ours

Controllabili ty * Real portrait manipulation

Semantic Mask-guided SEAN



A, Face Synthesis
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Diversity « Synthesis with diverse style

Skin Hair

Eyes Global




Az, Face Reenactment

SIA INST
CHIN

Semantic-aware One-shot Face Re-enactment with Dense
Correspondence Estimation
* Face re-enactment: Control 3D-interpretable semantics of an input
face based on the reference image

Attributes | m=p
Identity | mmp
Fuse
Net
Pose >
Expression | mmp Output Image

Driving Image
Liu et al, Semantic-aware One-shot Face Re-enactment with Dense Correspondence Estimation, MIR, 2022.
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Text-to-Face

AnyFace: Free-style Text-to-Face Synthesis and Manipulation

B Two Stream Framework

Training Stage
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Sun et al, AnyFace: Free-style Text-to-Face Synthesis and Manipulation, CVPR, 2022.
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AnyFace: Free-style Text-to-Face Synthesis and Manipulation
®m Comparison

The person wears lipstick.
She has blond hair. and
pale skin. She 1s attractive.

The woman has wavy hair.
black hair. and arched
evebrows. She is voung. She
1s wearing heavy makeup.

She is wearing lipstick. She
has high cheekbones. wavy
hair. bushy eyebrows. and
oval face. She 1s attractive.

He has mouth slightly open.
wavy hail bushv ﬂ ebmws,

AttnGAN SEA-T2F TeleAN B Outs w/o Lpy Outs W/o Loyt
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AnyFace: Free-style Text-to-Face Synthesis and Manipulation
m Open-world Results

She seems to She graduated She has heavy Heisa Maybe he ate too  He is ten years

have heard bad with a PhD. makeup to conceal programmer. much junk food.  old.
her middle age.

TediGAN-B




Al enables face manipulation easier and has
caused security risks

Fraudster Dimitri de Angelis Jailed for Fake
Celebrity Friend Photoshop Scam

® Corman scammed investors out of $8. bm by pretending to be friends with Queen,
Pope, Bush and Clinton

Q By Hannah Osborne nu =
@

March 1, 2013 16:47 GMT

WASHINGTON |

Jack Abramoff took infloence
peddiing to new heights—and
depths. Now he's ready to tell all.
ATIMEinvestigation of the lobbyist
whos turning Washington inside out

Source Actor

Real-time Reenactment

e o /
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Target Actor

from Internet
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R ianas, Identity Swap
* Identity leakage: Information Bottleneck network

(a) Disentanglement via IIB
Information Controllers

1By Compressed
Identity
—N ET —E Zy
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source

target

InfoSwap

Perceptual Features
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f = Aief + (1= 2)R;

Gege Gao et al. Information Bottleneck Disentanglement for Identity Swapping. IEEE Computer Vision and Pattern
. Recognition, 2021.
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(A AR Identity Swap

* Identity leakage: Information Bottleneck network

source target
'

InfoSwap

Gege Gao et al. Information Bottleneck Disentanglement for Identity Swapping. IEEE Computer Vision and Pattern
I Recognition, 2021.
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One Shot Face Swapping on Megapixels

san A

1. Problems
- Only faces at 256 can be one shot swapped previously
- How to swap faces using high resolution images?
2. Key Issues
- Incapable of high-quality face generation based on compressed representations
- Adversarial training is unstable
- Hardware constraints(GPU memory)
3. Solution
- StyleGAN2 + Its Appendages (Face Encoder & Face Transfer Module)

Yuhao Zhu, Qi Li, Jian Wang, Cheng-Zhong Xu and Zhenan Sun, One Shot Face Swapping on
Megapixels, CVPR 2021.
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Amz Identity Swap

One Shot Face Swapping on Megapixels

Source Image X
s gy i s ey i iy =, -

Yuhao Zhu, Qi Li, Jian Wang, Cheng-Zhong Xu and Zhenan Sun, One Shot Face Swapping on
Megapixels, CVPR 2021.
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One Shot Face Swapping on Megapixels

Source
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One Shot Face Swapping on Megapixels

Experiments on CelebA-HQ

Method | ID similarity T | pose | | expression ) | FID |
Ours 0.5014 3.58 2.87 10.16
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 Heterogenous domain
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Jia Li, Zhaoyang Li, Jie Cao, Xingguang Song, Ran He. Facelnpainter: High Fidelity Face Adaptation to
Heterogeneous Domains. CVPR 2021: 5089-5098
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 Heterogenous domain

Sourcel FaceSwap2 Ours2

Target1 FaceSwapl Oursl Target2
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BARARE SimSwap Facelnpainter

Source Target FaceSwap Facelnpainter

Jia L1, Zhaoyang Li, Jie Cao, Xingguang Song, Ran He. Facelnpainter: High Fidelity Face Adaptation to
Heterogeneous Domains. CVPR 2021: 5089-5098



A =25 High-quality Identity Swap

Target Swapped

Source

Hao Zhu, Ran He et al. AOT: Appearance Optimal Transport Model for Face Swapping.
NeurIPS 2020.

T



Talking Face Video Generation

Kaisiyuan Wang, Ran He, et al. MEAD: A Large-scale Audio-visual Dataset for Emotional Talking Face
Generation. ECCV, 2020.
Hao Zhu, Ran He, et al. Arbitrary Talking Face Generation via Attentional Audio-Visual Coherence

I Learning. [JCAI, 2020.



Possible features for fake detection

Facial Behavior
Modeling

Intensity
3] ot
T 1

0 50 100 150 200
Time (frames)

Figure 1. Shown above are five equally spaced frames from a 250-frame clip annotated with the results of OpenFace tracking. Shown

below is the intensity of one action unit AUO1 (eye brow lift) measured over this video clip.

Physiological
Indicator

b

| DEMOCRATIC NATIONAL CONVENTION i:.. !
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Possible features for fake detection

(c) Time:

Seq““iﬂiaﬂiiiiii
Feature T T -------- % ------------ T
extraction

Eye-blinking clue
fl,zglrl:i: LSTMP=LSTM > STM > LSTMPLSTM
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Inconsistency of lighting conditions
4 ) (8

Optimized

Face Model Lighting

Alignment

=

RELAXATION !
1) = p(D)GEVIRP, NXDLY)dV
';‘ext‘ure OC(‘Ilusion

Inconsistency

Estimation Measure

Co

Dist(L,,L,)>T?

o >

(b)

* Bo Peng, Wei Wang, Jing Dong, and Tieniu Tan, “Optimized 3D Lighting Environment Estimation for Image Forgery Detection,” IEEE Transactions on Information Forensics
and Security, 2016.

* Bo Peng, Wei Wang, Jing Dong, and Tieniu Tan, “Automatic detection of 3D lighting inconsistencies via a facial landmark based morphable model,” IEEE International
Conference on Image Processing (ICIP), 2016, pp. 3932-3936.

* Bo Peng, Wei Wang, Jing Dong, and Tieniu Tan, “Improved 3D lighting environment estimation for image forgery detection,” IEEE International Workshop on Information
Forensics and Security (WIFS), 2015, pp. 1-6.




Invalidation of projective geometry laws

S1: Landmark &

Contour
Obervation

c i i d2 B
@=======C =8,
< A >
- =
:"1

e

S2: Estimation by
Landmark

Correspondence

® Minimize projection
error of landmarks

=

€ A

S3: Fine Tune
using Contour

® Minimize projection
error of contours

& Gold Standard Meth}M

ICP algorithm

S4: Consistency

between Intrinsic
paras

Dist(0,{0}) > T?

® Random perturbation
® Mahalanobis distance

Bo Peng, Wei Wang, Jing Dong, and Tieniu Tan, “Position Determines Perspective: Investigating Perspective Distortion for Image

Forensics of Faces,” CVPR Workshop on Media Forensics 2017.




Fake Detection of Face Videos Generated by ZAO

L

Genuine video ZAO video




Fake Detection of Face Videos Generated by ZAO

Genuine video



Open Problems of Face Recognition

222
afa

PIE (Pose, Illumination, Expression)
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Advantages of gait recognition

As a biometric, gait is still available at a distance when other
biometrics are obscured or at too low resolution.

Advantages: robust against imaging distance, resolution, view,
illumination



A History of gait recognition “

Cross-view gait based
human identification

] e ) ] with deep CNNs,
First gait biometrics DARPA Learning TPAMI

paper - Cunado, Nixon Program: Representative Deep

and Carter (AVBPA Human ID at a | Features for Image GEINET: view-

1997) - 90% CCR distance Set Analysis, TMM | invariant gait
recognition, ICB

1997 2000 2015 2016
= —~ — —~ 1
Design hand-crafted Deep learning for
features for gait gait recognition
recognition



Recent Progress of Gait Recognition

CASIA-B (cross-view)
The first cross-view and cross-
dressing database in the world:
124 people, 11 views per
person, covering backpack and
clothing changes

CASIA-E (the blggest ever)
B more than 1000 persons, nearly 1
million video clips
m3 kinds of clothing. 3 kinds of
scenes, 2 kinds of walking patterns
m13 horizontal views, 2 vertical views

Algorithms
Appearance-based Model-based
 CEdr=S-5 R , PoseGait
E??i i%FQHF -fi GaitSet — 7
eeeeeeeeeeeeeeeeeeeeeee =L || b (2] o B
g = - ¢\ 1=
5 A E GaitNet
JB“ LS a5
M _ 1 | Pose Estimation (2D pose -> 3D pose) \TemporaiSpatmlFeatureExtracuon | High-Level Temporal-Spatial Feature Extraction |
Database 7//2 /I E .
IEESEEE [IIEINALAE
Lﬂﬂ"ﬂﬂ#ﬂ'ﬂﬂ v

180° 195° 210° 225° 240° 255° 270°

Multi-View Large Population
Dataset




Multi-view Gait Recognition

Raw
Sequence

Silhouettes

GEls GEl pair
Gallery GEls Identical View  Cross-View Probes Cross-View & Walking-Condition

36° Prob p 0 126° 180°  CL54° CL90° BG54° BGI0O®
e il Probe Gallery

A0 HARH BREE
CNN 1
LRGN

L/ N
P2 P3 P4 P5
Zifeng Wu, Yongzhen Huang, Liang Wang, Xiaogang Wang, and Tieniu Tan, A
comprehensive study on cross-view gait based human identification with deep CNNs, IEEE
- Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017.

Similarities




Core Techniques of Gait Recognition

Short hair
% & PaperBag
- JiHG ik § B Black Trousers
~ i g White Shoes
" Male
T Py Blue Bike
* ;:i_?ﬁ Short hair
= e | Black T-shirt
" Jeans
. e HHIE White Shoes
& . ﬁ,}g Male
o S Yellow Bike
Multi-object cross-view gait recognition Gait attribute recognition, classification and tracking

T
Fi. (MY
i
LEReAR e .- P

—
H l.’:“""lI WEl:  2020-03-11 13:45..
” , wwE: Q jwEs

b
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Gait Detection, Gait Segmentation and Gait Recognition Integrated Technology (end-to-end)

T



MTB: Micro-motion Template Builder

Spatio-temporal attention mechanism design

MTB: Micro-motion Template Builder
7~

channel
re-weighting

f
&

N ' (micro-motion features) are the most

~ . . . . . . .

Z_‘/;_ ________________ »- discriminative features of periodic gaits

® Short-range spatio-temporal representations

 C =
. lsn diris . ® A micro-motion capture module maps part
oy of the feature vectors of each frame to the
3 S — »™——J micro motion feature vectors, and
- i vS»  successfully improves the recognition
Sp —— [ TP: Temporal )  performance.

\__ Pooling

Chao Fan, Yunjie Peng, Chunshui Cao, Xu Liu, Saihui Hou, Jiannan Chi, Yongzhen Huang, Qing Li, and
Zhigiang He, GaitPart: Temporal Part-Based Model for Gait Recognition, in CVPR 2020




MTB: Micro-motion Template Builder

Experimental Results of CASIA-B

Table 3. Averaged rank-1 accuracies on CASIA-B, excluding identical-view cases. CNN-LB:[ 0], GaitSet[ ], GaitNet[ ()]

Gallery NM#1-4 0° —180° T

Probe 0° 18°  36° 54 T72°  90° 108° 126° 144° 162° 180°
CNN-LB[26] | 826 903 961 943 90.1 874 899 940 947 0913 785 (899

NM #5-6 GaitSet[ 5] 00.8 979 994 969 936 917 950 978 939 968 858 | 950

GaitNet[ 0] 91.2 92.0 905 956 869 926 935 90 909 888 89.0 (916
GaitPart(ours) | 94.1 98.6 993 985 940 923 959 984 992 978 904 | 96.2
CNN-LB[20] | 642 B0.6 827 769 648 631 680 769 822 754 613 (724

e

BG #1-2 Galeel[‘-_] 838 912 918 888 833 B8l0 841 900 922 944 790 | 872
GaitNet[ (1] 830 878 883 933 826 748 895 910 B6.l Bl2 856 | 857
GaitPart(ours) | 89.1 948 967 951 883 949 3590 935 961 938 858 | 915
CNN-LB[I6] | 37.7 572 666 6l1.1 552 3546 552 591 589 488 394 | 540

CL #1-2 GaitSet[ "] 614 754 807 773 721 700 715 735 735 684 500 (704
GaitNet[ 30] 42.1 58.2 651 707 680 706 653 694 515 501 366 589

GaitPart(ours) | 70.7 855 869 833 771 715 769 822 838 802 665 | 78.7

Chao Fan, Yunjie Peng, Chunshui Cao, Xu Liu, Saihui Hou, Jiannan Chi, Yongzhen Huang, Qing Li, and
Zhigiang He, GaitPart: Temporal Part-Based Model for Gait Recognition, in CVPR 2020



MTB: Micro-motion Template Builder

Experimental Results of OU-MVLP

Table 4. Averaged rank-1 accuracies on OU-MVLP, excluding
identical-view cases. GEINet:[ | =], GaitSet:[5].

Picibe Gallery :-fLII 1«1_ VIEWws ‘
GEINet| | ©]| GaitSet[>] | GaitPart{ours)
0° 11.4 9.5 82.6
15° 29.1 7.9 889
30° 41.5 89.9 9.8
452 455 o0.2 91.0
(il 39.5 88.1 89.7
78° 41.8 88.7 89.9
o0° 380 7.8 89.5
1807 14.9 81.7 85.2
195° 33.1 6.7 88.1
210° 432 89.0 90.0
225" 45.6 89.3 90.1
240° 394 87.2 89.0
255° 40.5 87.8 89.1
270° 36.3 86.2 88.2
mean 358 87.1 88.7

Chao Fan, Yunjie Peng, Chunshui Cao, Xu Liu, Saihui Hou, Jiannan Chi, Yongzhen Huang, Qing Li, and
Zhigiang He, GaitPart: Temporal Part-Based Model for Gait Recognition, in CVPR 2020



& An end to end gait recognition system
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Flowchart of end-to-end gait recognition

Stepl: Pre-segmentation Step2: Recognition
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Step3: Jointly learning

C. Song, Y. Huang L. Wang, et al, GaitNet: An End-to-end Network for Video-based Human Identification, PR 2019.




Experiments-Results on Outdoor-Gait

Ntk SCENE-I SCENE-2 SCENE-3 Mean
NM CL BG NM €L BG NM CL BG
PCA 79.71 84.56 86.23 07.83 03.48 96.38 65.22 66.42 72.26 82.45
GEI["V] LDA 88.41 87.50 86.23 97.10 094,93 97.10 60.87 61.94 71.53 82.85
LPP 86.96 87.50 89.13 03.48 92.03 97.10 60.87 59.70 76.64 82.60
PCA 79.71 78.68 78.26 08.55 92.75 96.38 57.25 51.49 65.69 77.64
GEnl][ 7] LDA 82.61 86.03 84.78 97.10 92.75 95.65 58.70 57.46 69.34 80.49
LPP 86.23 86.03 85.51 03.48 05.65 095.65 55.80 58.21 71.53 80.90
PCA 81.16 83.82 87.68 05.65 91.30 94.93 66.67 58.96 72.26 81.38
GFI[17] LDA 79.71 68.38 81.88 88.41 86.96 91.30 46.38 43.28 57.66 1.3
LPP 66.67 69.85 78.26 81.88 86.23 86.96 4493 50.75 33.29 68.76
PCA 71.01 72.99 80.44 86.96 89.13 91.30 30.86 41.05 51.83 69.40
CGI| 5] LDA 71.01 68.61 78.99 84.78 88.41 90.58 31.88 39.55 50.37 6713
LPP 71.01 68.61 74.64 84.06 84.06 86.96 38.41] 44,78 48.91 66.83
GEI-CNNJ[ 23 86.23 90.55 03.48 06.0 | 95.65 96.74 70.65 70.55 76.81 836.30
. Non-Joint 95.59
GatiNet | ysii 100.0




[Aisa%.  Applications of Gait Recognition

CHINESE ACADEMY OF SCIENCES

¢ Public Security 4 Commercial Security ¢ Smart Home
Gait Retrieval System PetroChina - field drilling Midea(Fortune 500) air
Shanghai/Beijing - Sample test platform conditioner

Family member gait recognition
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Demo of Gait Recognition
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A= Person Re-identification -

Large-scale image pool (Gallery)
Person re-identification aims to match person images from
non-overlapping cameras




A BBt Black Re-ID

Black Re-ID problem: When people wear black clothes or they are captured
by surveillance systems in low light illumination, the attributes of the clothing
are severely missing.

Bogiang Xu, Lingxiao He, Xingyu Liao, Wu Liu, Zhenan Sun, Tao Mei. "Black Re-ID: A
Head-shoulder Descriptor for the Challenging Problem of Person Re-ldentification." ACM
MM. 2020 (Oral).




A BBt Black Re-ID

Query Gallery Pool
We exploit the head-shoulder feature to assist solving the Black Re-ID problem.




A BBt Black Re-ID
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A BBt Black Re-ID

Table 2: Quantitative comparison with the state-of-the-art
methods in person re-id on Black-relD dataset. Bold number
denote the best performance. We denote HAA (ResNet50)
and HAA (MGN) by the method selecting ResNet50 and
MGN as the backbone respectively.

Black Group White Group
Mo mAP Rank-1 mAP Rank-1
ResNet50 [4] 70.8 80.9 75.8 89.5
PCB [29] 73.4 83.2 78.2 90.8
AlignedRelD [34] 1.9 83.5 80.5 91.3
MGN [31] B 86.7 83.8 94.3
HAA (ResNet50) 79.0 86.7 84.4 93.5
HAA (MGN) 83.8 91.0 88.1 95.3




Challenges of RelD

« Cloth-Changing Re-ID. In most Re-ID datasets each person is captured within
a short period of time on the same day. As result, each wears the same oultfit.
However, in practical, we may need to match a person over a much longer
period of time, e.g., days or even months. As a result, clothing changes are

commonplace.

- Efficient Model Deployment. It is important to design efficient and adaptive
models to address scalability issue for practical model deployment. How to

retrieve fast and how to design a lightweight Re-ID model still need further study.

« Dynamic Model Updating. Fixed model is inappropriate for practical
dynamically updated surveillance system. To alleviate this issue, dynamic model
updating is imperative, either to a new domain/camera or adaptation with newly

collected data.

T
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Hand Vein Patterns for Biometric Recognition

Unique, stable and secure biometric patterns underneath
the skin surface
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ﬂ\zﬁﬁ% Anti-Spoof Vein Recognition

Anti-spoof vein recognition aims to integrates the
recognition task and the anti-spoof task into a unified system.

Two problems:

* Design a Multi-task leaning strategy.

« Balance the performance of both recognition and anti-
spoof tasks.

Antispoofing

Procedures for forging vein image Structure of FVRAS-Net

Yang, W., Luo, W., Kang, W., Huang, Z., & Wu, Q.. FVRAS-Net: An Embedded Finger-Vein Recognition and AntiSpoofing
System Using a Unified CNN. IEEE TIM 2020.

Conv
Block

BB1 ABI1 AB2 AB3 BFC
l I Block1 Block2 Block2 Flatten I

(f
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Template protection has been a crucial concern in biometric
recognition systems, because biometric trait usually are irreplaceable.

Two problems:
« Consider both raw and pre-processed vein image.
* Consider both the normal and the stolen scenario.

Protected
Template

Finger Vein Image Extracted Feature o ]

e
4
256

= I'L':uurl_: ertrﬂL'lmn
| {prev. FVR method)

_ embedding 128 64
N 9 Layer () 32 :
channels— - 16 Y
16 ’ Lag
Encoder ¥ Decoder ‘:7
cfr'fﬁ:(f ............................................................. .{:“;f”"

The architecture of the template protection vein recognition system

Shahreza, H.O., & Marcel, S. Towards Protecting and Enhancing Vascular Biometric Recognition Methods via Biohashing
and Deep Neural Networks. IEEE TBIOM 2021.

T
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GAN based vein image augmentation aim to alleviate the problem of
insufficient training vein data for the application of CNN model.

Key problems:
« Consider both the intra-class augmentation and the
inter-class augmentation for vein images.

Class Prediction| ClassB8- 0.31

Greedy
Grouping

Samples from Class-A

- nier-class
== ‘ranslation System
1t
‘lass-
(2)
Inter-class Image Translation from Class A to Class B f—'ﬁ—"'

Inter-class Augmented Dataset

Ve Samples

Intra-class vein data augmentation Inter-class vein data augmentation

Wang, G., Sun, C., & Sowmya, A. Learning a Compact Vein Discrimination Model With GANerated Samples. IEEE TIFS 2020.
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Efficient vein recognition aim to balance the recognition accuracy and the
time cost of the vein recognition system.

1128
"256
7 £ =
| ﬂ 4
| BLOCK3
’ || BLOCK2 \
CONV7x7  BLOCKI
- GD: Global descriptor

Inference gl
-JA: Joint attention layer

- BN: Batch normalization layer Classification Loss

-FC: Fully connected layer
BN FC + Softmax

Vein code Lightweight model

Yang, L., Yang, G., Xi, X., Su, K., Chen, Q., & Yin, Y. Finger Vein Code: From Indexing to Matching. IEEE TIFS 2019.
Huang, J., Tu, M., Yang, W., & Kang, W. Joint Attention Network for Finger Vein Authentication. IEEE TIM 2021
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Soft biometrics for vein recognition aim to exploit the kind of “noise’-
Intensity distribution except the vein pattern

“ — mmll_l M'Ilh” |||h_]|l Mean and variance

—> WMMJJ Array of mean and variance
bl LD s

—>
E ke “l Llu! ﬁ Histogram of spatial pyramid

Soft biometric trait extraction with the spatial pyramid.

Kang, W., Lu, Y., Li, D., & Jia, W. From Noise to Feature: Exploiting Intensity Distribution as a Novel Soft Biometric Trait for
Finger Vein Recognition. IEEE TIFS 2019.
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3D vein recognition utilize full view cameras to capture vein images

around the entire range of the finger and then reconstruct the 3D finger
vein model for recognition.
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Point cloud and unfolded image Full view image and 3D model

Kang, W., Liu, H., Luo, W., & Deng, F. Study of a Full-View 3D Finger Vein Verification Technique. IEEE TIFS 2020

Yang, W., Chen, Z., Huang, J., Wang, L., & Kang, W. LFMB-3DFB: A Large-scale Finger Multi-Biometric Database and Benchmark

for 3D Finger Biometrics. IEEE IJCB 2021
H. Xu, W. Yang, Q Wu, W. Kang, Endowing Rotation Invariance for 3D Finger Shape and Vein Verification. FCS 2021.
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Voiceprint Biometrics

Speaker Identification Speaker Verification

Whose voice is this?

— et —

Is this Bob's voice?

—

?

Where are speaker
changes?

Which segments are from
the same speaker?

Speaker Diarization

M. Redmond, “Speaker verification: From research to reality,” Tutorial of Int.conf.acoustics Speech & Signal Processing May, 2001



Methods for Voiceprint Biometrics
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Spoofing ASV System
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Countermeasure of Replay Spoofing
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Challenges of Voiceprint Biometrics

* Short speech robustness. How to build a robust speaker model based on a limited
duration of enrollment speech, and how to achieve accurate confidence measure and

judgment based on a ultra-short duration of test speech.

* Anti-spoofing. The performance of speech synthesis technology improved day by day,
and the quality of the playback device can be very high. How to protect the system from

being deceived under the latest deception technology.

* Integration with other modalities. Single-modal automatic speaker recognition
technology is limited in accuracy and security in certain scenarios, such as cocktail party
scenes, spoofing attacks, etc. Therefore, how to effectively integrate it with other

modalities, such as video, 1s also important.

T
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Eyeprint Recognition

Regular front-facing smartphone cameras can create an
cryptographic key used to authenticate users based on the micro
features in and around their eyes, the most important of which are

the blood vessels visible 1n the whites of the eyes.
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Ordinal Measure-based Palmprint Recognition
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Ear Biometrics
BIBIC] Menu ~ searcn Q
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Yahoo tests ear-based smartphone
\ identification system

O 28 April 2015 | Technology

TAMOO LARS

The system identifies users based on the shape of their ears
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Handwriting Biometrics
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Handwriting texture analysis
for writer identification

Statistical analysis of stroke
shape features for writer
identification
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Challenges of Biometric Recognition

/’ From Solved to Unsolved \
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At Future Directions

e Multi-biometrics at a distance




Az Future Directions

 Multi-biometrics for mobile devices

_ Palmprint Voiceprint
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Future Directions

* Demographic Analysis from Biometric Data

What demographic
and affective
information can be
derived from this

face image? | '/

Identity
Gender
Ethnicity
Age

Affect

Rose

Female

White

27

Happy

Jordan ™

Male

Black

45

Surprised

How to
determine such
information
from biometric
data?

Yunlin Sun, Man Zhang, Zhenan Sun, Tieniu Tan, Demographic Analysis from
Biometric Data: Achievements, Challenges, and New Frontiers, |IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2018.
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i  Future Directions

CASI

* Deepfake and Anti-Deepfake

| N

Deepfake

Game Theory




A Future Directions
* Biometrics for forensic applications
Forensics & Biometrics: Shared Goals

' * 2D Face

* Latent prints * 3D Face

- Flbers. * Fingerprint
* Explosives * Iris

* Paint chips * Speech

* DNA

e Signature
* Gait

* Ear

* Palmprint
* Keystroke

* Tire marks
* Shoe prints
* Bite marks
e SMT

Forensics: Identify suspects from crime scene evidence

Biometrics: Automated person recognition from body traits

Anil K. Jain, Forensics: The Next Frontier for Biometrics, lowa State University,
Ames, lowa, October 27, 2015.



Conclusions

* Great progress on biometric recognition has
been achieved using novel sensors
(biometrics-on-the-fly, light field camera) and

algorithms (CNN, GAN).

e State-of-the-art biometric methods are
accurate and fast enough for many practical
applications.

« Many open problems remain to be resolved to
make biometric recognition more user-
friendly, robust and secure.

T
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