N

Harnessing Generative 7
Priors for Visual Content
Restoration

Chen-Change Loy

Last update: 22 Jan 2024

2024 Winter School on Biometrics



Outline

* Introduction

Problem objective

Challenges

Architectures

Losses

Handling complex degradation
Metric

* Prior for Face Restoration

e CodeFormer



Introduction



Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces y
y=Hx+vV
where H is a degradation matrix, v is additive noise

1
X = arg min §||y — Hx|]? + \®(x)

fidelity term regularization
term




Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces y
y=Hx+vV

where H is a degradation matrix, v is additive noise

1
X = arg min §||y — Hx|]? + \®(x)

If we know the H and v, then is a non-blind super-resolution. Otherwise it is a blind super-resolution
(how to deal with this problem?).



Challenges

Real-world degradations usually come from complicate processes, such as imaging system of
cameras, image editing, and Internet transmission.

Take Photo

Social Media Sharing
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Challenges

* Learning-based methods will suffer severe

09
performance drop when the pre-defined "
degradation is different from the real one 5
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* This phenomenon of kernel mismatch will -
introduce undesired artifacts to output "
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SR sensitivity to the kernel mismatch. [
o r denotes the kernel used for downsampling and ogg denotes the g 2

kernel used for SR.



Challenges

* Highly ill-posed problem - one LQ image corresponds to infinite number of HQO images




Challenges

* Vice versa - one HQ image corresponds to infinite number of LQ images




Architectures

* Convolutional neural networks
* SRCNN
e FSRCNN
* VDSR

e Generative adversarial network
e SRGAN
e ESRGAN

* Transformers
* SwinIR
 Uformer
* Restormer

e Diffusion models
e StableSR



Losses

Mean squared error

* Minimizing the loss between the reconstructed images F (Y; ©) and the corresponding ground truth
high-resolution images X

1 n
L(©) = - D OIF(Y50) = X
i—1

* The loss is minimized using stochastic gradient descent with the standard backpropagation



Losses

Perceptual loss

Encourages the output image to | Jw e

be perceptually similar to the T j:_{ : :& f i

target image, but does not force Input i|ma : J : |

them to match exactly image 24 TR Y P irossNetwork VBSA0) || ¥
Content Target g(ﬁi{lﬁ ’

The feature reconstruction loss is the (squared,
normalized) Euclidean distance between feature
representations

activations of the j-th layer of target image

Crea@9) = & H TR0l

feature map of shape (; X H; X W; activations of the j-th layer of output image

Justin Johnson et al., Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV 2016



https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf

Losses

A Natiral Tnasaianii Adversarial loss

MSE-based Solution .
I T ne— The MSE-based solution appears overly

BE st smooth due to the pixel-wise average of
possible solutions in the pixel space

Generative Adversarial Network (GAN)
drives the reconstruction towards the
natural image manifold producing
perceptually more convincing solutions

C. Ledig et al., Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, CVPR 2017



https://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf

Losses
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Losses
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Input MSE Loss Perceptual Loss Adversarial Loss Ground Truth



Handling complex degradation

Degradation model

I ={|(In ® kg)¢r + né]JPEGq}Tr

Blur Upsample



Handling complex degradation

Degradation model

first order -
A
=R Gammie e
: ;Snoitsr(())trr):;ic - bilinear * Color noise
S5 D) e il Faita * Graynoise .
second order |
o Nois 20 soier |~ B

Not a silver bullet - merely extends the solvable degradation boundary of previous blind SR
methods through modifying the data synthesis process

Xintao Wang et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data, AIM 2021



https://openaccess.thecvf.com/content/ICCV2021W/AIM/papers/Wang_Real-ESRGAN_Training_Real-World_Blind_Super-Resolution_With_Pure_Synthetic_Data_ICCVW_2021_paper.pdf

Metrics

Peak signal-to-noise ratio (PSNR) is an expression for the ratio between the maximum possible value
(power) of a signal and the power of distorting noise that affects the quality of its representation

MAXI2 MAX, = Maximum possible pixel value of the image. For 8
PSNR =10 - 10810 bits image, this is 255
MSE
20 -] (MAX,)
— * 10
810 VI<E

= 20- loglo(MAXI) — 1010g10(MSE)

Cons: Doesn’t reflect human perception well



Metrics

* Perceptual metric

LPIPS (Zhang et al., 2018a)
FID (Heusel et al., 2017)

CLIP-IQA (Wang et al., 2023)

MUSIQ (Ke et al., 2021)

Example:
Datasets Metrics RealSR BSRGAN DASR Real-ESRGAN+ FeMaSR LDM SwinlR-GAN IF_III StableSR
PSNR 1 24.62 24.58 24.47 24.29 23.06 23.32 23.93 23.36 23.26
SSIM 1t 0.5970 0.6269 0.6304 0.6372 0.5887 0.5762 0.6285 0.5636 0.5726
DIV2K Valid LPIPS | 0.5276 0.3351 0.3543 0.3112 0.3126 0.3199 0.3160 0.4641 0.3114
FID | 49.49 44.22 49.16 37.64 35.87 26.47 36.34 37.54 24.44
CLIP-IQA 1 | 0.3534 0.5246 0.5036 0.5276 0.5998 0.6245 0.5338 0.3980 0.6771
MUSIQ 1t 28.57 61.19 55.19 61.05 60.83 62.27 60.22 43.71 65.92
PSNR 1 27.30 26.38 27.02 25.69 25.06 25.46 26.31 25.47 24.65
SSIM 1 0.7579 0.7651 0.7707 0.7614 0.7356 0.7145 0.7729 0.7067 0.7080
RealSR LPIPS | 0.3570 0.2656 0.3134 0.2709 0.2937 0.3159 0.2539 0.3462 0.3002
CLIP-IQA 1 | 0.3687 0.5114 0.3198 0.4495 0.5406 0.5688 0.4360 0.3482 0.6234
MUSIQ t 38.26 63.28 41.21 60.36 59.06 58.90 58.70 41.71 65.88
PSNR ¢ 30.19 28.70 29.75 28.62 26.87 27.88 28.50 28.66 28.03
SSIM 1t 0.8148 0.8028 0.8262 0.8052 0.7569 0.7448 0.8043 0.7860 0.7536
DRealSR LPIPS | 0.3938 0.2858 0.3099 0.2818 0.3157 0.3379 0.2743 0.3853 0.3284
CLIP-IQA 1 0.3744 0.5091 0.3813 0.4515 0.5634 0.5756 0.4447 0.2925 0.6357
MUSIQ 1 26.93 57.16 42.41 54.26 53.71 53.72 52.74 30.71 58.51
DPED-iphone CLIP-IQA 1T | 0.4496 0.4021 0.2826 0.3389 0.5306  0.4482 0.3373 0.2962 0.4799
MUSIQ 1t 45.60 45.89 32.68 42.42 49.95 44.23 43.30 37.49 50.48




Prior for Face Restoration



The importance of prior

-
LR Y T ™
N wEmy mms =y
_Peid R Ly v

X. Wang et al. Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform, CVPR 2018



Existing priors for face restoration

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Geometric prior

High-frequency prior indicates the location with high-frequency details

Steps:

1. For each training image, we compute the residual image between the
HR and the bicubic interpolation of LR

2. Warp the residual map into the mean face template domain

3. Average the magnitude of the warped residual maps over all training
images

4. Cluster the preliminary high-frequency map into C continuous contours

5. Form a C-channel maps, with each channel carrying one contour



Geometric prior




Geometric prior
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Geometric prior

Face restoration conditioned on prior

Common Branch G N

{11},.1; EM}

High-Frequency Branch G,

...‘.‘ i E
EWk |

[ .
S |
| | N\t

(a) Bicubic (b) Common (c) High-Freq. (d) CBN (e) Original

Gate

S. Zhu, S. Liu, C. C. Loy, X. Tang, Deep Cascaded Bi-Network for Face Hallucination, ECCV 2016



Existing priors for face restoration

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Reference prior

Face restoration conditioned on exemplars




Reference prior
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Existing priors for face restoration

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Generative prior

z ~ N (0, )

Latent space Generator

Can we leverage a GAN trained on large-scale natural images for richer priors?

GAN is a good approximator for natural image manifold.



Generative prior

Using GAN as latent bank

Encoder-Decoder Structure A common architecture

It is typically trained from scratch using a combined objective function consisting
of a fidelity term and an adversarial loss

SN e~

e T

The generator is responsible for both capturing the natural image characteristics
and maintaining the fidelity to the ground-truth.

This inevitably limit its capability of approximating the natural image manifold.



Generative prior

Using GAN as latent bank

Encoder-Bank-Decoder Structure Lifts the burden of learning both fidelity and texture generation
simultaneously

______________

1! Generator of !

Encoder ®  pretrained A Decoder
1 |
1 |

GANS Does not involve image-specific optimization at runtime

e

T e

Needs a single forward pass to perform image restoration

Inspired by the classic notion of dictionary but exploit GAN as a more
effective way for storing priors



Generative prior
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Condition the bank by passing both the latent vectors and multi-resolution convolutional features from the encoder to achieve
high-fidelity results. Symmetrically, multi-resolution cues need to be passed from the bank to the decoder.

K. C. K. Chan, X. Wang, X. Xu, J. Gu, C. C. Loy, GLEAN: Generative Latent Bank for Image Super-Resolution and Beyond, TPAMI 2022



Generative prior

GLEAN (ours)

GLEAN (ours)




Generative prior

484x484

242x242

121x121 60x60




Generative prior




Generative prior




Generative prior

SR output (1024x1024)




CodeFormer



Old photo enhancement

Old Photo CodeFormer



Old photo enhancement

Old Photo CodeFormer



Old photo enhancement

Old Photo CodeFormer
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Stable Diffusion 2.1 Output Enhanced by CodeFormer
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Stable Diffusion 2.1 Output

Enhanced by CodeFormer
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Stable Diffusion 2.1 Output ' Enhanced by CodeFormer
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Midjourney Output | Enhanced by CodeFormer




Enhanced by CodeFormer

idjourney Output
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Enhanced by CodeFormer

Midjourney Output
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Midjourney Output Enhanced by CodeFormer
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CodeFormer

I0JRIOUAN) |e¢

Iopoouy |-
JowIoJsuely,

LQ Discrete prior HQ
(finite space)

Learn to reduce the uncertainty and ambiguity
of restoration mapping by, while providing rich visual atoms for generating high-quality faces.

Cast blind face restoration as a

A Transformer-based prediction network to model the of the
low-quality faces for code prediction

Enable the discovery of natural faces that closely approximate the target faces even when the
inputs are



VAE

The latent vector is a combination of the mean and standard deviation of the output of the convolutions.
This latent vector can be used to generate random images

mean vector

sampled
latent vector

- N
Encoder b Decoder
Network Network
N -
(conv) (deconv)

standard deviation
vector

Illustration of a VAE
(Source: http://kvfrans.com/content/images/2016/08/vae.jpg)



http://kvfrans.com/content/images/2016/08/vae.jpg

VQVAE

VQ-VAE is a type of variational autoencoder that uses vector quantisation to obtain a discrete latent representation. It differs
from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt
rather than static (the posteriors and priors in VAEs are assumed normally distributed with diagonal covariance).

0
1
2
Encoder —H s i Dy Decoder
Codebook €
VAS l ¢ Z.

| 28D = angmin 200 — g ||| > 2 x e

: CKEC i it

Nearest-Neighbor Matching S ______

[VQGAN] Esser et al., Taming Transformers for High-Resolution Image Synthesis, CVPR 2021
[VQVAE] Oord et al., Neural Discrete Representation Learning, NeurlPS 2017



Continuous prior v.s. discrete prior
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StyleGAN-based { }
frameworks @ ;
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To enhance the fidelity, skip M
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connections between encoder and Continuous prior HQ
decoder are usually required (infinite space)

IOpoouyg
N
—
J0JRIOUAN) |

PULSE GFP-GAN
(continuous, w/o connection) (continuous, )

Input



Continuous prior v.s. discrete prior

VQGAN — 0 S
frameworks HQ : HQ
Encoder "~ H - N — — | Dy Decoder
Codebook €
Nearest-neighbour matching is Zn | ) \ Z
problematic given low-res input i P ey

t 20D = arg minl
1

! cr€EC ;
e e 418711193

Nearest-Neighbor Matching S

1623 11 4si

Z’si‘j) _ Ck”g —p i212{0 sti
1
)

Input PULSE GFP-GAN Nearest Neighbor Ground Truth

(continuous, w/o connection) (continuous, ) (discrete, w/o connection)



Codebook lookup

i’\( Code items | /
. o Feature items | *

w”

HQ features LQ features

(b) Distributions of HQ (left) / LQ (right) features and the codebook items



Continuous prior v.s. discrete prior

_______________
! N 4
3 : Q
= Bk g
k- ind bR - 8|
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LQ Discrete prior HQ

(finite space)

! \ ” Global modeling for remedying the local
Ground Truth Nearest Neighbor CodeFdrmer information |OSS in LQ images

(discrete, w/o connection) (discrete, w/o connection/w=0)



Nearest Neighbor v.s. CodeFormer

.

Real Input | Nearest Neighbor CodeFormer



Controllability

higher quality higher fidelity

\'.
Real Input w=1
jmmm s Wl-----=--------1
. : . v
A. LQ-HQ mapping - 3|8 P Q
= 5 |2 : =
B. Details — (S| > |2 |} & —»> |3
J B S c
C. Identity v i R
LQ Discrete prior HQ

(finite space)



Framework of CodeFormer

It contains three training stages

o | |
1 i [ ] Fixed modules
HQ | | = HQ |
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LQ O| ¢ S e HQ : F, E
—> —> — — L —> | vid
Encoder E, ] ] % . Dy Decoder :
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: : oL e : Controllable Feature
Z O T 2 c : Transformation (CFT)

Code Prediction




Stage |: Codebook Learning (VQGAN)

— 0 A
1 A ——
9 [
HQ = HQ
Encoder ~ H ;L Dy pecoder
Codebook C e ———
I R Z.
Z(l}) = argmln ”Z( J) _ Ck” — %52 120 zai
CkEC i 161231149 !
Nearest-Neighbor Matchlng iiiiii S 777777

As shown in Fig. 2(a), the HQ face image I;, € R *W X3 s first embeded as a compressed feature
Zp, € R™*"*d by an encoder E. Following VQVAE [35] and VQGAN [11], we replace each “pixel”
in Zj, with the nearest item in the learnable codebook C = {c; € R%}{_ to obtain the quantized

feature Z, € R™*"*4 and the corresponding code token sequence s € {0,--- , N — 1}™™:
Z((f’j) = arg min ||Z}(f’~7) — ci|2; s(:9) = arg min ||Z’(li,j) — ckl|2. (1)
ck€C k

Bengio et al. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation, 2013
https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-
implementation-71d99d25d9d0

Straight-through gradient
estimator

This argmin operation is a bit
concerning, since it is non-
differentiable with respect to
the encoder.

But in practice everything
seems to work fine if you just
pass the decoder gradient
directly through this
operation to the encoder (i.e.
set its gradient to 1 wrt the
encoder and the quantized
codebook vector; andto 0
wrt all other codebook
vectors)



Stage |: Codebook Learning (VQGAN)

_________________________

HQ

HQ
- | Dy Decoder

Encoder EH

e - I

i Z¢) = argmin ”Z,(l”) - ck”i — |

1 creC : :
1

Nearest-Neighbor Matching S

El — ”Ih_Irec”l; £per — ||(I)(Ih)_(I)(IreC)”%; Eadv — [logD(Ih)+10g(1_D(Irec))]

LI = \Isg(Zn) — Ze|12 + B Zn — se(Z.)|2

code

* Image-level losses are underconstrained when updating the codebook items, we adopt intermediate code-level loss

* A bi-directional problem here: learning codebook vectors that align to the encoder outputs and learning encoder outputs
that align to a codebook vector.



Stage |: Codebook Learning (VQGAN)

_________________________

HQ : 10
Eul|l— L ann N
Sz | v Dy pecoder
Codebook € Ll 1 [ |
Zp) T [ — Z.

E Zgl'.j) = arg min ”Z}(ll,}) _ Ck”i — %szv 2o zai

i ck€eC i ::146 23in 4:=

Nearest-Neighbor Matching S 77777

ds for th
El — ”Ih_Irec”l; ‘CPGT — ||(I)(Ih)_CI)(Irec)”%; Eadv = [logD(Ih)—l—log(l—D(Irec))] sg stands for the

stopgradient operator
that is defined as

Llsie = lIse(Zn) = Zell3 + 81 Zn — se(Zo)II3 ek Yt e ard
computation time and
* Two terms: has zero partial
* Codebook alignment loss, whose goal is to get the chosen codebook vector as close to the encoder derivatives, thus
output as possible. There is a stop gradient operator on the encoder output because this term is only effectively
intended to update the codebook. constraining its

* Codebook commitment loss, it is meant to solve the inverse problem of getting the encoder output to operand to be a non-
commit as much as possible to its closest codebook vector updated constant



Stage II: Codebook Lookup Transformer

O =

— 4 0O B g

LQ T o| & =8| HQ
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Z, E] T Codebook € ZC

Code Prediction
mn—1
token __ ' AN feat’” 2 * Cross-entropy loss for code token prediction supervision
‘Ccode - E : S log(s’&)7 ‘C’code T ” Zl Sg(ZC) ||2 * L2 loss to force the LQ feature Z; to approach the

1=0 quantized feature Z. from codebook



Stage Ill: Controllable Feature Transformation
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Stage Ill: Controllable Feature Transformation

higher quality < —> higher fidelity

Continuous Transitions between Image Quality and Fidelity via Controllable Feature Transformation Module



Evaluation on blind face restoration

CodeFormer (Ours)

Real Input



Evaluation on blind face restoration

CodeFormer (Ours)

Real Input DFDNet GFP-GAN



Evaluation on blind face restoration

Real Input DFDNet



Face color enhancement
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Face inpainting

Masked Input CodeFormer



Face inpainting (extremely large mask)

bA B bl ewbd b A e

(”h

Masked Input
(extremely large mask)




Code and demo

Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurlPS 2022).

) CodeFormer is a robust face restoration algorithm for old photos or Al-generated faces.

2 Try CodeFormer for improved stable-diffusion generation!

Input Output

Background_Enhance

Face_Upsample

Rescaling_Factor (up to 4)

2

Codeformer_Fidelity (0 for better quality, 1 for better identity) 0.7

Download the output

out.png 1.7MB Download

Clear

O https://github.com/sczhou/CodeFormer

~) https://huggingface.co/spaces/sczhou/CodeFormer



Discussions

* Next generation of generative priors
StyleGAN2 -> VQGAN -> Diffusion Model

* |[dentity inconsistency issue
Training Setting; Network Structure;
Reference-based model (e.g., Li et al);
Personalized model (e.g., MyStyle)

* Video face restoration
Recurrent networks (e.g., BasicVSR series)

e

Wy
N L W ——
w2

Restoration Result




More Generic Prior from Diffusion Models?

Encoder (forward/diffusion process) Decoder (reverse process)
Ay \,.yar g
wEL
: ‘ 7 "}‘i & i
ey »(“&3 : e : 9
Input, x 71 79 ZT

It is unclear how restoration can be achieved via diffusion model
* Diffusion model is stochastic! How to keep the prior and maintain fidelity?

* Diffusion model hasn’t seen relevant degradations! How to handle complex degradations?
e Diffusion model is slow! How to improve inference efficiency?

Image Credit: Simon J.D. Prince, Understanding Deep Learning, 2023



https://udlbook.github.io/udlbook/

StableSR | Framework

* Frozen stable diffusion model as a backbone

* Minimal alterations to prevent disrupting the prior

Denoising U-Net

Jianyi Wang et al. Exploiting Diffusion Prior for Real-World Image Super-Resolution. arXiv May 2023



StableSR | Framework

e Train only the time-aware
encoder and spatial feature
transformation layer

o, B = M (E™) )
. Decoder ¥ 5

=1+ ") O B+ 6" i
HR

* Adaptively adjust the
condition strength derived

from the LR feature through t i i C

Denoising U-Net

Xintao Wang et al. Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. CVPR 2018



StableSR | Fidelity-Realism Trade-off

* Add a controllable skip
connection to benefit from
structural guidance from the

LR image, enhancing fidelity & A
N I i
ncoder b
* Control the modulation LR - A
strength through w j 7b HR
\S—
= L AR A g
* Alarger w allows stronger i i
structural guidance I | S | L, L
Z, . T Z, “Denoising U-Net Z,

Denoising U-Net

Shangchen Zhou et al. Towards Robust Blind Face Restoration with Codebook Lookup Transformer. NeurlPS 2022
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Problems to solve

e Extending diffusion prior to video restoration

* Recovering natural scene with the right
semantics is hard

* A neat way to deal with different resolutions

e Diffusion model is still slow
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