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Motivation for SSL in biometrics

n To achieve  successful designs 
even on small data set
n new biometrics, such as breath

n Recent example: Chen et al,
PR2023, Self-supervised vision 
transformer-based few-shot 
learning for facial expression 
recognition  
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Fig. 3. Overview of the SSF-ViT. The training process of SSF-ViT consists of three phases. In the self-supervised pretraining phase, pretext tasks are implemented 
using unlabeled face images to obtain a pretrained ViT encoder. In the parameter fine-tuning phase, ViT is used to implement the expression classification task on 
laboratory-controlled FER datasets, during which the parameters are updated. In the few-shot classification phase, wild FER datasets are divided into support and 
query sets, and the fine-tuned ViT is used to construct prototypical networks to calculate the classification results for the query samples.

The limitation of current FSL-based FER methods is their limited generalizability for backbone models [31]. In this paper, a 
prototypical network-based few-shot classification method was constructed for wild FER dataset. In particular, a self-supervised pre-
trained ViT was employed as the feature extractor for the prototypical network, which was pretrained with numerous self-supervised 
learning tasks, effectively guaranteeing the diversity of training samples. The prototypical network, as a projection strategy, can 
construct an embedding space to minimize the same-class sample distance, which effectively solves the model overfitting problem 
caused by class imbalance.

3. The proposed method

3.1. Overview

The framework of SSF-ViT is depicted in Fig. 3, and it consists of three stages. First, in the self-supervised pretraining phase, 
four pretext tasks are constructed to pretrain the ViT encoder, and the model parameters are optimized by defining loss functions 
for the four tasks and using joint training. Second, in the parameter fine-tuning phase, the spatiotemporal features are extracted 
by a pretrained ViT encoder on laboratory-controlled FER datasets, and the features are used for expression classification, in which 
the parameters of the model are fine-tuned. Finally, in the few-shot classification phase, we constructed a prototypical network-
based few-shot classification method for wild FER. On the wild FER datasets, the support and query sets are divided, and few-shot 
classification episodes are constructed. The fine-tuned ViT encoder is used as the feature extractor to build the prototypical networks 
and compute the classification results. In addition, a method for seven-class classification on wild FER datasets is devised to more 
fully validate the performance of the model.



Outline

n Introduction
n Foundation models: concept and challenges
n Self-supervised learning: the art
n Benefits of SSL
n Self-supervised learning: challenges
n Self-supervised learning: towards science
n Conclusions
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Supervised Learning: A Success 
Story 

4Curtsey: Dr. Simon Jenni



Supervised Learning: The 
Limitations 
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n ImageNet model not  
panacea

n Expensive (cumbersome, 
domain experts)

n Not scalable
n Ambiguous
n Low information content
n Requires a lot of data to 

train
n Does not model directly 

image properties
n ……



"Foundation" Models

• The way forward – Self-supervised pretraining (SPP) 

• Large-scale self-supervised pretrained (SSP) models are behind major 
transformation in how AI systems are built since their introduction in late 2018.

￫ The foundation models emerged from natural language processing (NLP), by 
large pretrained models like BERT [b], GPT-3 [c] etc., based on transformer

6

[b] Devlin, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding reduction" ACL, 2019.
[c] Brown, et al. "Language Models are Few-Shot Learners" arXiv, 2020.

v No annotation required

Can the success be repeated elsewhere?

The early efforts largely unsuccessful (CNNs, Transformers)



What is self supervised learning?

n Aim of learning: find minimal sufficient representation 
n Types of learning

n supervised, all data annotated
n weakly supervised, only some data annotated, exploit e.g. temporal 

contiguity in video
n unsupervised, no annotation, discover structures in the data 
n self-supervised, relates to deep networks, no annotation, but data structure 

discovery is meaningless

n Aim of self-supervised (SSL) learning - pre-train a network so that 
it can subsequently be fine-tuned for a specific task on small 
quantity of data
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What should SSL achieve?

n Learn about 
n local image properties
n notions of similarity and dissimilarity
n the existence of different concepts
n basic properties of concepts (text, shape, contiguity)
n the diversity of concept manifestations
n context
n relationship of different modalities

n Robustness to variations and resilience to noise
n Eliminate redundancy
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Key ingredients of SSL

n Pre-text (auxiliary) tasks 
n their accomplishment should endow the network with the ability to 

generalize to the target tasks
n Data augmentation

n generation of training data in support of the pre-text tasks

n Auxiliary network architecture
n e.g. siamese twin

n Loss functions
n Training strategy
n Optimisation procedures  
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Example pre-text tasks

n Popular pre-text tasks
n Reconstruction
n Rotation classification
n Juxtaposition 
n Masking
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Fig. 4. Self-supervised learning pretext tasks. (a) Image denoising and reconstruction task, (b) Image rotation prediction task, (c) Jigsaw puzzle task, and (d) Masked 
patch prediction task.

3.2. Self-supervised learning

In the self-supervised pretraining stage, pretext tasks are designed for ViT, and pseudolabels are generated for the pretext tasks 
based on certain properties. When training with the pretext tasks, the shallower network layers usually focus on some underlying 
image features, such as edge and texture features, and the deeper network layers focus on image semantic features. The ViT trained 
by the pretext tasks needs to possess kernels that extract both the low-level and high-level features of the images, which is suitable 
for FER tasks. To this end, we propose a pretraining strategy for a vision transformer by defining four self-supervised pretext tasks, 
including image denoising and reconstruction, image rotation prediction, jigsaw puzzle and masked patch prediction. The aim is 
to pretrain the ViT with the ability to extract the texture features, pose features, spatial features and semantic features of facial 
expressions. The following details the design of the pretext tasks and the pretraining process for ViT.

3.2.1. Pretext tasks
(a) Image denoising and reconstruction task
Image denoising and reconstruction is a simple but effective self-supervised learning pretext task motivated by the desire for the 

model to extract color, texture and structural information from the image, making the model capable of extracting the underlying 
features. The flexible construction of the transformer makes it convenient to perform this task. As shown in Fig. 4 (a), the vision 
transformer is used as an encoder and the decoder is implemented using a simple linear projection layer, the input image is sliced into 
nonoverlapping patches and represented as tokens [24], the tokens are calculated by the encoder, and the tokens are reconstructed 
into images by the decoder.

First, we introduce sparse Gaussian noise into the original input !(") to obtain noisy images !(")
#$%, where " ∈ [0, &], and & is the 

number of input facial images. The probability density function of Gaussian noise can be expressed as:

'
(
((")%)"*$

)
= 1√

2+,
$-'(

−
(
((")%)"*$ − ((.)%)"*$

)2

2,2
), (1)

where , is the standard deviation of the values of the generated Gaussian noise and -(/)%)"*$ is the mean of the Gaussian noise values. 
The noise matrix 0(")

%)"*$ ∼ ' 
(
!(")) is randomly generated, and !(")

#$% is calculated as follows:

From Chen et al (PR2023)



Data augmentation

n Geometric transformations
n Puzzle (random grid shuffle)
n Filtering (blurring)
n Compression
n Training set balancing
n Multiple views (global, local)
n Adding noise
n Physics based transformations (hazy)
n Rotation by a given angle
n Colour modification 
n Transformation to a monochromatic image
n Masking and cut out 
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Time-consuming and computationally expensive: Different

augmentation techniques can in fact have input parameters

that require some tuning and which could also slow down the

training process.

May result in the loss of some information (e.g., operations

such as cropping, zooming, etc.).

Can result in the generation of unrealistic data (if the

augmented data is generated without supervision).

If bias is present in the original dataset, data augmentation

could amplify its effects.

How to Implement Data AugmentationHow to Implement Data Augmentation

To facilitate the adoption of Data Augmentation, throughout the

years, different libraries have been developed in Python. Some

examples are:

Albumentations: is a stand-alone open-source Python Image

Data Augmentation library. Albumentations has been designed

to be extremely performant and to provide an easy-to-use API

interface that can integrate out of the box with other Deep

Learning frameworks such as Tensorflow and PyTorch.

Albumentations can work on different types of image data such

as RGB/grayscale images, key points, bounding boxes, etc.

NLPAug: is an open-source Python NLP (Natural Language

Processing) Data Augmentation library designed to generate

synthetic text and audio data. NLPAug can be easily integrated

in other ML/DL workflows (e.g., scikit-learn, Tensorflow,

PyTorch).

Tensorflow/Keras: Tensorflow and Keras provide different forms

of interfaces to perform data augmentation tasks such as:

keras.Sequential, ImageDataGenerator and tf.image.

PyTorch Torchvision: using the torchvision.transforms module, it

can also be possible to execute data augmentation tasks in

PyTorch during the model pre-processing stage.

Additionally, it can always be possible to create ad-hoc

transformations in plain Python to satisfy any specific use case

your project might have.

Steps for Implementing Data Augmentation Techniques in aSteps for Implementing Data Augmentation Techniques in a
Machine Learning PipelineMachine Learning Pipeline

One key aspect to keep in mind to create robust ML projects is to

make sure every step in your pipeline is reproducible. In fact, in a

real-world environment, we would not have to go through the

pipeline flow (Figure 1) just once but periodically retrain our

model as new data becomes available and performance might

degrade.

Figure 1: ML Pipeline Steps

Once we’ve labeled our data and defined consistent pre-

processing steps, the data augmentation process can begin. As

part of this step, we can then ensure the right variety and amount

of data is generated to complement our existing training dataset

for the ML model. For real-world applications, it might be then

necessary to validate the augmented data with some subject

matter experts to be sure the data fed in the rest of the pipeline is

accurate and realistic. Finally, it is important to perform Data

Augmentation just on the training dataset and not use augmented

images from the validation data to avoid Data Leakage.

Practical ImplementationPractical Implementation

First of all we need to import all the necessary libraries.

In order to show image augmentation capabilities, we can now

load a starting image to augment

Figure 2: Original Image

At this point, we can just convert our image into an array format

and apply a series of transformations (9 in total). As shown in the

code snippet below, using Albumentations, we can either apply a

single transformation to an image or, like in the last example also,

a combination of transformations simultaneously. Finally, each of

the different transformations comes with different parameters,

which can be used to provide more control over the expected

output. For example, when resizing/cropping an image, we can

specify the expected width and height in pixels, or with

probabilistic transformations, we can decide the likelihood with

which a transformation should be applied.

As shown in Figure 3, we can then inspect the result of our

transformations. It is important to remember that some of the

transformations used are non deterministic and therefore running

the same code multiple times in your own time might lead to

different results.

Figure 3: Image Augmentation Results

We are now ready to start exploring how to perform Data

Augmentation on text data. One of the simplest approaches we

can take is to perform single-word replacements (without having

any context of the sentence as a whole). This approach is

commonly referred to as Character/Word Level Augmentation. It

can be easily implemented in Python with data structures such as

dictionaries to look up each word synonym/antonym or using word

embeddings (e.g., GloVe, Word2Vec).

As a first attempt, we can try to replace 0.3% of the sentence with

a synonym.

Another approach could be to replace words at random with their

antonym (opposite).

Or to randomly change the order of words.

Finally, it can also be quite useful to introduce spelling mistakes

in our data. Spelling mistakes can in fact occur quite frequently in

our daily life and therefore training our models on some of them

can make it more flexible to not get confused between words just

because of a spelling mistake.

A more advanced approach to performing Data Augmentation on a

word level would then be to use pre-trained Deep Learning models

able to understand the context around a word to decide how to

alter a sentence best. This approach is commonly referred to as

Flow Augmentation. For this example, we can use Google BERT as

our model of choice, although NLPAug, too, can provide a wide

range of pre-trained models for you to pick.

To improve performance and make your augmentations look as

natural as possible, there are a lot of different additional

parameters which can be specified when using NLPAug. Some

examples can be the language of the input data, the percentage of

words to augment in a sentence, the minimum/maximum number

of words to augment, listing the stopwords to not include in the

augmentation process, etc.

Once we've completed the Data Augmentation process and

integrated the new data in the training dataset, we can then

continue as usual to train our models using frameworks such as

PyTorch, TensorFlow, and scikit-learn.

ImageAugmentationResults
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Architectures for SSL

n Backbone architecture
n Addition structural 

components, e.g.
siamese twin branch
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Asymmetric Projector
Stop gradients
Centering ...Backbone



Architectures

n Dino (Caron, 2021)

13

text specific, many existing self-supervised methods have
shown their potential on images with convnets [10, 12, 30,
33]. They typically share a similar structure but with differ-
ent components designed to avoid trivial solutions (collapse)
or to improve performance [16]. In this work, inspired from
these methods, we study the impact of self-supervised pre-
training on ViT features. Of particular interest, we have
identified several interesting properties that do not emerge
with supervised ViTs, nor with convnets:

• Self-supervised ViT features explicitly contain the
scene layout and, in particular, object boundaries, as
shown in Figure 1. This information is directly accessi-
ble in the self-attention modules of the last block.

• Self-supervised ViT features perform particularly well
with a basic nearest neighbors classifier (k-NN) without

any finetuning, linear classifier nor data augmentation,
achieving 78.3% top-1 accuracy on ImageNet.

The emergence of segmentation masks seems to be a
property shared across self-supervised methods. However,
the good performance with k-NN only emerge when com-
bining certain components such as momentum encoder [33]
and multi-crop augmentation [10]. Another finding from our
study is the importance of using smaller patches with ViTs
to improve the quality of the resulting features.

Overall, our findings about the importance of these
components lead us to design a simple self-supervised ap-
proach that can be interpreted as a form of knowledge
distillation [35] with no labels. The resulting framework,
DINO, simplifies self-supervised training by directly pre-
dicting the output of a teacher network—built with a mo-
mentum encoder—by using a standard cross-entropy loss.
Interestingly, our method can work with only a centering
and sharpening of the teacher output to avoid collapse, while
other popular components such as predictor [30], advanced
normalization [10] or contrastive loss [33] add little benefits
in terms of stability or performance. Of particular impor-
tance, our framework is flexible and works on both convnets
and ViTs without the need to modify the architecture, nor
adapt internal normalizations [58].

We further validate the synergy between DINO and ViT
by outperforming previous self-supervised features on the
ImageNet linear classification benchmark with 80.1% top-1
accuracy with a ViT-Base with small patches. We also con-
firm that DINO works with convnets by matching the state
of the art with a ResNet-50 architecture. Finally, we discuss
different scenarios to use DINO with ViTs in case of limited
computation and memory capacity. In particular, training
DINO with ViT takes just two 8-GPU servers over 3 days
to achieve 76.1% on ImageNet linear benchmark, which
outperforms self-supervised systems based on convnets of
comparable sizes with significantly reduced compute require-
ments [10, 30].

student gθs

x

x2x1

teacher gθt

centering

sg

softmax

p1 p2

softmax

loss:  
- p2 log p1

ema

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

2. Related work
Self-supervised learning. A large body of work on self-
supervised learning focuses on discriminative approaches
coined instance classification [12, 20, 33, 73], which con-
siders each image a different class and trains the model
by discriminating them up to data augmentations. How-
ever, explicitly learning a classifier to discriminate be-
tween all images [20] does not scale well with the num-
ber of images. Wu et al. [73] propose to use a noise
contrastive estimator (NCE) [32] to compare instances in-
stead of classifying them. A caveat of this approach is
that it requires comparing features from a large number
of images simultaneously. In practice, this requires large
batches [12] or memory banks [33, 73]. Several variants
allow automatic grouping of instances in the form of cluster-
ing [2, 8, 9, 36, 42, 74, 80, 85].

Recent works have shown that we can learn unsupervised
features without discriminating between images. Of par-
ticular interest, Grill et al. [30] propose a metric-learning
formulation called BYOL, where features are trained by
matching them to representations obtained with a momentum
encoder. Methods like BYOL work even without a momen-
tum encoder, at the cost of a drop of performance [16, 30].
Several other works echo this direction, showing that one
can match more elaborate representations [26, 27], train fea-
tures matching them to a uniform distribution [6] or by using
whitening [23, 81]. Our approach takes its inspiration from
BYOL but operates with a different similarity matching loss

x

v y✓ z✓ q✓(z✓)

v0 y0⇠ z0⇠ sg(z0⇠)

view

input
image

representation projection prediction

t

f✓ g✓ q✓

t0

f⇠ g⇠ sg

loss

online

target

Figure 2: BYOL’s architecture. BYOL minimizes a similarity loss between q✓(z✓) and sg(z0⇠), where ✓ are the trained
weights, ⇠ are an exponential moving average of ✓ and sg means stop-gradient. At the end of training, everything
but f✓ is discarded, and y✓ is used as the image representation.

augmentations t ⇠ T and t0 ⇠ T 0. From the first augmented view v, the online network outputs a representation

y✓ =� f✓(v) and a projection z✓ =� g✓(y). The target network outputs y0⇠ =� f⇠(v0) and the target projection

z0⇠ =� g⇠(y0) from the second augmented view v0. We then output a prediction q✓(z✓) of z0⇠ and `2-normalize both
q✓(z✓) and z0⇠ to q✓(z✓) =� q✓(z✓)/kq✓(z✓)k2 and z0⇠ =� z0⇠/kz0⇠k2. Note that this predictor is only applied to the
online branch, making the architecture asymmetric between the online and target pipeline. Finally we define the
following mean squared error between the normalized predictions and target projections,5

L✓,⇠ =�
��q✓(z✓)� z0⇠

��2
2

= 2� 2 ·
hq✓(z✓), z0⇠i��q✓(z✓)

��
2

·
��z0⇠

��
2

· (2)

We symmetrize the loss L✓,⇠ in Eq. 2 by separately feeding v0 to the online network and v to the target network to
compute eL✓,⇠. At each training step, we perform a stochastic optimization step to minimize LBYOL

✓,⇠ = L✓,⇠ + eL✓,⇠

with respect to ✓ only, but not ⇠, as depicted by the stop-gradient in Figure 2. BYOL’s dynamics are summarized as

✓  optimizer
�
✓,r✓LBYOL

✓,⇠ , ⌘
�
, (3)

⇠  ⌧⇠ + (1� ⌧)✓, (1)

where optimizer is an optimizer and ⌘ is a learning rate.

At the end of training, we only keep the encoder f✓; as in [9]. When comparing to other methods, we consider the
number of inference-time weights only in the final representation f✓. The full training procedure is summarized in
Appendix A, and python pseudo-code based on the libraries JAX [64] and Haiku [65] is provided in in Appendix J.

3.2 Intuitions on BYOL’s behavior

As BYOL does not use an explicit term to prevent collapse (such as negative examples [10]) while minimizing
LBYOL

✓,⇠ with respect to ✓, it may seem that BYOL should converge to a minimum of this loss with respect to (✓, ⇠)
(e.g., a collapsed constant representation). However BYOL’s target parameters ⇠ updates are not in the direction of
r⇠LBYOL

✓,⇠ . More generally, we hypothesize that there is no loss L✓,⇠ such that BYOL’s dynamics is a gradient descent
on L jointly over ✓, ⇠. This is similar to GANs [66], where there is no loss that is jointly minimized w.r.t. both
the discriminator and generator parameters. There is therefore no a priori reason why BYOL’s parameters would
converge to a minimum of LBYOL

✓,⇠ .

While BYOL’s dynamics still admit undesirable equilibria, we did not observe convergence to such equilibria in our
experiments. In addition, when assuming BYOL’s predictor to be optimal6 i.e., q✓ = q? with

q? =� arg min
q

E
h��q(z✓)� z0⇠

��2
2

i
, where q?(z✓) = E

⇥
z0⇠|z✓

⇤
, (4)

5While we could directly predict the representation y and not a projection z, previous work [8] have empirically shown that
using this projection improves performance.

6For simplicity we also consider BYOL without normalization (which performs reasonably close to BYOL, see Appendix F.6)
nor symmetrization
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n Barlow twins (Zbontar 2021)

n Byol (Grill, 2020)

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar
* 1

Li Jing
* 1

Ishan Misra
1

Yann LeCun
1 2

Stéphane Deny
1

Abstract

Self-supervised learning (SSL) is rapidly closing
the gap with supervised methods on large com-
puter vision benchmarks. A successful approach
to SSL is to learn embeddings which are invariant
to distortions of the input sample. However, a
recurring issue with this approach is the existence
of trivial constant solutions. Most current meth-
ods avoid such solutions by careful implementa-
tion details. We propose an objective function
that naturally avoids collapse by measuring the
cross-correlation matrix between the outputs of
two identical networks fed with distorted versions
of a sample, and making it as close to the identity
matrix as possible. This causes the embedding
vectors of distorted versions of a sample to be sim-
ilar, while minimizing the redundancy between
the components of these vectors. The method is
called BARLOW TWINS, owing to neuroscientist
H. Barlow’s redundancy-reduction principle ap-
plied to a pair of identical networks. BARLOW
TWINS does not require large batches nor asym-
metry between the network twins such as a pre-
dictor network, gradient stopping, or a moving
average on the weight updates. Intriguingly it ben-
efits from very high-dimensional output vectors.
BARLOW TWINS outperforms previous methods
on ImageNet for semi-supervised classification in
the low-data regime, and is on par with current
state of the art for ImageNet classification with
a linear classifier head, and for transfer tasks of
classification and object detection.1

Figure 1. BARLOW TWINS’s objective function measures the cross-
correlation matrix between the embeddings of two identical net-
works fed with distorted versions of a batch of samples, and tries to
make this matrix close to the identity. This causes the embedding
vectors of distorted versions of a sample to be similar, while mini-
mizing the redundancy between the components of these vectors.
BARLOW TWINS is competitive with state-of-the-art methods for
self-supervised learning while being conceptually simpler, natu-
rally avoiding trivial constant (i.e. collapsed) embeddings, and
being robust to the training batch size.

1. Introduction

Self-supervised learning aims to learn useful representa-
tions of the input data without relying on human annota-
tions. Recent advances in self-supervised learning for visual
data (Caron et al., 2020; Chen et al., 2020a; Grill et al., 2020;
He et al., 2019; Misra & van der Maaten, 2019) show that
it is possible to learn self-supervised representations that
are competitive with supervised representations. A common
underlying theme that unites these methods is that they all
aim to learn representations that are invariant under different
distortions (also referred to as ‘data augmentations’). This

*Equal contribution 1Facebook AI Research 2New York
University, NY, USA. Correspondence to: Jure Zbon-
tar <jzb@fb.com>, Li Jing <ljng@fb.com>, Ishan Misra
<imisra@fb.com>, Yann LeCun <yann@fb.com>, Stéphane
Deny <stephane.deny.pro@gmail.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1Code and pre-trained models (in PyTorch) are available at
https://github.com/facebookresearch/barlowtwins
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Sample loss functions

n Contrastive loss (SimCLR, van den Oord,2018)

n where               represents similarity between two views (embedding, 
representation, or prediction) 

n BYOL loss 

n Reconstruction loss    

14

Loss weight � Temperature ↵ Top-1 Top-5

0 0.1 72.5 90.8

0.1

0.01 72.2 90.7
0.1 72.4 90.9
0.3 72.7 91.0
1 72.6 90.9
3 72.5 90.9

10 72.5 90.9

0.5

0.01 70.9 90.2
0.1 72.0 90.8
0.3 72.7 91.2
1 72.7 91.1
3 72.6 91.1

10 72.5 91.0

1

0.01 53.9±0.5 77.5±0.5

0.1 70.9 90.3
0.3 72.7 91.1
1 72.7 91.1
3 72.6 91.0

10 72.6 91.1

Table 18: Top-1 accuracy in % under linear evaluation protocol at 300 epochs of sweep over the
temperature ↵ and the dispersion term weight � when using a predictor and a target network.

F.4 Details on the relation to contrastive methods

As mentioned in Section 5, the BYOL loss Eq. 2 can be derived from the InfoNCE loss

InfoNCE↵,�
✓ =�

2

B

BX

i=1

S✓(vi, v
0
i)�

2↵ · �
B

BX

i=1

ln

0

@
X

j 6=i

exp
S✓(vi, vj)

↵
+
X

j

exp
S✓(vi, v0j)

↵

1

A, (8)

with
S✓(u1, u2) =�

h�(u1), (u2)i
k�(u1)k2 · k (u2)k2

· (9)

The InfoNCE loss, introduced in [10], can be found in factored form in [84] as

InfoNCE✓ =�
1

B

BX

i=1

ln
f(vi, v0i)

1
B

P
j

exp f(vi, v0j)
· (10)

As in SimCLR [8] we also use negative examples given by (vi, vj)j 6=i to get

1

B

BX

i=1

ln
exp f(vi, v0i)

1
B

P
j 6=i

exp f(vi, vj) + 1
B

P
j

exp f(vi, v0j)
(11)

= lnB +
1

B

BX

i=1

f(vi, v
0
i) � 1

B

BX

i=1

ln

0

@
X

j 6=i

exp f(vi, vj) +
X

j

exp f(vi, v
0
j)

1

A. (12)

To obtain Eq. 8 from Eq. 12, we subtract lnB (which is independent of ✓), multiply by 2↵, take f(x, y) = S✓(x, y)/↵
and finally multiply the second (negative examples) term by �. Using � = 1 and dividing by 2↵ gets us back to the
usual InfoNCE loss as used by SimCLR.

In our ablation in Table 5b, we set the temperature ↵ to its best value in the SimCLR setting (i.e., ↵ = 0.1). With
this value, setting � to 1 (which adds negative examples), in the BYOL setting (i.e., with both a predictor and a target
network) hurts the performances. In Table 18, we report results of a sweep over both the temperature ↵ and the
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Loss weight � Temperature ↵ Top-1 Top-5

0 0.1 72.5 90.8

0.1

0.01 72.2 90.7
0.1 72.4 90.9
0.3 72.7 91.0
1 72.6 90.9
3 72.5 90.9

10 72.5 90.9

0.5

0.01 70.9 90.2
0.1 72.0 90.8
0.3 72.7 91.2
1 72.7 91.1
3 72.6 91.1

10 72.5 91.0

1

0.01 53.9±0.5 77.5±0.5

0.1 70.9 90.3
0.3 72.7 91.1
1 72.7 91.1
3 72.6 91.0

10 72.6 91.1

Table 18: Top-1 accuracy in % under linear evaluation protocol at 300 epochs of sweep over the
temperature ↵ and the dispersion term weight � when using a predictor and a target network.
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Target ⌧base Top-1

Constant random network 1 18.8±0.7

Moving average of online 0.999 69.8
Moving average of online 0.99 72.5
Moving average of online 0.9 68.4
Stop gradient of online† 0 0.3

(a) Results for different target modes. †In the stop gradient of

online, ⌧ = ⌧base = 0 is kept constant throughout training.

Method Predictor Target network � Top-1

BYOL X X 0 72.5
� X X 1 70.9
� X 1 70.7
SimCLR 1 69.4
� X 1 69.1
� X 0 0.3
� X 0 0.2
� 0 0.1

(b) Intermediate variants between BYOL and SimCLR.

Table 5: Ablations with top-1 accuracy (in %) at 300 epochs under linear evaluation on ImageNet.

Ablation to contrastive methods In this subsection, we recast SimCLR and BYOL using the same formalism to
better understand where the improvement of BYOL over SimCLR comes from. Let us consider the following objective
that extends the InfoNCE objective [10, 84] (see Appendix F.4),
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where ↵ > 0 is a fixed temperature, � 2 [0, 1] a weighting coefficient, B the batch size, v and v0 are batches
of augmented views where for any batch index i, vi and v0i are augmented views from the same image; the real-
valued function S✓ quantifies pairwise similarity between augmented views. For any augmented view u we denote
z✓(u) , f✓(g✓(u)) and z⇠(u) , f⇠(g⇠(u)). For given � and  , we consider the normalized dot product

S✓(u1, u2) =�
h�(u1), (u2)i

k�(u1)k2 · k (u2)k2
· (7)

Up to minor details (cf. Appendix F.5), we recover the SimCLR loss with �(u1) = z✓(u1) (no predictor),  (u2) =
z✓(u2) (no target network) and � = 1. We recover the BYOL loss when using a predictor and a target network, i.e.,

�(u1) = p✓(z✓(u1)) and  (u2) = z⇠(u2) with � = 0. To evaluate the influence of the target network, the predictor
and the coefficient �, we perform an ablation over them. Results are presented in Table 5b and more details are
given in Appendix F.4.

The only variant that performs well without negative examples (i.e., with � = 0) is BYOL, using both a bootstrap
target network and a predictor. Adding the negative pairs to BYOL’s loss without re-tuning the temperature parameter
hurts its performance. In Appendix F.4, we show that we can add back negative pairs and still match the performance
of BYOL with proper tuning of the temperature.

Simply adding a target network to SimCLR already improves performance (+1.6 points). This sheds new light on
the use of the target network in MoCo [9], where the target network is used to provide more negative examples. Here,
we show that by mere stabilization effect, even when using the same number of negative examples, using a target
network is beneficial. Finally, we observe that modifying the architecture of S✓ to include a predictor only mildly
affects the performance of SimCLR.

Network hyperparameters In Appendix F, we explore how other network parameters may impact BYOL’s
performance. We iterate over multiple weight decays, learning rates, and projector/encoder architectures to observe
that small hyperparameter changes do not drastically alter the final score. We note that removing the weight decay
in either BYOL or SimCLR leads to network divergence, emphasizing the need for weight regularization in the
self-supervised setting. Furthermore, we observe that changing the scaling factor in the network initialization [85]
did not impact the performance (higher than 72% top-1 accuracy).

Relationship with Mean Teacher Another semi-supervised approach, Mean Teacher (MT) [20], complements
a supervised loss on few labels with an additional consistency loss. In [20], this consistency loss is the `2 distance
between the logits from a student network, and those of a temporally averaged version of the student network, called
teacher. Removing the predictor in BYOL results in an unsupervised version of MT with no classification loss that
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5

EM algorithm, for a fixed set of network parameters, will
automatically sharpen the teacher distribution by virtue of
the iterative update of the cluster weight vectors. The EM
algorithm has an additional advantage over the gradient
method of optimising Q(i|z), namely that its driving force
does not diminish when P (i|z, wi) approaches unity. EM
will converge to a stable solution for wi, 8i after a few
iterations. Is this a good idea? What is the implication on
the fixed weight vector approach? The choice of temperature
will actually impact on the behaviour of the EM algorithm.
For ⌧ approaching zero, EM will operate as the k-means
algorithm. The learning behaviour of the self-supervised
system will be investigated by ablation studies. In any case,
it cannot be overemphasised that we would not exclude a
temperature differential, if its pragmatic use led to a better
performance. Accordingly, the supervisory signal update
would be defined

Q(y|z) / P (y|z,W )⌧=⌧T

P (y)
(17)

where ⌧T indicates that the softmax posterior in Q(y|z) is
computed at the teacher temperature, that differs from that
of the student. This immediately raises the question, namely
whether the cluster prior probabilities needed for normali-
sation should also be computed at the teacher temperature.
This makes the theoretical development rather messy, and
without any principled justification, we opt for the simple
option of keeping the temperature the same for the two
networks. The merit of any differential will be investigated
by ablation studies in Section ??.

However, the first issue above does require considera-
tion. Undue sharpening of softmax using high temperature
would make it impossible to define the notion of similarity.
In deep learning, by changing the network parameters, we
can drive all training samples either close or far away from
each other arbitrarily. To define a notion of similarity, we
want to choose temperature ⌧ so that knowingly-similar
samples are assigned similar probabilities of belonging to
the same cluster by the predictor. In image and video
analysis, such samples are created by taking multiple views
xi, i = 1, nv for each sample x and forcing all the corre-
sponding embeddings zi, i = 1, ..., nv to the same cluster
by means of sharing the same supervisory signal Q(y|z).
These views can be global, or local. However, such a strategy
would not address the problem that multiple instances in
the training set, belonging to the same class, should be
assigned to the same cluster. It is therefore more appropriate
to define the notion of a sample affinity objectively, in
an absolute sense. For global views, we would expect the
cosine similarity between the corresponding embeddings
and the weight vector of their closest shared cluster to be
quite high, say (0.6 � 1.00, and for local views somewhat
lower, say (0.4 � 0.6). For the worst case scenario of the
cosine similarity being about 0.4, we would like the cluster
assignment probability to be of the order of 0.5. Noting that
these samples should also score low with respect to the
other clusters, that is we expect them to be orthogonal to
the weight vectors of these clusters, we get for softmax the
condition that

P (i|z, wi) =
exp0.4⌧

�1

exp0.4⌧�1 +k � 1
= 0.5 (18)

where the number of clusters k in our case is set to k = 4000.
This implies that the temperature should be set around ⌧ =
0.05.

5 IMPLEMENTATION

The self-supervised learning process is summarised in Al-
gorithm 1, where the step of augmenting the training data
set by additional views is not explicitly stated. These views
are created for the training samples in a batch. They are
not involved in computing the cluster prior probabilities.
The teacher should identify the closest cluster for an input
training sample in a batch, and the cross entropy should be
measured between all the additional views and the cluster
mean. Does anybody do it this way?

Algorithm 1 The Algorithm
Input: X, k, ⌧, ne, nB , n.
Output: ✓S , wi, i = 1, ..., k.

1: Initialize: ⌧, k, ne, nB

2: random ✓S , wi, i = 1, ..., k
3: ✓T = ✓S
4: P (i) = 1

n

Pn
j=1 P (i|zj(✓T ), wi), zj✏X, 8i

5: for until convergence do

6: for l = 1, ..., ne do

7: randomXB✏X
8: Q(i|zj(✓T )) = P (i|zj(✓T ),wi)/P (i)Pk

s=1 P (s|zj(✓T ),ws)/P (s)

9: min✓S
PnB

j=1 Q(i|zj(✓T )) logP (i|zj(✓S), wi), zj✏XB

10: end for

11: ✓T = ✓S
12: P (i) = 1

n

Pn
j=1 P (i|zj(✓T ), wi), zj(✓T )✏X, 8i

13: update wi, 8i using the EM algorithm
14: end for

reconstr = ||vi � ṽi(v0i)||1

6 EXPERIMENTS



n Distillation
n Asymmetry

n Architectural (projector, predictor)
n Architecture parameters (momentum update)
n Variance
n Batch normalization
n Temperature difference

n Principle of SSL (clustering, Barlow’s redundancy reduction, info bottleneck, 
information theory)

n Architecture
n Batch size and normalization
n Augmentation methods/masking
n Loss functions – what, where, how
n Positive sample only versus positive/negative sample learning

15

Current research in SSL

Heuristic notions in SSL 



Selfsupervised learning

n Image reconstruction
n Extensive masking (70%)
n Group masking
n Significant improvements on 

small data sets
n Better domain transfer 

16

Previously reported SiT and GMML selfsupervised methods

Applications
n Audio classification
n Knee x-ray classification
 



SiT: Selfsupervised image transformer

n Loss
n Reconstruction
n Contrastive

17
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Fig. 1: Self-supervised vIsion Transformer (SiT)

is very similar to GMML. Following DropToken idea in
VATT [58], MAE discard the masked tokens for encoder and
use them in decoder to reconstruct the image. However, this
dropping of masked tokens require MAE to use complex
decoder consisting of six to twelve blocks of transformers
with both masked and unmasked token, unlike GMML
which only use 2 pointwise convolutional layers for de-
coder. We noticed that wall clock time for the pretraining
of MAE and GMML is similar for ViT-B, while pretraining
time for ViT-S is much slower for MAE as compared to
GMML due to complex decoder of MAE. Furthermore, due
to lack of modelling the inductive bias, the performance
of MAE degrade largely for small datasets and MAE only
performs on par with GMML for large dataset. SimMIM
is very similar to GMML the only meaningful difference is
that GMML uses noise and alien concepts in addition of
masking with zero while SimMIM just uses masking with
zeros. Besides, the corruption in SimMIM is applied after
the patch projection block whilst in GMML, the corruption
is applied directly to the image pixels.

Another noticeable method in post art is BeIT [6]. BeIT
uses external knowledge by using an encoder trained with-
out supervision, to group visual patches in order to define
a visual vocabulary. This enables the use of cross entropy as
a loss function, like in BERT [1]. However, unlike BERT the
classes are coming from external knowledge source albeit
trained unsupervisedly. It can be considered as an expensive
and extreme case of patch level distillation via supervised
or unsupervised encoder. Secondly, it will inherit issues of
visual vocabulary, like, a fixed number of visual words,
a quantisation error, visual ambiguity when assigning to
cluster centres etc.

3 METHODOLOGY
Supervised learning, as demonstrated in [3], allows the
transformer to learn a bottleneck representation where the

mixing of content and context is centred primarily about
the class token. This creates a rather superficial model of
the data, and its linking to labels requires a huge number of
samples for training. The main goal of this work is to learn a
representation of the data in an unsupervised fashion. This
is achieved by recovering partially masked or transformed
local parts of the image represented by data-tokens at the
input of the vision transformer. The underlying hypothesis
is that, by recovering the corrupted tokens/parts of an im-
age from the uncorrupted tokens/part based on the context
from the surrounding visual field, the network will implic-
itly learn the notion of visual integrity. The visual integrity
is achieved by, GMML based unsupervised learning which
exploits information redundancy and complementarity in
the image data by learning to reconstruct local content by
integrating it with context. This notion of visual integrity
is further enhanced by using pseudo labels that can be
generated automatically based on some random transforma-
tions of the data. Learning from recovery of the transformed
parts and learning from pseudo label may seem different
but the underlying motivation behind both kinds of self-
supervised learning mechanisms is the same, i.e., learning
visual integrity. For example, intuitively the network will
only be able to recover the pseudo labels if it learns the
characteristic properties of visual stimuli corresponding to
specific actions impacting on the visual input. The weights
of the learned model can then be employed as an initialisa-
tion point for any downstream task like image classification,
object detection, segmentation, etc. To achieve this goal, we
propose a Self-supervised vIsion Transformer (SiT) in which
the model is trained via group masked model learning along
with contrastive learning [59] which simply learns invariant
image representations under different augmentations of the
same sample. It is important to note that, GMML on its own
is a strong self-supervised learning task and learn locally
consistent representations in terms of local texture, colour



Magic of self-supervised pretraining

n Masking forces learning 
n image properties 
n image context
n robustness to occlusion

n Augmentation
n Robustness to transformations
n Increases training data size
n Enhances data diversity
n Robustness to scale

18



SSL in Domain Transfer

19

Domain Transfer is so strong that we use transfer from toy MNIST dataset
Even MNIST pretraining outperformed supervised pretraining of ViTs with large 
margin



GMML in Medical Domain

Sara Atito, Syed Muhammad Anwar, Muhammad Awais, and Josef Kittler. "SB-SSL: Slice-Based Self-Supervised Transformers for Knee 
Abnormality Classification from MRI", MICCAI MILLanD, 2022 

Atito, Sara, Muhammad Awais, and Josef Kittler. "Sit: Self-supervised vision transformer." arXiv preprint 
arXiv:2104.03602 (2021).

Atito, Sara, Muhammad Awais, and Josef Kittler. "GMML is All you Need." arXiv preprint arXiv:2205.14986 (2022).



GMML in Medical Domain



Masked Autoencoder

22

• MAE

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF 
Conference on CVPR. 2022.



MAE on Small Dataset

➢ Employing the official publicly available code of MAE
➢ Model: ViT-Small 
➢ GMML is trained for 3000 epochs
➢ MAE is trained for 6000 epochs  

Pre-training and finetuning MAE on small datasets



Multi-concept self-supervised learning

n Images typically contain multiple objects
n Yet, supervised/self-supervised methods 

assume there is a single dominant class
n This inconsistency makes the learning 

problem challenging
n We extended our pioneering 

selfsupervised learning methods SiT and 
GMML to the multi-concept SSL case 
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MC-SSL0.0: Towards Multi-Concept Self-Supervised Learning

Sara Atito
sara.atito@gmail.com

Muhammad Awais
m.a.rana@surrey.ac.uk

Ammarah Farooq
ammarah.farooq@surrey.ac.uk

Zhenhua Feng
z.feng@surrey.ac.uk

Josef Kittler
j.kittler@surrey.ac.uk

Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford

Abstract

Self-supervised pretraining is the method of choice for

natural language processing models and is rapidly gaining

popularity in many vision tasks. Recently, self-supervised

pretraining has shown to outperform supervised pretrain-

ing for many downstream vision applications, marking a

milestone in the area. This superiority is attributed to the

negative impact of incomplete labelling of the training im-

ages, which convey multiple concepts, but are annotated us-

ing a single dominant class label. Although Self-Supervised

Learning (SSL), in principle, is free of this limitation, the

choice of pretext task facilitating SSL is perpetuating this

shortcoming by driving the learning process towards a sin-

gle concept output. This study aims to investigate the pos-

sibility of modelling all the concepts present in an image

without using labels. In this aspect the proposed SSL frame-

work MC-SSL0.0 is a step towards Multi-Concept Self-

Supervised Learning (MC-SSL) that goes beyond modelling

single dominant label in an image to effectively utilise the

information from all the concepts present in it. MC-SSL0.0

consists of two core design concepts, group masked model

learning and learning of pseudo-concept for data token

using a momentum encoder (teacher-student) framework.

The experimental results on multi-label and multi-class im-

age classification downstream tasks demonstrate that MC-

SSL0.0 not only surpasses existing SSL methods but also

outperforms supervised transfer learning. The source code

will be made publicly available for community to train on

bigger corpus.
1

1. Introduction
Recent advances in self-supervised learning [2,3,7,8,10,

25] have shown great promise for downstream applications,

1Under Review .....

Original Images 2 Clusters 3 Clusters 4 Clusters

Figure 1. MC-SSL0.0 has basic knowledge of objects as shown by
the self-learnt grouping of data-tokens (the data token on the same
object has similar representation) without any labels. Notice how
the concepts are refined when asking for more concepts to be dis-
covered. For example, asking for 2 concepts gives forest floor and
vegetation, 3 concepts gives forest floor, forest, and mushroom,
and 4 concepts gives additional moss on tree. Still a long way to
go for MC-SSL as shown by spread out representation of the third
concept. This demands for training on bigger datasets and design
of more advanced MC-SSL methods. MC-SSL0.0 is pretrained on
only 10% of ImageNet.
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Architecture for multi-concept SSL

n Masked image reconstruction
n Clustering of patch embeddings

25
Atito, Sara, et al. MC-SSL0. 0: Towards Multi-Concept Self-Supervised Learning. arXiv:2111.15340.
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Figure 2. Proposed MC-SSL0.0 framework; A step towards Self-supervised Transformers for Multi-Concept Learning.

covariance criterion’s where in Barlow Twins for example,
the model is trained to obtain an identity cross-correlation
matrix between the outputs of two identical networks fed
with the augmented versions of a given image. On the other
hand, Caron et al. [8] proposed centring trick by preventing
one dimension to dominate.

Despite the impressive results achieved by contrastive
learning methods, they often encourage modelling of one
dominant class per image and/or disregard the learning
of contextual representations, for which alternative pre-
text tasks might be better suited, including inpainting
patches [48], colourisation [39, 40, 55], relative patch lo-
cation [18], solving jigsaw puzzles [33, 46], cross-channel
prediction [56], predicting noise [5], predicting image rota-
tions [24], spotting artefacts [31], etc.

One of the earliest pioneering work combining self-
supervised learning and vision transformers is SiT [2]. SiT
introduced two simple but key concepts for self-supervised
learning of vision transformers 1) Group Masked Model
Learning (GMML), 2) Use of masked auto-encoder. The
idea of GMML is to learn a neural network by transforming
a group of connected patches having significant semantic
meaning and recover them by using visible contextual data.
Beit [3] employed the GMML but instead of recovering the
pixel values, the network is trained to predict the visual to-
kens that are corresponding to the masked patches using the
publicly available image tokenizer described in [49]. He et

al. [26] verified that GMML and masked autoencoder pro-
vide a strong pretext task in the case of full ImageNet lead-
ing to state-of-the-art performance of multiple downstream
tasks. Different from [3] which employs a pretrained im-
age tokenizer, in this work, we propose a novel SSL frame-
work based on the idea of GMML for masked autoencoder
and learning of pseudo-concepts for data-tokens based on

knowledge distillation.

3. Methodology
In this section, we introduce the self-supervised image

transformer which is a step towards multi-concept self-
supervised learning (MC-SSL). Our proposed framework is
based on the GMML and self-learning of data token con-
ceptualisation with the incorporation of knowledge distilla-
tion [29]. In Knowledge distillation a student network s✓(.)
is trained to match the output of a given teacher network
t�(.), where ✓ and � are the parameters of the student and
the teacher networks, respectively. In this work, we employ
the same network architecture for both the student and the
teacher (i.e. the teacher is a momentum encoder [27] of the
student), where the parameters of the teacher network are
updated from the past iterations of the student network us-
ing exponential moving average of the student weights with
the following update rule: � = ��+ (1� �)✓.

The network architecture of the student network com-
prises three components: A vision transformer backbone
sb(.), followed by two projection heads attached to the out-
put of the transformer. One projection head is for patch
reconstruction spr(.), and the second projection head is for
patch classification spc(.). The main architecture of our pro-
posed approach is shown in Figure 2.

3.1. Self-Supervised Vision Transformer

Similar to [20], we use vision transformer, which re-
ceives as input a feature map from the output of a convo-
lutional block/layer. The convolutional block takes an input
image x 2 RH⇥W⇥C and converts it to feature maps of
size xf 2 R

p
n⇥

p
n⇥D, where, H , W , and C are height,

width and channels of the input image, n is the total num-
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Abstract

Self-supervised pretraining is the method of choice for

natural language processing models and is rapidly gaining

popularity in many vision tasks. Recently, self-supervised

pretraining has shown to outperform supervised pretrain-

ing for many downstream vision applications, marking a

milestone in the area. This superiority is attributed to the

negative impact of incomplete labelling of the training im-

ages, which convey multiple concepts, but are annotated us-

ing a single dominant class label. Although Self-Supervised

Learning (SSL), in principle, is free of this limitation, the

choice of pretext task facilitating SSL is perpetuating this

shortcoming by driving the learning process towards a sin-

gle concept output. This study aims to investigate the pos-

sibility of modelling all the concepts present in an image

without using labels. In this aspect the proposed SSL frame-

work MC-SSL0.0 is a step towards Multi-Concept Self-

Supervised Learning (MC-SSL) that goes beyond modelling

single dominant label in an image to effectively utilise the

information from all the concepts present in it. MC-SSL0.0

consists of two core design concepts, group masked model

learning and learning of pseudo-concept for data token

using a momentum encoder (teacher-student) framework.

The experimental results on multi-label and multi-class im-

age classification downstream tasks demonstrate that MC-

SSL0.0 not only surpasses existing SSL methods but also

outperforms supervised transfer learning. The source code

will be made publicly available for community to train on

bigger corpus.
1

1. Introduction
Recent advances in self-supervised learning [2,3,7,8,10,

25] have shown great promise for downstream applications,

1Under Review .....

Original Images 2 Clusters 3 Clusters 4 Clusters

Figure 1. MC-SSL0.0 has basic knowledge of objects as shown by
the self-learnt grouping of data-tokens (the data token on the same
object has similar representation) without any labels. Notice how
the concepts are refined when asking for more concepts to be dis-
covered. For example, asking for 2 concepts gives forest floor and
vegetation, 3 concepts gives forest floor, forest, and mushroom,
and 4 concepts gives additional moss on tree. Still a long way to
go for MC-SSL as shown by spread out representation of the third
concept. This demands for training on bigger datasets and design
of more advanced MC-SSL methods. MC-SSL0.0 is pretrained on
only 10% of ImageNet.
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Regarding the objective function, we combined the patch
classification loss and the patch reconstruction loss using
simple averaging. We believe further improvements can be
gained by optimising the weighted sum of the losses or by
incorporating the uncertainty weighting approach proposed
by Kendall et al. [32].

Last, for the downstream tasks, the projection heads are
discarded and finetuning is performed employing the back-
bone of the pretrained teacher network tb(.).

4.2. Multi-Label Classification
Experimental Setup. The models are pre-trained in unsu-
pervised fashion using the ViT-S/16 backbone on 10% of
the ImageNet-1K dataset, with an input size 224 ⇥ 224.
For the finetuning step on the multi-label downstream tasks,
the projection heads are replaced with a fully connected
layer with 2048 neurons with the GeLU activation func-
tion, followed by an output layer with c nodes, correspond-
ing to the number of classes in the downstream tasks, fol-
lowed by a Sigmoid activation function. For the optimisa-
tion, we mostly rely on the vision transformer developer’s
default hyper-parameters et al. [52] due to the limited re-
sources. We believe that further improvements can be ob-
tained by tuning the hyper-parameters. For the input size
and data augmentation, we follow the most common set-
tings [11,12,38] where the images are resized to 448⇥ 448
and augmented with Rand-Augment [17]. The test images
are centre cropped instead. All the models are trained for 80
epochs with 48 batch size employing 2 Nvidia Tesla V100
32GB GPU cards. As for the loss function, we adopted
the asymmetric loss [50] to address the sample imbalance
problem. Asymmetric loss is a variant of focal loss with
different � for positive and negative values. Given the tar-
get t = [t1, t2, . . . , tc] 2 {0, 1}, where c is the number of
classes, and the output probabilities p = [p1, p2, . . . , pc],
the asymmetric loss for each training sample is calculated
as follows:

L =
1

c

cX

i=l

(
(1� pi)�+ log(pi), ti = 1,

(pi)�� log(1� pi), ti = 0
(5)

We employed the default values for � in our experiments,
i.e., we set �+ = 0 and �� = 4.
Evaluation Metrics. Following previous works [15,38,42],
beside the mean average precision (mAP), we employ sev-
eral metrics to better demonstrate the performance of the
proposed approach. Under the premise that the predicted
label is positive, if the output probability is greater than a
threshold (e.g., 0.5), we report the average per-class pre-
cision (CP), recall (CR), and F1 score (CF1). We also
present the average overall precision (OP), recall (OR), and
F1 score (OF1).
Datasets. To evaluate the proposed self-supervised multi-
label approach, we conduct our experimental analysis on

Table 1. The results of regular inference on the PASCAL VOC
2007, VG-500, and MS-COCO datasets. The threshold is set to
0.5 to compute the precision, recall and F1 scores (%). All the
models are pre-trained with resolution 224 ⇥ 224 and finetuned
with resolution 448⇥ 448.

Method mAP CP CR CF1 OP OR OF1
PASCAL VOC 2007 dataset

From scratch (i.e., random initialization)

ViT-S/16 30.3 21.9 55.2 31.4 27.8 66.8 39.2
Selfsupervised pretraining on PASCAL VOC

MC-SSL0.0 65.2 42.6 73.1 53.8 47.9 78.6 59.6
Selfsupervised pretraining on 10% of ImageNet-1K

Dino* 72.8 49.7 75.3 59.9 55.8 80.2 65.8
MC-SSL0.0 79.3 63.6 80.7 71.2 67.9 84.8 75.4
Selfsupervised pretraining on 10% ImageNet-1K with multi-crop

Dino‡ 80.2 56.1 80.5 66.1 62.1 84.7 71.7
MC-SSL0.0‡ 81.3 59.4 80.0 68.2 65.5 84.1 73.7

VG-500 dataset
From scratch (i.e., random initialization)

ViT-S/16* 22.1 16.4 37.8 22.9 26.4 57.5 36.2
Selfsupervised pretraining on VG-500

MC-SSL0.0 30.0 21.4 46.4 29.3 30.8 64.2 41.7
Selfsupervised pretraining on 10% of ImageNet-1K

Dino* 24.9 18.6 40.4 25.5 27.3 56.7 36.9
MC-SSL0.0 28.9 26.6 44.4 33.3 34.9 60.7 44.3
Selfsupervised pretraining on 10% ImageNet-1K with multi-crop

Dino‡ 27.7 19.8 45.3 27.6 28.5 62.8 39.2
MC-SSL0.0‡ 29.4 20.5 46.1 28.4 30.5 64.5 41.4

MS-COCO dataset
From scratch (i.e., random initialization)

ViT-S/16* 44.7 32.7 58.7 42.0 37.1 67.9 48.0
Selfsupervised pretraining on MS-COCO

MC-SSL0.0 73.1 56.2 75.2 64.3 58.6 80.1 67.7
Selfsupervised pretraining on 10% of ImageNet-1K

Dino* 63.4 50.8 66.5 57.6 54.0 73.1 62.1
MC-SSL0.0 70.5 54.8 74.0 63.0 56.3 79.1 65.8
Selfsupervised pretraining on 10% ImageNet-1K with multi-crop

Dino‡ 69.0 56.0 70.1 62.2 59.4 75.4 66.5
MC-SSL0.0‡ 72.7 56.8 74.1 64.3 59.6 79.0 67.9

several datasets, including PASCAL VOC [22], Visual
Genome [35], and MS-COCO [41]. The PASCAL VOC
2007 [22] includes 20 object categories and it consists of
5, 011 images for training and 4, 952 for evaluation. The
Visual Genome dataset [35] contains 108, 077 images from
around 80K categories. The label distribution of this dataset
is quite sparse. Consequently, most of the experiments in
the literature are performed on VG-500, introduced in [12].
VG-500 consists of 98, 249 training images and 10, 000
test images including the most 500 frequent objects. MS-
COCO [41] is a large-scale object detection and segmenta-
tion dataset. The standard multi-label formulation for MS-
COCO includes 80 objects with an average of 2.9 labels per
image. The dataset consists of 82, 081 images for training
and 40, 137 images for evaluation.
Results. In Table 1, we compare the proposed MC-SSL0.0
with the DINO framework [8] on three different datasets,
PASCAL VOC, VG-500, and MS-COCO, respectively.

First, we show the results when ViT-S/16 is trained from
scratch on the downstream task. Then, we show the perfor-
mance when the model is pretrained using MC-SSL0.0, and
finetuned employing the same downstream dataset. Finally,
we report the accuracy when the models are pre-trained with
and without multi-crop strategy on 10% of ImageNet em-
ploying MC-SSL0.0 and DINO frameworks.

From the reported results, it is evident that the training
from random initialisation has produced low accuracies as
the amount of data available is insufficient to train the trans-
former. The results significantly improved when the models
are pre-trained using MC-SSL0.0 without any external data
with +33, +7.9, and +28.2 absolute mAP improvement in
PASCAL VOC, VG-500, and MS-COCO datasets, respec-
tively. Further, pretraining with the MC-SSL0.0 framework
consistently outperforms DINO, particularly in the absence
of multi-crop strategy, where MC-SSL0.0 obtained +6.5,
+4.0, and +7.1 absolute mAP improvement in PASCAL
VOC, VG-500, and MS-COCO, respectively.

4.3. Multi-Class Classification
We conduct our experimental analysis on standard multi-

class classification problems based on object detection
and recognition in an unconstrained background, namely,
CIFAR-10/CIFAR-100 [36], Cars [34], and Flowers [45].

For the transfer learning on downstream tasks, the patch
concept learning head is replaced by a linear projection
head with c nodes corresponding to the number of classes
in the downstream task. The input to the linear projection
head is the average of the features coming from the data to-
kens. For the data augmentation, we applied random crop-
ping, random horizontal flipping, MixUp [54], and Auto-
Augment [16] during training. For optimisation, we follow
the same protocol used in Touvron et al. [52].

In Table 2, we first report the accuracy on the down-
stream tasks when the models are trained from scratch with
random initialisation as a baseline. Then, we reported the
results when the same dataset is used for SSL pre-training
and finetuning, i.e. without using any external/additional
datasets. Finally, we compare MC-SSL0.0 with DINO
trained on 10% of ImageNet with and without multi-crop
strategy.

We found that, MC-SSL0.0 enables training the data
hungry transformers on stand-alone small datasets with ac-
ceptable performance compared to the pre-training with
the full ImageNet-1K dataset. Further, MC-SSL0.0 con-
sistently outperforms DINO, with and without multi-crop
strategy. In fact, the performance of MC-SSL0.0 without
multi-crop is on par with the performance of DINO with
multi-crop strategy. Several ablation studies are performed
and shown in the Appendix to investigate the effect of the
individual components of MC-SSL0.0, the effect of the per-
centage of the applied corruption to the input images, and

Table 2. Transfer learning by finetuning pretrained Self-supervised
models on different downstream tasks. Self-supervised models are
trained using ViT-S/16 model on 10% of ImageNet dataset, fol-
lowed by finetuning on downstream tasks.

CIFAR10 CIFAR100 Cars Flowers
From scratch (i.e., random initialization)

ViT-S/16 91.42 70.14 10.67 54.04
Self-supervised pre-training on the given dataset

MC-SSL0.0‡ 98.00 85.38 89.20 87.30
Selfsupervised pretraining on 10% of ImageNet-1K

w/o multi-crop
Dino 97.27 81.77 82.08 92.68
MC-SSL0.0 97.82 84.98 86.15 95.56

with multi-crop
Dino‡ 97.90 84.61 88.21 95.46
MC-SSL0.0‡ 98.08 85.82 90.44 96.31

the effect of the choice of K during the MC-SSL0.0 pre-
training.

5. Conclusion and Discussion
In this paper, we presented a novel self-supervised learn-

ing framework (MC-SSL0.0) that enables the extraction of
visual representation corresponding to multiple objects in
an image without annotations. We demonstrated several
advantages of the proposed MC-SSL0.0 framework. First,
MC-SSL0.0 can train transformers from scratch with good
accuracy on small datasets. Second, MC-SSL0.0 has some
notion of semantic information as demonstrated by the abil-
ity to reconstruct missing parts of a concept and by self-
learnt grouping of data-tokens corresponding to a semantic
concept (Figure 1). Third, MC-SSL0.0 outperforms super-
vised methods for network pretraining. Last, MC-SSL0.0
outperforms the existing state-of-the-art for both multi-class
and multi-label downstream tasks, verifying its strengths.

SSL in CV has made a tremendous progress with self-
supervised pretraining, outperforming supervised pretrain-
ing. However, there are several open questions, which
should be addressed in the future development of SSL. We
only pose a few of them for brevity. a) Is the kNN style
evaluation of SSL methods right? b) What should be the
preferred choice to evaluate linear probing and downstream
applications? c) Will more suitable evaluation protocols en-
courage the community to build SSL algorithms for multi-
concept representation learning (i.e. algorithms capable to
represent each concept/object in an image without using la-
bels)? d) Is it possible to build a representation for each of
the concept in an image without any label?

The current kNN and linear evaluation of SSL methods
on multi-class datasets, like ImageNet, is biasing the SSL
research towards modelling the dominant object in image
leading to sub-optimal use of information present in the im-

A. Ablation Studies
Due to limited resources, our ablation studies are con-

ducted on 5% of ImageNet-1K for training, and evaluated
on the full validation set of ImageNet-1K. The models are
pre-trained for 800 epochs employing the ViT-S/16 archi-
tecture as the backbone of the student and the teacher of
MC-SSL0.0.
Effect of Image Corruption. Figure 3 shows the top-1 ac-
curacy on fine-tuning when pre-trained with different cor-
ruption percentages, i.e. upto 10%, 20%, 40%, 60%, and
80%. We found that the optimal ratio is between 40% to
80%. This behaviour was expected as the masking encour-
ages the network to learn semantic information from the un-
corrupted patches surrounding the masked tokens in order
to recover the missing information.

10 20 30 40 50 60 70 80
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Figure 3. Effect of percentage of the corruption.

Effect of Longer Training. Figure 4 shows the top-1 accu-
racy when the model is pre-trained for 100, 200, 400, and
800 epochs. We found that longer pre-training improves the
performance of MC-SSL0.0, where the accuracy is steadily
improving even after 800 epochs of pre-training.
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Figure 4. Effect of longer training.

Effect of Different Components of MC-SSL0.0. In this
set of experiments, we used 10% of ImageNet dataset for
pre-training and validate the effect of each component of
MC-SSL0.0 by finetuning the pre-trained model on several
downstream tasks. In Table 3, we show the effect of using
only the patch reconstruction objective (MC-SSL0.0 [PR]),
using only the patch classification objective (MC-SSL0.0
[PC]), and using both, patch classification and patch recon-
struction, objectives (MC-SSL0.0 [PC + PR]). Note that the
teacher network is only required for the patch classification
task, therefore, it is not included in the case of MC-SSL0.0
[PR]. Group Masked Model Learning (GMML) based PR
learn the knowledge about an object/concept (that is prop-

Table 3. Transfer learning by finetuning pretrained Self-supervised
models on different downstream tasks. Self-supervised models are
trained using ViT-S/16 model on 10% of ImageNet dataset, fol-
lowed by finetuning on downstream tasks.

CIFAR10 CIFAR100 Cars Flowers
Random Init. 91.42 70.14 10.67 54.04

w/o multi-crop
MC-SSL0.0 [PR] 97.19 81.98 76.78 88.21
MC-SSL0.0 [PC] 97.77 84.25 83.93 94.89
MC-SSL0.0 [PC + PR] 97.82 84.98 86.15 95.56

erties such as colour, texture and structure, as well as con-
text) in order to reconstruct, as well as to recover the dis-
torted data-tokens by using available information in un-
masked data tokens on the object and its surroundings. This
encourages all the data-tokens on an object to have similar
representation to each other and incorporate local context
in transformers as shown in Figure 1. The PR can server
as a strong self-supervised pretext task for vision modal-
ity. It has the advantage of simplicity and does not need
teacher student framework using momentum based update
of teacher. Also PR does not require careful selection of
parameters such as temperature, centring and other careful
engineering designs. The ultimate role of the auxiliary but
complementary task of learning a patch classifier is to as-
sign a pseudo-semantic label to a group of context aware
data tokens covering an object. We note that patch con-
cept learning on its own can also be used as a strong self-
supervised pretext task. However, in order for it to performs
well it need careful engineering design efforts, like centring,
momentum based encoder for teacher, careful selection of
temperature. Nevertheless, Our conjecture is that learning
local semantics using GMML base PR and learning pseudo
labels for patches encourages data tokens on similar objects
within an image and between images to belong to the same
pseudo class promoting intra and inter image concept con-
sistency as shown in Figure 5 to Figure 9.

We found that the performance is improved by combin-
ing patch reconstruction and patch classification objectives
in the proposed MC-SSL0.0, especially in the case of Cars
dataset where the accuracy jumped from 83.93% to 86.15%.

In summary, both the patch recontruction and patch clas-
sification losses with GMML on their own provide as a
means of self-supervision and can provided an effective
starting point for efficient downstream task finetuning. Fur-
ther improvements are obtained by combiningn the two in
MC-SSL0.0 framework. One of the main objectives of MC-
SSL is to explore the possibility of learning representation
for each object in an image which is consistant across the
dataset. Initial results and visualisation show a promising
horizon for building upon MC-SSL0.0 framework.

B. Visualisation
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Figure 6. The image is clustered into two concepts which are self learnt. First self-learnt cluster is attending the dominant object (shown
by yellow colour in centre column) and other is focusing on the environment (shown by blue colour in centre column). The bar plots are
showing the probability of the learnt patch concepts corresponding to the dominant object. As can be seen the learnt patch concepts are
consist across different instances of semantic concept in different images enforcing the thesis of MC-SSL0.0.
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Figure 9. The image is clustered into two concepts which are self learnt. First self-learnt cluster is attending the dominant object (shown
by yellow colour in centre column) and other is focusing on the environment (shown by blue colour in centre column). The bar plots are
showing the probability of the learnt patch concepts corresponding to the dominant object. As can be seen the learnt patch concepts are
consist across different instances of semantic concept in different images enforcing the thesis of MC-SSL0.0.



Audio classification

n System architecture

30

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

CVPR
#11952

CVPR
#11952

CVPR 2023 Submission #11952. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ra
w

 a
ud

io

Cls

Shared
Weights

Teacher

Centering  
+ Softmax

EMA of

Student

vision transformer

Centering  
+ Softmax

Cls

Shared
Weights

Student

Softmax

vision transformer

Softmax

Global Contrastive Learning

Local Contrastive Learning

M
an

ip
ul

at
io

n
G

M
M

L

Reconstructed Fbank

Shared
Weights

Linear Projection
to Fbank Space

Reconstruction Head

A
ug

m
en

t
Fb

an
k 

+
 

Figure 1. The proposed self-supervised framework (ASiT). For a given 10-second audio spectrogram, two random augmented views of
6-second each (clean spectrograms) are generated and fed to GMML based manipulation block to obtain the corrupted spectrograms. The
clean and corrupted spectrograms are fed to the teacher and student networks, respectively. The recovery of the transformed information
from the non-transformed class-token and data-tokens indicates that the network has learnt the semantics of the local as well as the global
representation of the given audio and learnt useful inductive bias by learning local statistical correlation in the spectrogram.

minimizing the difference (e.g. in mean squared error) be-
tween the embeddings of the same input with the contrasts
obtained via data augmentation. In this case, no negative
samples are required for learning the representation. For
example, in BOYL-A [32], BOYL [18] is applied to audio
by learning the similarity between the two views with one
learned from a randomly cropped single segment and the
other from its augmented version obtained with e.g. mixup
and random resized crop (RRC). Different from BOYL-A,
in ATST [31], the two views were learned from two ran-
domly cropped and then augmented mel-spectrogram seg-
ments with a teacher-student transformer architecture. The
distillation based methods have been reported to achieve
state of the art performance, however, this method can po-
tentially lead to trivial solutions, i.e. collapsed representa-
tions, which require careful design of network architectures
or training algorithms. For example, in Barlow Twins [33],
the outputs of the network twins which take augmented
samples as inputs are compared using cross-correlation,
which promotes similarity between the learned embeddings
from the network twins, while reducing the redundancies of
the learned representations.

Inspired from masked language modeling (MLM) [34]
and masked image modeling (MIM) [9], several masked
acoustic modeling (MAM) approaches such as SSAST [6]
and MAE-AST [7] were introduced which learn to recon-
struct the masked time-frequency patches of an arbitrary
shape from a given spectrogram. This offers potential ad-
vantages over the methods such as Audio2Vec [28] which
focuses on temporal modelling via reconstructing masked
temporal spectrogram frames. In SSAST [6], the trans-
former based AST model [5] is pretrained on unlabelled

audio from AudioSet and Librispeech with joint genera-
tive and discriminative masked spectrogram patch model-
ing. SSAST uses a very high masking ratio, hence the vast
majority of self-attention is computed on mask tokens. To
address this, MAE-AST [7] introduces the encoder-decoder
architecture from masked autoencoder into the SSAST,
where a large encoder is used to learn on unmasked input
while a shallow decoder is used to reconstruct masked in-
put with encoder outputs and masked tokens.

Despite the promising performance of the transformer
models in capturing local representations as in SSAST [6],
MAE-AST [7], and global representation as in ATST [31],
the transformer architecture is limited in capturing optimal
local contextual information or global relational informa-
tion from audio. Modelling both local and global infor-
mation optimally, nevertheless, can be crucial for detecting
transient acoustic events such as gun shots as well as sym-
phony. In this paper, we propose a novel self-supervised
pretraining method for local context modelling via token
similarity learning, and global representation learning via
contrastive instance classification. This allows the trans-
former model to capture fine-grained region/contextual de-
pendencies as well as global representation learnt from data
rather than making any explicit assumption about the induc-
tive bias as is the case in CNNs. This novel framework as a
result significantly improves the quality of the learned audio
representations.

3. Methodology
In this section, we introduce ASiT, a self-supervised

framework based on vision transformers for general au-
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Table 1. Comparison with state-of-the-art works on audio and speech classification tasks. Evaluation metrics are mean average precision
(mAP) for AS-2K and accuracy (%) for ESC-5, SC-V1, SC-V2, and SID. " shows the improvement over best SOTA.

Method Backbone Pretraining
Data

Transfer Learning
AS-20K ESC-50 SC-V2 SC-V1 SID

Supervised-learning-based methods
PANNs [44] CNN – 27.8 83.3 – 61.8 –
AST [5] ViT-B AS-2M 28.6 86.8 96.2 91.6 35.2
Self-supervised-learning-based methods
COLA [21] CNN AS-2M – – 98.1 95.5 37.7
SSAST [6] ViT-B AS-2M 29.0 84.7 97.8 94.8 57.1
MaskSpec [8] ViT-B AS-2M 32.3 89.6 97.7 – –
ASiT (ours) ViT-B AS-2M 35.2 (" 2.9) 92.0 (" 2.4) 98.8 (" 0.7) 98.1 (" 2.6) 63.1 (" 6.0)
SSL based methods for reference not comparison as they are pretrained on additional speech dataset LS [45]
SSAST [6] ViT-B AS-2M + LS 31.0 88.8 98.0 96.0 64.3
MAE-AST [7] ViT-B AS-2M + LS 30.6 90.0 97.9 95.8 63.3

4.3. Results
In Table 1, we compare ASiT to the supervised and self-

supervised state-of-the-art approaches in audio event clas-
sification. For fair comparison, we pretrained ASiT only
on the AudioSet-2M dataset. As shown in Table 1, pre-
trained ASiT obtains mAP of 35.2 on AudioSet-20K, which
is significantly outperforming supervised learning with an
improvement of +6.6 mAP and the state-of-the-art with an
improvement of +2.9 mAP.

Further, ASiT achieves the best performance across dif-
ferent audio tasks compared to other approaches. Particu-
larly, we obtain 92.0%, 98.1%, and 98.8% with an improve-
ment of 2.4%, 0.7%, 2.6%, and 6.0% on the ESC-50, speech
command v1 and v2, and SID datasets, respectively.

Note that in order to improve the coverage of speech
data, SSAST [6] and MAE-AST [7] further used the Lib-
rispeech [45] dataset, which has around 1,000 hours of
speech. Despite that we only pretrained ASiT on AudioSet-
2M dataset, we outperform the aforementioned methods on
the SC-V1 and SC-V2 speech tasks with a large margin as
shown in Table 1 and obtained on par performance on the
SID dataset, showing the generalisability of the proposed
self-supervised framework.

4.4. Ablations
In all of the ablation studies, ASiT is pretrained on AS-

2M for only 10 epochs employing the small variant of vision
transformers, i.e. ViT-S, as the backbone of the student and
the teacher of ASiT (unless mentioned otherwise). To as-
sess the quality of the learnt representation, the pretrained
models are finetuned on AS-20K and the mean average pre-
cision on the validation set is reported.
Effect of Different Recipes of ASiT. The aim of this abla-
tion study is to investigate the effect of the individual ele-
ments of the pretext learning, reported in Table 2. First, we

Table 2. Effect of the different components of ASiT for self-
supervised pretraining.

Image
Corruption

Image Re-
construction

Local
Contrastive
Learning

Global
Contrastive
Learning

mAP
(AS-20K)

7 3 7 7 16.6
Individual Tasks

7 7 7 3 20.2
3 7 3 7 23.9
3 3 7 7 25.5

Combined Tasks
3 7 3 3 25.9
3 3 7 3 27.1
3 3 3 7 27.6
3 3 3 3 28.1

investigate the effectiveness of pretraining transformers as
an autoencoder to reconstruct the input audio without any
sort of corruption, i.e. D(E(x)) = x, where x is the input
audio, E is the encoder which is ViT-S in our case, and D
is a lightweight reconstruction decoder. Expectedly, poor
performance is obtained that is slightly better than training
the model from scratch. Indeed, this is attributed to the fact
that without proper choice of constraints, autoencoders are
capable of learning identity mapping, i.e. memorising the
input without learning any useful discriminative features.

To regularise the transformer-based autoencoder, we in-
corporated input corruption along with spectrogram recon-
struction, i.e. GMML, where the mAP jumped from 16.6
to 25.5 mAP. We also investigated the effect of individually
employing local contrastive learning and global contrastive
learning. We found that the best individual task is GMML
followed by local contrastive learning and the least effective
individual task is global contrastive learning.

Further, we investigated the effect of the different com-
bination of the pre-text tasks. We found that using the spec-
trogram corruption along with the reconstruction loss on its
own as a means of self-supervision provided an effective
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Conclusions

n SSL provides a much better prospect for building foundation 
models in AI

n Its main benefits
n no need for data annotation
n does not propagate supervised learning biases
n enables solving downstream tasks using small datasets

n Recent significant advances in SSL owe to masked image modelling
n Many challenges still outstanding

n no theoretical underpinning
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