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SURREY Motivation for SSL in biometrics
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SURREY Outline

m Introduction

m Foundation models: concept and challenges
m Self-supervised learning: the art

m Benefits of SSL

m Self-supervised learning: challenges

m Self-supervised learning: towards science

m Conclusions
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m ImageNet model not
panacea

m Expensive (cumbersome,
domain experts)

Not scalable
Ambiguous
Low information content

Requires a lot of data to
train

m Does not model directly
image properties
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. The way forward — Self-supervised pretraining (SPP)
% No annotation required

- Large-scale self-supervised pretrained (SSP) models are behind major
transformation in how Al systems are built since their introduction in late 2018.

> The foundation models emerged from natural language processing (NLP), by
large pretrained models like BERT [b], GPT-3 [c] etc., based on transformer

Can the success be repeated elsewhere?

The early efforts largely unsuccessful (CNNs, Transformers)

[b] Devlin, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding reduction" ACL, 2019.
[c] Brown, et al. "Language Models are Few-Shot Learners" arXiv, 2020.
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SURREY  What is self supervised learning?

m Aim of learning: find minimal sufficient representation

m Types of learning
m supervised, all data annotated
m weakly supervised, only some data annotated, exploit e.g. temporal
contiguity in video
m unsupervised, no annotation, discover structures in the data
m self-supervised, relates to deep networks, no annotation, but data structure
discovery is meaningless
m Aim of self-supervised (SSL) learning - pre-train a network so that
it can subsequently be fine-tuned for a specific task on small
quantity of data



SURREY What should SSL achieve?

m Learn about
m local image properties
m notions of similarity and dissimilarity
m the existence of different concepts
m basic properties of concepts (text, shape, contiguity)
m the diversity of concept manifestations
m context
m relationship of different modalities

m Robustness to variations and resilience to noise
m Eliminate redundancy
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SURREY Key ingredients of SSL

m Pre-text (auxiliary) tasks

m their accomplishment should endow the network with the ability to
generalize to the target tasks

m Data augmentation
m generation of training data in support of the pre-text tasks

m Auxiliary network architecture
m e.g. siamese twin

m Loss functions
m Training strategy
m Optimisation procedures
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Geometric transformations

Puzzle (random grid shuffle)

Filtering (blurring)

Compression

Training set balancing

Multiple views (global, local)

Adding noise

Physics based transformations (hazy)
Rotation by a given angle

Colour modification

Transformation to a monochromatic image
Masking and cut out

Resize
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Architectures for SSL

m Backbone architecture

m Addition structural
components, e.g.
siamese twin branch

~

“ I,

Representations
(for downstream tasks)
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SURREY Architectures

m Dino (Caron, 2021) m Barlow twins (Zbontar 2021)

Representations
(for transfer tasks)
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SURREY Sample loss functions

Contrastive loss (SIimCLR, van den Oord,2018)

InfoNCEO‘B = ZSQ Vi, V) — 20 len(Zexp So(vi, vj) +ZeX 0 (vs, J))

=1 JF

where Sy (v;,v) represents similarity between two views (embedding,
representation, or prediction)

So(u1,usz)

A (P(u1), Y(uz)) .
[p(u1)l2 - [J1(uz)ll2

BYOLloss B =0

Reconstruction loss

reconstr = HU'L — ?71(?);)“1
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SURREY Current research in SSL

m Distillation

s Asymmetry Heuristic notions in SSL
m Architectural (projector, predictor)

Architecture parameters (momentum update)

m \Variance

m Batch normalization

m Temperature difference

m Principle of SSL (clustering, Barlow’s redundancy reduction, info bottleneck,
information theory)

Architecture

Batch size and normalization

Augmentation methods/masking

Loss functions — what, where, how

Positive sample only versus positive/negative sample learning
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SURREY Selfsupervised learning

Previously reported SiT and GMML selfsupervised methods

Image reconstruction
Extensive masking (70%)
Group masking

Significant improvements on
small data sets

Better domain transfer

Applications
m Audio classification
m Knee x-ray classification

Vision Transformer
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SURREY  GjT: Selfsupervised image transformer

m Loss
m Reconstruction
m Contrastive
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SURREY Magic of self-supervised pretraining

m Masking forces learning
m image properties
m image context
m robustness to occlusion

m Augmentation
m Robustness to transformations
m Increases training data size
m Enhances data diversity
m Robustness to scale
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TABLE 3§ Domain Transfer.|Fine-tuning self-supervised pretrained models on different datasets employin ; variant of

Fine-tuning

Pretraining  —grreT—Flowers — Pets CUB__ Aircrafi ___Cars
random init. - 58.1 31.8 23.8 14.6 123
Transfer learning from toy datasef

MNIST 99.6 74.8 67.9 52.3 57.2 70.2
Transfer learning from small dafgsets,

Flowers 9.6 906 ] 787 61.8 67.4 80.2
Pets 99.5 88.8 6 69.1 82.7
CUB 99.5 89.1 313 7279 88.7
Aircraft 99.5 89.2 84.4 68.7 39
Cars 99.6 89.2 85.7 69.4 81.1

TABLE 4:|Domain Transfer. Fine-tuning self-supervised pretrained models on different datasets employing| ViT-S.

Fine-tuning

Pretraining

Flowers Pets CUB Aircraft Cars
Transfer learning from toy dataset.
MNIST L7 61.5 41.8 48.1 48.4
Transfer learning from small datasets.
Flowers 94.7 84.4 67.7 749 89.3
Pets 92.5 88.1 70.9 78.0 89.7
CUB 92.2 84.4 73.4 89 90.7
Aircraft 90.5 82.5 69.8 851 90.9
Cars 92.6 86.9 71.1 83.7 93.3

Domain Transfer is so strong that we use transfer from toy MNIST dataset
Even MNIST pretraining outperformed supervised pretraining of ViTs with large
in 19
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Atito, Sara, Muhammad Awais, and Josef Kittler. "Sit: Self-supervised vision transformer." arXiv preprint
arXiv:2104.03602 (2021).

Atito, Sara, Muhammad Awais, and Josef Kittler. "GMML is All you Need." arXiv preprint arXiv:2205.14986 (2022).

Sara Atito, Syed Muhammad Anwar, Muhammad Awais, and Josef Kittler. "SB-SSL: Slice-Based Self-Supervised Transformers for Knee
Abnormality Classification from MRI", MICCAI MILLanD, 2022
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Table 1: Comparison with SOTA on ACL tears
classification employing sagittal plane.

ACL Tear (Sagittal plane)

Method Backbone # params  Accuracy AUC
(%)

Random Init CNN 7™ 71.67 0.754
Random Init ViT-S 21M 70.00 0.721
[20] CNN 7™ 76.62 0.848
[20] + noise CNN 7™ 75.83 0.817
SB-SSL (Ours) ViT-T 5M 85.83 0.952
SB-SSL (Ours) ViT-S 21M 88.33 0.954
SB-SSL (Ours) ViT-B 86M 89.17 0.954
Transfer learning from ImageNet-1K dataset
MRNet [6] AlexNet 61M 86.63 0.963

Fig. 5: Self-attention visualizations from the ViT-S model finetuned on the ACL
tears task employing the sagittal plane.
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He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF
Conference on CVPR. 2022.
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Pre-training and finetuning MAE on small datasets

=~ Employing the official publicly available code of MAE
~ Model: ViT-Small

~ GMML i1s trained for 3000 epochs

~ MAE is trained for 6000 epochs

Method Flowers Pets CUB Aircraft Cars
MAE 86.87 73.01 59.35 69.03 01.03
GMML 9452 (17.65) 88.09(115.08) 77.44(118.09) 84.52(115.49) 93.10(12.07)
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SURREY Multi-concept self-supervised learning

Images typically contain multiple objects
Yet, supervised/self-supervised methods
assume there is a single dominant class
This inconsistency makes the learning
problem challenging

We extended our pioneering
selfsupervised learning methods SiT and
GMML to the multi-concept SSL case




s SURREY  Architecture for multi-concept SSL

m Masked image reconstruction
m Clustering of patch embeddings
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Atito, Sara, et al. MC-SSLO. 0: Towards Multi-Concept Self-Supervised Learning. arXiv:2111.15340

GMML based Image
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Experimental results

MS-COCO dataset

From scratch (i.e., random initialization)

ViT-S/16* 44.7 3277 587 420 371 679 48.0
Selfsupervised pretraining on MS-COCO
MC-SSLO0.0 73.1 56.2 752 643 58.6 80.1 67.7
Selfsupervised pretraining on 10% of ImageNet-1K
Dino* 63.4 50.8 665 576 540 73.1 62.1
MC-SSLO0.0 70.5 548 740 63.0 563 79.1 658
Selfsupervised pretraining on 10% ImageNet-1K with multi-crop
Dino? 69.0 560 70.1 622 594 754 665
MC-SSLO0.0* 72.7 56.8 74.1 643 596 79.0 679
CIFAR10  CIFAR100 Cars Flowers
From scratch (i.e., random initialization)
CIFAR10 | CIFAR100 Cars Flowers ViT-S/16 91.42 70.14 10.67 54.04
Random Init. 91.42 70.14 10.67 54.04 Self-supervised pre-training on the given dataset
w/o multi-crop MC-SSLO0.0* 98.00 85.38 89.20 87.30
MC-SSLO0.0 [PR] 97.19 81.98 76.78 88.21 Selfsupervised pretraining on 10% of ImageNet-1K
MC-SSLO0.0 [PC] 97.717 84.25 83.93 94.89 ) w/o multi-crop
MC-SSLO.0 [PC +PR] |  97.82 84.98 86.15 | 9556  Dino 97.27 BL77 8208 9268
MC-SSL0.0 97.82 84.98 86.15 95.56
with multi-crop
Dino* 97.90 84.61 8821  95.46
MC-SSL0.0* 98.08 85.82 90.44 96.31

3 Clusters
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Original

MoCo v3

DINO

MC-SSL
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Audio classification

m System architecture
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SURREY Audio classification evaluation

m Results

Table 1. Comparison with state-of-the-art works on audio and speech classification tasks. Evaluation metrics are mean average precision
(mAP) for AS-2K and accuracy (%) for ESC-5, SC-V1, SC-V2, and SID. 1 shows the improvement over best SOTA.

Pretraining Transfer Learning
Method Backbone Data AS20K  ESC-50  SC-V2  SC-VI _ SID
Supervised-learning-based methods
PANNSs [44] CNN — 27.8 83.3 — 61.8 —
AST [5] ViT-B AS-2M 28.6 86.8 96.2 91.6 35.2
Self-supervised-learning-based methods
COLA [21] CNN AS-2M — - 98.1 95.5 37.7
SSAST [6] ViT-B AS-2M 29.0 84.7 97.8 94.8 57.1
MaskSpec [¥] ViT-B AS-2M 32.3 89.6 97.7 — —
ASIT (ours) ViT-B AS-2M 35.2129 92.0*24 988107 981126 63.1 6.0
SSL based methods for reference not comparison as they are pretrained on additional speech dataset LS [45]
SSAST [6] ViT-B AS-2M +LS  31.0 88.8 98.0 96.0 64.3

MAE-AST [7] ViT-B AS-2M +LS 30.6 90.0 97.9 95.8 63.3
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SURREY Conclusions

m SSL provides a much better prospect for building foundation
models in Al

m Its main benefits
m no need for data annotation
m does not propagate supervised learning biases
m enables solving downstream tasks using small datasets

m Recent significant advances in SSL owe to masked image modelling

m Many challenges still outstanding
m Nno theoretical underpinning
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