

Self-Supervised Learning

Josef Kittler

Centre for Vision, Speech and Signal Processing, University of Surrey, UK.

School of Artificial Intelligence and Computer Science, Jiangnan University, China.

J.Kittler@surrey.ac.uk

Motivation for SSL in biometrics

- To achieve successful designs even on small data set
 - new biometrics, such as breath
- Recent example: Chen et al, PR2023, Self-supervised vision transformer-based few-shot learning for facial expression recognition

Outline

- Introduction
- Foundation models: concept and challenges
- Self-supervised learning: the art
- Benefits of SSL
- Self-supervised learning: challenges
- Self-supervised learning: towards science
- Conclusions

Supervised Learning: The Limitations

- ImageNet model not panacea
- Expensive (cumbersome, domain experts)
- Not scalable
- Ambiguous

.

- Low information content
- Requires a lot of data to train
- Does not model directly image properties

The way forward – Self-supervised pretraining (SPP)

- No annotation required
- Large-scale self-supervised pretrained (SSP) models are behind major transformation in how AI systems are built since their introduction in late 2018.
 - The foundation models emerged from natural language processing (NLP), by large pretrained models like BERT [b], GPT-3 [c] etc., based on transformer

Can the success be repeated elsewhere?

The early efforts largely unsuccessful (CNNs, Transformers)

[b] Devlin, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding reduction" ACL, 2019.[c] Brown, et al. "Language Models are Few-Shot Learners" arXiv, 2020.

SURREY What is self supervised learning?

- Aim of learning: find minimal sufficient representation
- Types of learning
 - supervised, all data annotated
 - weakly supervised, only some data annotated, exploit e.g. temporal contiguity in video
 - unsupervised, no annotation, discover structures in the data
 - self-supervised, relates to deep networks, no annotation, but data structure discovery is meaningless
- Aim of self-supervised (SSL) learning pre-train a network so that it can subsequently be fine-tuned for a specific task on small quantity of data

What should SSL achieve?

Learn about

- local image properties
- notions of similarity and dissimilarity
- the existence of different concepts
- basic properties of concepts (text, shape, contiguity)
- the diversity of concept manifestations
- context
- relationship of different modalities
- Robustness to variations and resilience to noise
- Eliminate redundancy

Key ingredients of SSL

- Pre-text (auxiliary) tasks
 - their accomplishment should endow the network with the ability to generalize to the target tasks
- Data augmentation
 - generation of training data in support of the pre-text tasks
- Auxiliary network architecture
 - e.g. siamese twin
- Loss functions
- Training strategy
- Optimisation procedures

Example pre-text tasks

- Popular pre-text tasks
 - Reconstruction
 - Rotation classification
 - Juxtaposition
 - Masking

From Chen et al (PR2023)

Data augmentation

- Geometric transformations
- Puzzle (random grid shuffle)
- Filtering (blurring)
- Compression
- Training set balancing
- Multiple views (global, local)
- Adding noise
- Physics based transformations (hazy)
- Rotation by a given angle
- Colour modification
- Transformation to a monochromatic image
- Masking and cut out

Architectures for SSL

Backbone architecture

Sample loss functions

Contrastive loss (SimCLR, van den Oord, 2018)

$$\operatorname{InfoNCE}_{\theta}^{\alpha,\beta} \triangleq \frac{2}{B} \sum_{i=1}^{B} S_{\theta}(v_i, v_i') - \frac{2\alpha \cdot \beta}{B} \sum_{i=1}^{B} \ln\left(\sum_{j \neq i} \exp \frac{S_{\theta}(v_i, v_j)}{\alpha} + \sum_{j} \exp \frac{S_{\theta}(v_i, v_j')}{\alpha}\right),$$

• where $S_{\theta}(v_i, v'_i)$ represents similarity between two views (embedding, representation, or prediction)

$$S_{\theta}(u_1, u_2) \triangleq \frac{\langle \phi(u_1), \psi(u_2) \rangle}{\|\phi(u_1)\|_2 \cdot \|\psi(u_2)\|_2}$$

- BYOL loss $\beta = 0$
- Reconstruction loss

$$reconstr = ||v_i - \tilde{v}_i(v_i')||_1$$

14

Current research in SSL

- Distillation
- Asymmetry

Heuristic notions in SSL

- Architectural (projector, predictor)
- Architecture parameters (momentum update)
- Variance
- Batch normalization
- Temperature difference
- Principle of SSL (clustering, Barlow's redundancy reduction, info bottleneck, information theory)
- Architecture
- Batch size and normalization
- Augmentation methods/masking
- Loss functions what, where, how
- Positive sample only versus positive/negative sample learning

Selfsupervised learning

Previously reported SiT and GMML selfsupervised methods

- Image reconstruction
- Extensive masking (70%)
- Group masking
- Significant improvements on small data sets
- Better domain transfer

Applications

- Audio classification
- Knee x-ray classification

SURREY SiT: Selfsupervised image transformer

SURREY Magic of self-supervised pretraining

Masking forces learning

- image properties
- image context
- robustness to occlusion
- Augmentation
 - Robustness to transformations
 - Increases training data size
 - Enhances data diversity
 - Robustness to scale

IVERSITY OF SURREY

SSL in Domain Transfer

TABLE 3: Domain Transfer. Fine-tuning self-supervised pretrained models on different datasets employing ViT-T variant of transformers

Protraining	Fine-tuning								
i lettanning -	MNIST	Flowers	Pets	ĊUB	Aircraft	Cars			
random init.	_	58.1	31.8	23.8	14.6	12.3			
Transfer learning from toy dataset.									
MNIST	99.6	74.8	67.9	52.3	57.2	70.2			
Transfer learning from small datasets.									
Flowers	99.6	90.6	78.7	61.8	67.4	80.2			
Pets	99.5	88.8	86.0	61.7	69.1	82.7			
CUB	99.5	89.1	84.8	71.2	77.79	88.7			
Aircraft	99.5	89.2	84.4	68.7	85.1	89.7			
Cars	99.6	89.2	85.7	69.4	81.1	92.7			

TABLE 4: Domain Transfer. Fine-tuning self-supervised pretrained models on different datasets employing ViT-S.

Protraining	Fine-tuning								
Trettaining	Flowers	Pets	CUB	Aircraft	Cars				
Transfer learn									
MNIST	77.7	61.5	41.8	48.1	48.4				
Transfer learning from small datasets.									
Flowers	94.7	84.4	67.7	74.9	89.3				
Pets	92.5	88.1	70.9	78.0	89.7				
CUB	92.2	84.4	73.4	78.9	90.7				
Aircraft	90.5	82.5	69.8	85.1	90.9				
Cars	92.6	86.9	71.1	83.7	93.3				

Domain Transfer is so strong that we use transfer from toy MNIST dataset Even MNIST pretraining outperformed supervised pretraining of ViTs with large margin

GMML in Medical Domain

Atito, Sara, Muhammad Awais, and Josef Kittler. "Sit: Self-supervised vision transformer." *arXiv preprint arXiv:2104.03602* (2021).

Atito, Sara, Muhammad Awais, and Josef Kittler. "GMML is All you Need." arXiv preprint arXiv:2205.14986 (2022).

Sara Atito, Syed Muhammad Anwar, Muhammad Awais, and Josef Kittler. "SB-SSL: Slice-Based Self-Supervised Transformers for Knee Abnormality Classification from MRI", MICCAI MILLanD, 2022

GMML in Medical Domain

Table 1: Comparison with SOTA on ACL tears classification employing sagittal plane.

			ACL Tear (Sagittal plane)				
Method	Backbone	# params	Accuracy	AUC			
			(%)				
Training using or	nly the given	a dataset					
Random Init	CNN	77M	71.67	0.754			
Random Init	ViT-S	21M	70.00	0.721			
[20]	CNN	77M	76.62	0.848			
[20] + noise	CNN	77M	75.83	0.817			
SB-SSL (Ours)	ViT-T	5M	85.83	0.952			
SB-SSL (Ours)	ViT-S	21M	88.33	0.954			
SB-SSL (Ours)	ViT-B	86M	89.17	0.954			
Transfer learning from ImageNet-1K dataset							
MRNet [6]	AlexNet	61M	86.63	0.963			

Fig. 5: Self-attention visualizations from the ViT-S model finetuned on the ACL tears task employing the sagittal plane.

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on CVPR. 2022.

MAE on Small Dataset

Pre-training and finetuning MAE on small datasets

- Employing the official publicly available code of MAE
- ▹ Model: ViT-Small
- ➤ GMML is trained for 3000 epochs
- ► MAE is trained for 6000 epochs

Method	Flowers	Pets	CUB	Aircraft	Cars
MAE	86.87	73.01	59.35	69.03	91.03
GMML	94.52 († 7.65)	88.09 († 15.08)	77.44 († 18.09)	84.52 († 15.49)	93.10 († 2.07)

- Images typically contain multip
- Yet, supervised/self-supervised assume there is a single domina
- This inconsistency makes the le problem challenging
- We extended our pioneering selfsupervised learning methods SiT and GMML to the multi-concept SSL case

Architecture for multi-concept SSL

- Masked image reconstruction
- Clustering of patch embeddings

Atito, Sara, et al. MC-SSLO. 0: Towards Multi-Concept Self-Supervised Learning. arXiv:2111.15340.

Experimental results

CIEA D 10

CIEA D 100

MS-COCO dataset									
From scratch (i.e., random initialization)									
ViT-S/16*	44.7	32.7	58.7	42.0	37.1	67.9	48.0		
Selfsupervi	Selfsupervised pretraining on MS-COCO								
MC-SSL0.0	73.1	56.2	75.2	64.3	58.6	80.1	67.7		
Selfsupervised pretraining on 10% of ImageNet-1K									
Dino*	63.4	50.8	66.5	57.6	54.0	73.1	62.1		
MC-SSL0.0	70.5	54.8	74.0	63.0	56.3	79.1	65.8		
Selfsupervised pretraining on 10% ImageNet-1K with multi-crop									
Dino [‡]	69.0	56.0	70.1	62.2	59.4	75.4	66.5		
MC-SSL0.0) [‡] 72.7	56.8	74.1	64.3	59.6	79.0	67.9		

						CIFARIO	CIFARIOU	Cars	Flowers
					From scratch (i.e., random	initialization)		
	CIFAR10	CIFAR100	Cars	Flowers	ViT-S/16	91.42	70.14	10.67	54.04
Random Init.	91.42	70.14	10.67	54.04	Self-supervised	l pre-training	g on the given a	dataset	
		w/o multi-	crop		MC-SSL0.0 [‡]	98.00	85.38	89.20	87.30
MC-SSL0.0 [PR]	97.19	81.98	76.78	88.21	Selfsupervised	pretraining of	on 10% of Ima	geNet-1K	
MC-SSL0.0 [PC]	97.77	84.25	83.93	94.89			w/o multi-	crop	
MC-SSL0.0 [PC + PR]	97.82	84.98	86.15	95.56	Dino	97.27	81.77	82.08	92.68
					MC-SSL0.0	97.82	84.98	86.15	95.56
					with multi-crop				
					Dino [‡]	97.90	84.61	88.21	95.46
					MC-SSL0.0 [‡]	98.08	85.82	90.44	96.31

SURREY Comparison of MC-SSL with baselines

Audio classification evaluation

Results

Table 1. Comparison with state-of-the-art works on audio and speech classification tasks. Evaluation metrics are mean average precision (mAP) for AS-2K and accuracy (%) for ESC-5, SC-V1, SC-V2, and SID. \uparrow shows the improvement over best SOTA.

Method	Backhone	Pretraining		Tr	ansfer Learni	ng	
	Dackoone	Data	AS-20K	ESC-50	SC-V2	SC-V1	SID
Supervised-learning-based methods							
PANNs [44]	CNN	_	27.8	83.3	_	61.8	_
AST [5]	ViT-B	AS-2M	28.6	86.8	96.2	91.6	35.2
Self-supervised-learning-based methods							
COLA [21]	CNN	AS-2M	_	_	98.1	95.5	37.7
SSAST [6]	ViT-B	AS-2M	29.0	84.7	97.8	94.8	57.1
MaskSpec [8]	ViT-B	AS-2M	32.3	89.6	97.7	_	_
ASiT (ours)	ViT-B	AS-2M	35.2 († 2.9)	92.0 († 2.4)	98.8 († 0.7)	98.1 († 2.6)	63.1 († 6.0)
SSL based meth	ods for refere	nce not compar	ison as they a	re pretrained	on additional	l speech datas	et LS [45]
SSAST [6]	ViT-B	AS-2M + LS	31.0	88.8	98.0	96.0	64.3
MAE-AST [7]	ViT-B	AS-2M + LS	30.6	90.0	97.9	95.8	63.3

Conclusions

- SSL provides a much better prospect for building foundation models in AI
- Its main benefits
 - no need for data annotation
 - does not propagate supervised learning biases
 - enables solving downstream tasks using small datasets
- Recent significant advances in SSL owe to masked image modelling
- Many challenges still outstanding
 - no theoretical underpinning

32

Thanks