# Remote Photoplethysmography Based 3D Facial Mask Presentation Attack Detection (a.k.a Face Anti-spoofing)

P C Yuen

Department of Computer Science Hong Kong Baptist University

#### Outline

- Background and Motivations
- 2. Basic principle for remote photoplethysmography (rPPG) for Face Presentation Attack Detection
- 3. rPPG based Face Presentation Attack Detection Methods
- 4. Conclusions

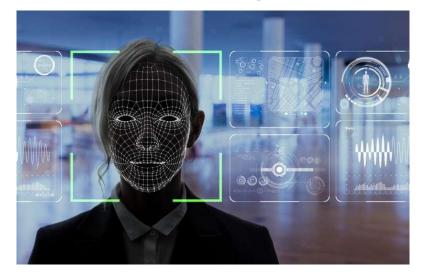
#### > Extensive deployed biometrics practical applications



**Door Access Control** 






Iris recognition at Dubai's airport



Coal miner attendance



#### Face Recognition Technology







Contactless e-channel in HK

2022 – The year that facial recognition will lead the fintech industry

#### MIT Technology Review: 10 breakthrough technologies 2017

#### 'World's first' facial recognition ATM unveiled in China



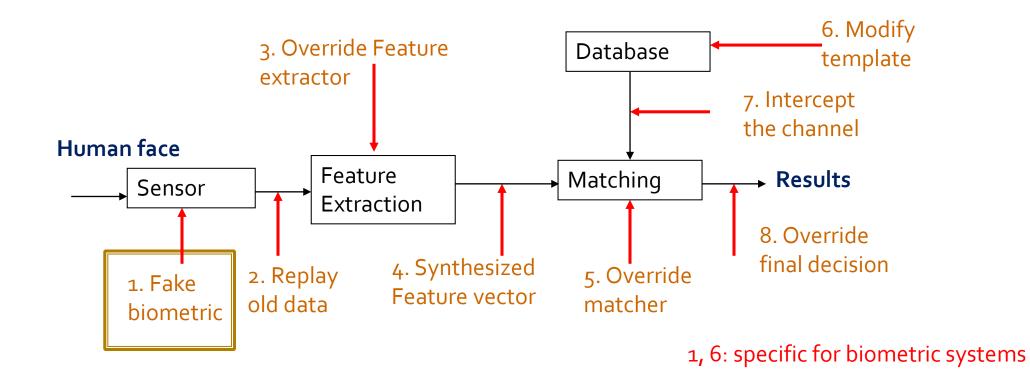
#### Is Face Recognition Technology Secure?



Primary students spoof the face recognition system of auto courier cabinet with a printed photo

"A few days ago, the Science Team of Class 402 of Xiuzhou Foreign Language School of Shanghai International Studies University discovered in an extracurricular scientific experiment that as long as a printed photo can be used instead of a real person to scan their face, it can fool the Fengchao smart cabinet in the community and take out parents' personal information. shipment. is this real?"

#### 刷脸取件被小学生用照片破解,丰巢快递柜紧急下 线相关功能

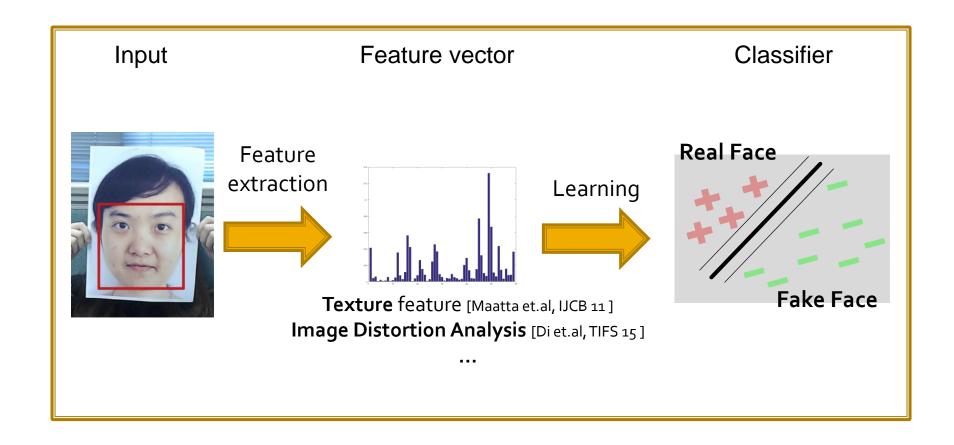

2019-10-17 14:05



本文转载自微信公众号"央视新闻" (ID: cctvnewscenter)

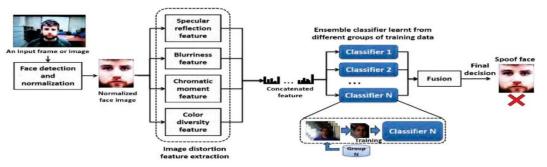
前些天,上海外国语大学秀洲外国语学校402班科学小队在一次课外科学实验中发现:只要用一张打印照片就能代替真人刷脸、骗过小区里的丰巢智能柜,取出父母们的货件。这是真的吗?

> Vulnerabilities: Ratha *et αl*. [IBM Sys J 2001] pointed out eight possible attacks on biometric systems

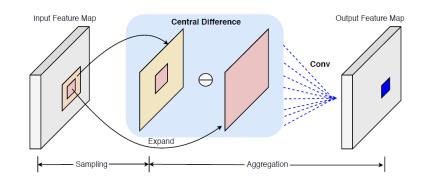



- Face Presentation Attack Detection (PAD)
  - Face information can be easily acquired (facebook, twitter) and abused
  - 3 popular attacks: Print (image), Replay (video), and 3D mask

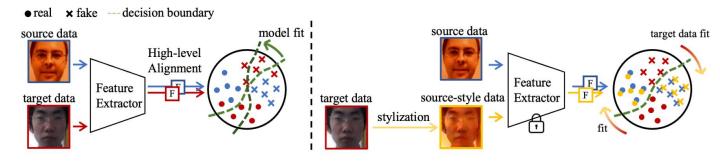



### Image and Video Face PAD

> A straightforward approach: a two-class classification problem

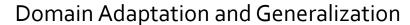


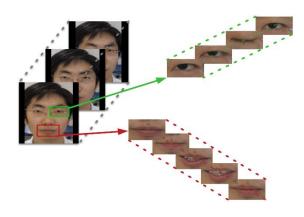

### Image and Video Face PAD


#### > Many methods have been proposed in the past decade



Appearance-based





Deep Representation Learning



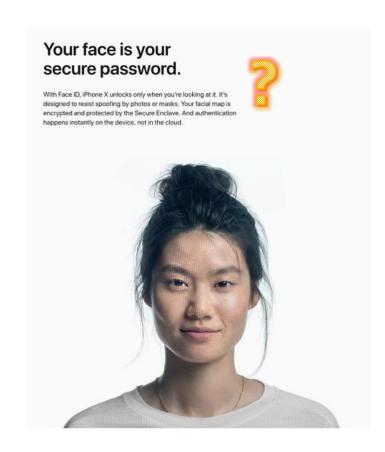
(a) Previous UDA in FAS: Model fit to Target data

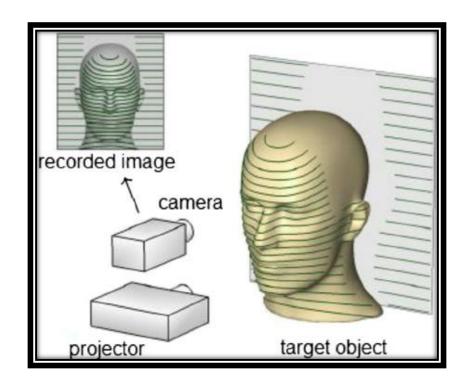
b) UDA in FAS: Target data fit to Model





# 3D Face Recognition



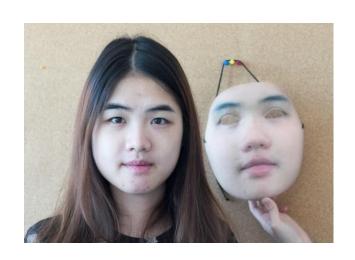


Packet Mapping

Face ID is enabled by the TrueDepth camera and is simple to set up. It projects and analyzes more than 30,000 invisible dots to create a precise depth map of your face.

#### FaceID in iPhone X

Announced on 12 September 2017

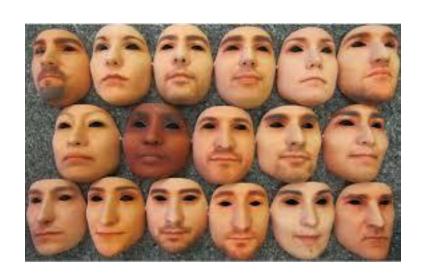


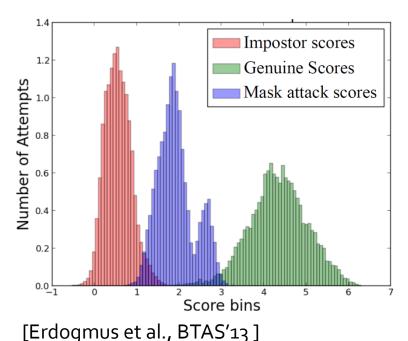


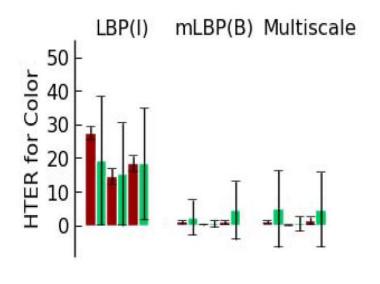

**3D Face Recognition:** 

Employed Structured-light 3D technology

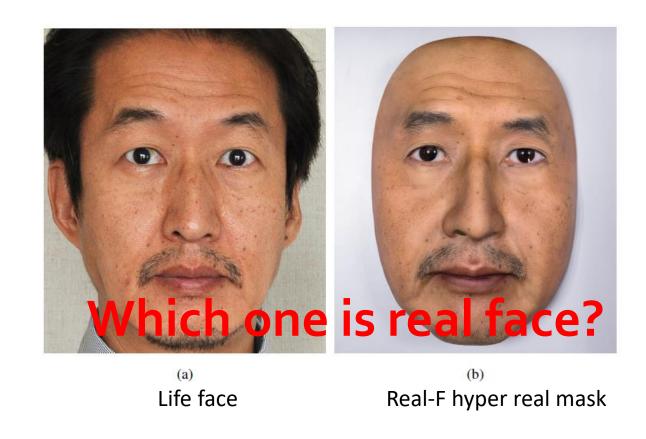
#### 3D Mask Attack


With the advanced development on 3D reconstruction and 3D printing technology,
 3D face model can easily be constructed and used to spoof recognition systems




Source: idiap.ch


- The 3DMAD dataset
  - Score distributions of genuine, impostor, and mask attack scores of 3DMAD using ISV for 2D face verification







Super-realistic 3D Mask



Source: real-f.jp

- Custom Silicone Masks Datasets
  - Consider PAs performed using custom-made flexible silicone masks...
  - A new dataset based on six custom silicone masks





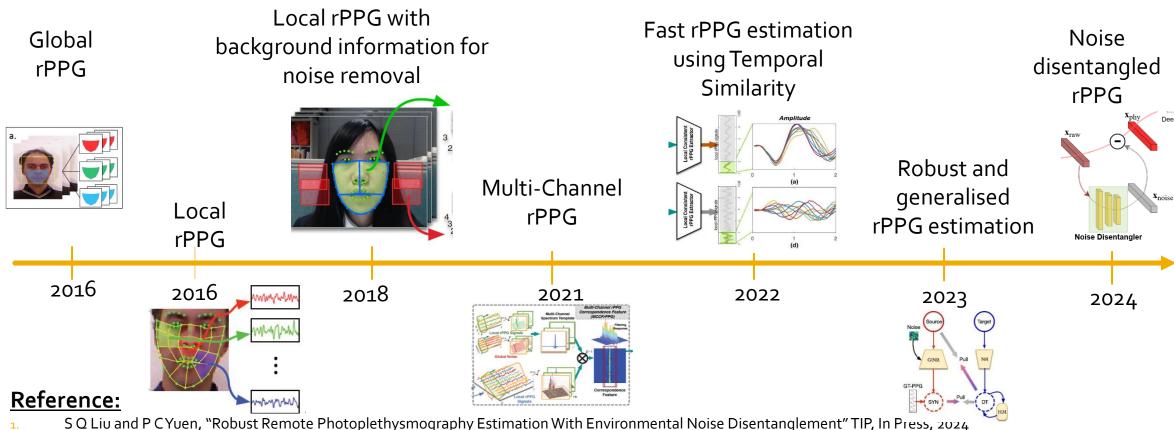






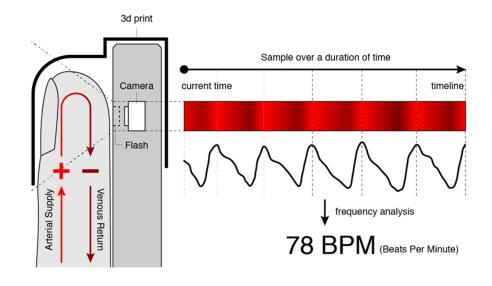




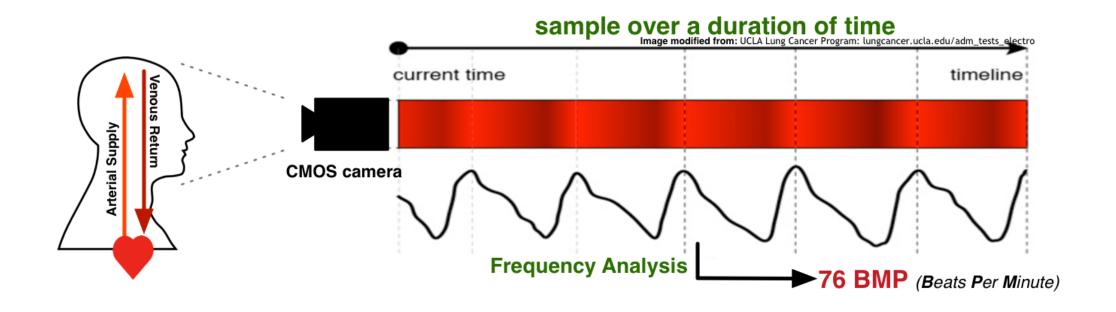

#### Airport and Payment Facial Recognition Systems Fooled by Masks and Photos, Raising Security Concerns

By Jeff John Roberts December 12, 2019

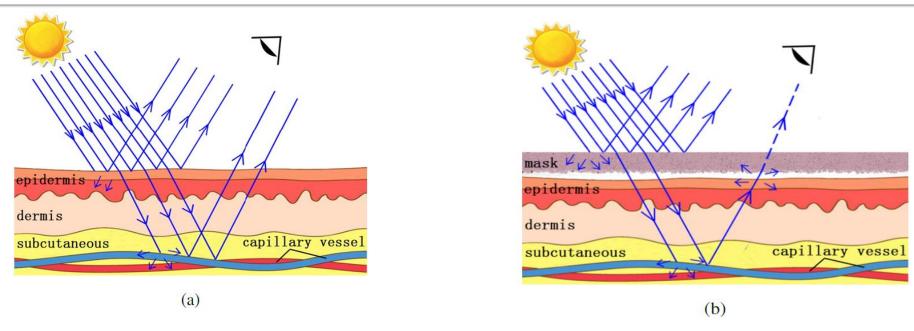
The test, by artificial intelligence company Kneron, involved visiting public locations and tricking facial recognition terminals into allowing payment or access. For example, in stores in Asia—where facial recognition technology is deployed widely—the Kneron team used high quality 3-D masks to deceive AliPay and WeChat payment systems in order to make purchases.


More alarming were the tests deployed at transportation hubs. At the self-boarding terminal in Schiphol Airport, the Netherlands' largest airport, the Kneron team tricked the sensor with just a photo on a phone screen. The team also says it was able to gain access in this way to rail stations in China where commuters use facial recognition to pay their fare and board trains.

# Today Journey on PhotoPlethysmoGraphy based Face PAD Approach for 3D Mask Attack




- J Du, S Liu, B Zhang, P CYuen, "Dual-bridging with Adversarial Noise Generation for Domain Adaptive rPPG Estimation", CVPR 2023
- SQ Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", TIFS, 2022.
- SQLiu, XYLan and PCYuen, "Multi-Channel Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection", TIFS, 2021
- SQ Liu, X Lan, P CYuen, "Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection", ECCV, pp. 558-573, Sept. 2018.
- S Q Liu, P CYuen, S Zhang and G Zhao, "3D Mask Face Anti-spoofing with Remote Photoplethysmography" ECCV, Oct 2016.
  - X Li, J Määttä, G Zhao and P C Yuen and M Pietikäinen, "Generalized face anti-spoofing by detecting pulse from face videos", ICPR, Dec 2016.

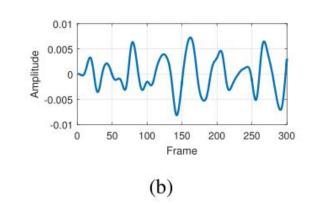

# PhotoPlethysmoGraphy (PPG)

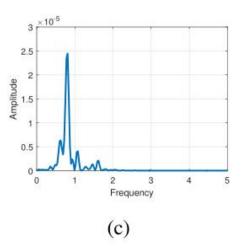


## remote PhotoPlethysmoGraphy (rPPG)



#### Principle of rPPG Based Face PAD

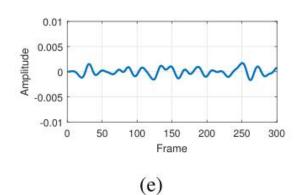


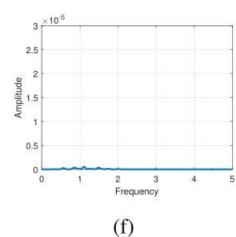


- (a) rPPG signal can be extracted from genuine face skin.
- (b) rPPG signals will be too weak to be detected from a masked face.
  - light source needs to penetrate the mask before interacting with the blood vessel.
  - rPPG signal need to penetrate the mask before capturing by camera

# Principle of rPPG Based Face PAD

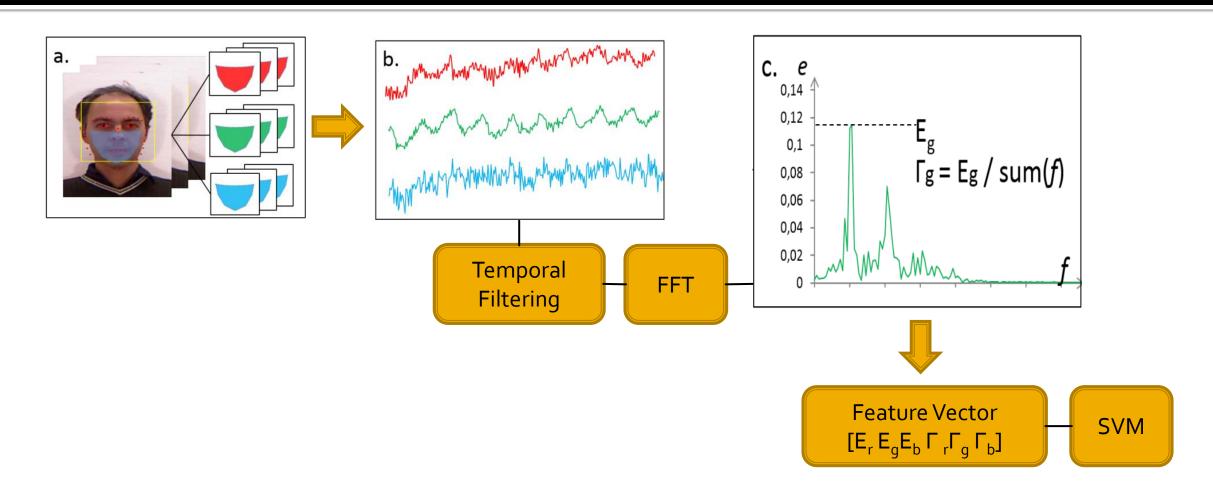
genuine face






masked face

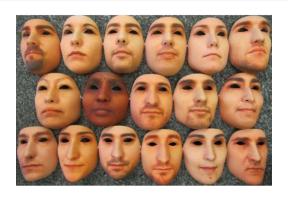



(d)





#### Global rPPG-based Face PAD [ICPR 2016]




X Li, J Komulainen, G Zhao, P C Yuen and M Pietikainen, "Generalized face anti-spoofing by detecting pulse from face videos" *ICPR* 2016 21

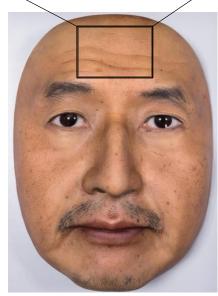
## **Experimental Results**

#### Data:

- 3DMAD [Erdogmus et.al TIFS'14]
  - 255 videos recorded from 17 subjects
  - Masks made from ThatsMyFace.com
- 2 REAL-F Masks
  - 24 videos recorded from 2 subjects
  - Hyper real masks from REAL-F

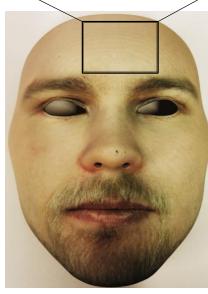





# **Experimental Results**

#### Results on REAL-F (cross dataset)

 Randomly select 8 subjects from 3DMAD for training and the other 8 subjects as the development set


|               |         |        | FPR       | FPR        |
|---------------|---------|--------|-----------|------------|
| Method        | HTER(%) | EER(%) | @FNR=0.1% | @FNR=0.01% |
| Pulse (ours)  | 4.29    | 1.58   | 0.25      | 3.83       |
| LBP-blk       | 26.3    | 25.08  | 37.92     | 48.25      |
| LBP-blk-color | 25.92   | 20.42  | 31.5      | 48.67      |
| LBP-ms        | 39.87   | 46.5   | 59.83     | 73.17      |
| LBP-ms-color  | 47.38   | 46.08  | 86.5      | 95.08      |

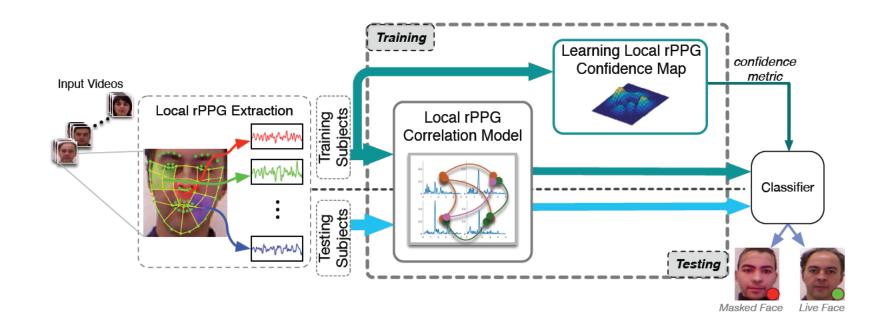




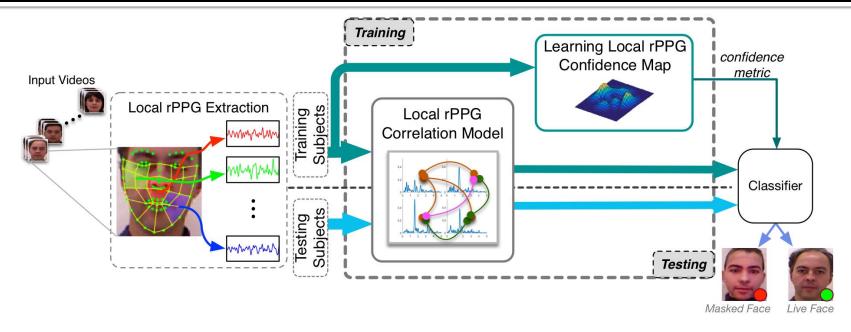






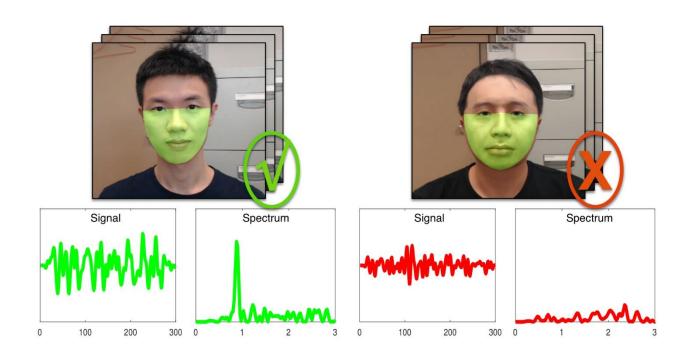

3DMAD

#### Limitations on Global rPPG method


- Global rPPG signal is sensitive to certain variations such as illuminations, head motion and video quality
- rPPG signal strength may vary with different subjects

# How to increase the robustness of rPPG-based face presentation attack detection?

### Local rPPG based Face PAD Method [ECCV 2016]



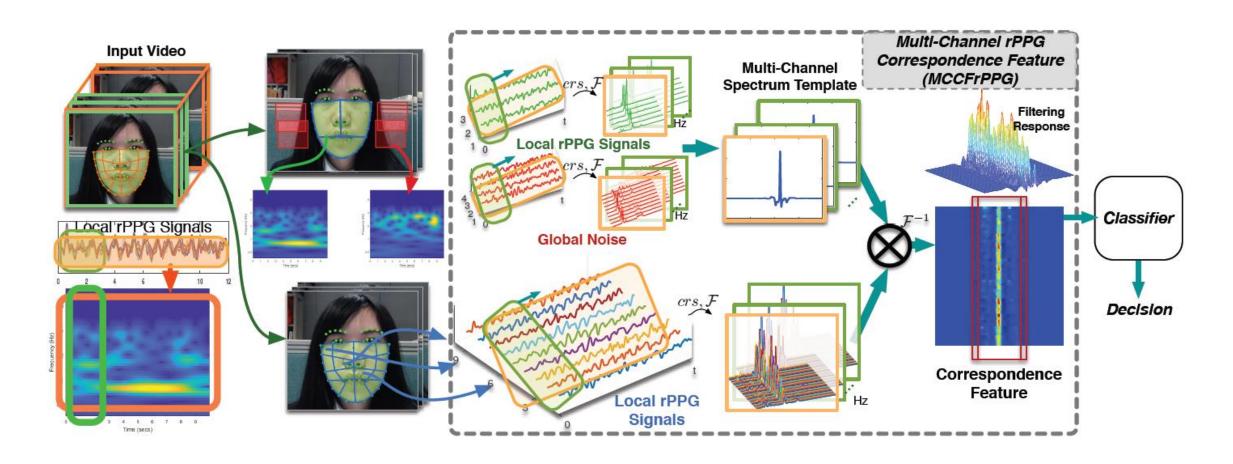

#### Local rPPG based Face PAD Method



- (a) Local ROIs are pre-defined based on the facial landmarks. Local rPPG signals are extracted from these local face regions.
- (b) Extract Local rPPG patterns through the proposed local rPPG correlation model.
- (c) Training stage: local rPPG confidence map is learned, and then transformed into distance metric for classification.
- (d) Classifier: SVM


# Limitation on Local rPPG Approach




How to accurately obtain the liveness evidence from the observed noisy rPPG signals?

#### Improved Method: rPPG Correspondence Feature

[ECCV 2018]



# Improved Method: Multi-channel rPPG Correspondence Feature [TIFS 2021]



SQLiu, XY Lan and PCYuen, "Multi-Channel Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection",
 IEEE Transactions on Information Forensics and Security (TIFS), 2021.

### **Experimental Results**

#### Dataset

- 3DMAD [TIFS'14 Erdogmus et.al]
- HKBU MARs V1+
- Custom silicone mask attack dataset (CSMAD)
- HKBU MARs V2+







(a) ThatsMyface

(b) REAL-f

(c) Silicone

#### VARIATION SUMMARY OF 3D MASK ATTACK DATASETS USED IN THE EXPERIMENT

|                   |               |        |           | Lighting  |                     | Face (pixel)     |             |
|-------------------|---------------|--------|-----------|-----------|---------------------|------------------|-------------|
|                   | #Subject/Mask | #Video | Mask Type | Condition | Camera              | Resolution       | Compression |
| 3DMAD [11]        | 17 17         | 255    | TMF       | 1(Studio) | Kinect              | 80×80            | Motion JPEG |
| HKBU-MARsV1+ [14] | 12 12         | 180    | TMF+RF    | 1(Room)   | Logitech C920       | $200 \times 200$ | H.264       |
| CSMAD [33]        | 14 6          | 246    | Silicon   | 4         | RealSense SR300     | $350 \times 350$ | H.264       |
| HKBU-MARsV2+      | 16 16         | 1048   | TMF+RF    | 6         | 3(C920, M3, MV-U3B) | $200 \times 200$ | both        |
| Summary           | 59 39         | 1729   | 3         | 12        | 6                   | 4                | 2           |

# **Experimental Results**

#### INTRA DATASET EVALUATION RESULTS(%) ON 3DMAD

|                | I              | I               | I    |      | DDCED @             | DDCED @              |
|----------------|----------------|-----------------|------|------|---------------------|----------------------|
|                | HTER_dev       | HTER_test       | EER  | AUC  | BPCER@<br>APCER=0.1 | BPCER@<br>APCER=0.01 |
| MS-LBP [7]     | $1.25 \pm 1.9$ | $4.22 \pm 10.3$ | 2.66 | 99.6 | 1.50                | 4.00                 |
| CTA [20]       | $2.78 \pm 3.6$ | $4.40 \pm 9.7$  | 4.24 | 99.3 | 1.32                | 12.8                 |
| CNN            | $1.58 \pm 1.6$ | $1.93\pm3.4$    | 2.07 | 99.7 | 0.38                | 4.26                 |
| FBNet-RGB [48] | $3.91 \pm 2.4$ | $5.66 \pm 9.7$  | 5.54 | 98.6 | 2.21                | 19.9                 |
| GrPPG [12]     | $13.4 \pm 4.2$ | $13.2 \pm 13.2$ | 13.9 | 92.6 | 15.4                | 36.2                 |
| PPGSec [36]    | $15.2 \pm 4.4$ | $15.9 \pm 14.6$ | 15.8 | 90.8 | 20.5                | 35.9                 |
| CFrPPG-crs     | $9.06 \pm 4.4$ | $8.57 \pm 13.3$ | 8.88 | 96.0 | 8.41                | 14.1                 |
| CFrPPG         | $5.95 \pm 3.3$ | $6.82 \pm 12.1$ | 6.94 | 97.1 | 5.85                | 11.6                 |
| MCCFrPPG       | $4.42 \pm 2.3$ | $5.60 \pm 8.8$  | 5.01 | 98.7 | 3.76                | 8.24                 |



#### INTRA DATASET EVALUATION RESULTS(%) ON HKBU-MARSV2+

|                | HTER_dev                       | HTER_test       | EER  | AUC  | BPCER@<br>APCER=0.1 | BPCER@<br>APCER=0.01 |
|----------------|--------------------------------|-----------------|------|------|---------------------|----------------------|
| MS-LBP [7]     | $12.4 \pm 5.3$                 | $12.9 \pm 14.4$ | 12.8 | 94.2 | 16.6                | 59.6                 |
| CTA [20]       | $13.1 \pm 4.6$                 | $14.0 \pm 13.8$ | 13.9 | 93.5 | 18.8                | 57.4                 |
| CNN            | $12.3 \pm 3.9$                 | $13.3 \pm 12.1$ | 13.3 | 93.8 | 17.1                | 64.2                 |
| FBNet-RGB [48] | $29.4 \pm 3.0$                 | $29.7 \pm 8.9$  | 29.7 | 77.8 | 57.3                | 89.7                 |
| GrPPG [12]     | $31.3 \pm 2.3$                 | $31.3 \pm 7.6$  | 32.1 | 74.3 | 67.5                | 94.6                 |
| PPGSec [36]    | $14.4 \pm 3.0$                 | $15.0 \pm 10.9$ | 15.0 | 91.6 | 19.1                | 42.7                 |
| CFrPPG-crs     | $9.11 \pm 1.7$                 | $9.53 \pm 6.1$  | 9.55 | 96.3 | 9.23                | 36.7                 |
| CFrPPG         | $3.84 \pm 1.1$                 | $3.91 \pm 2.7$  | 3.92 | 99.2 | 2.19                | 6.59                 |
| MCCFrPPG       | $\textbf{2.88}\pm\textbf{0.9}$ | $3.12\pm3.2$    | 3.17 | 99.6 | 1.23                | 4.84                 |







(a) ThatsMyFace























room-ight

dim-light

bright-light

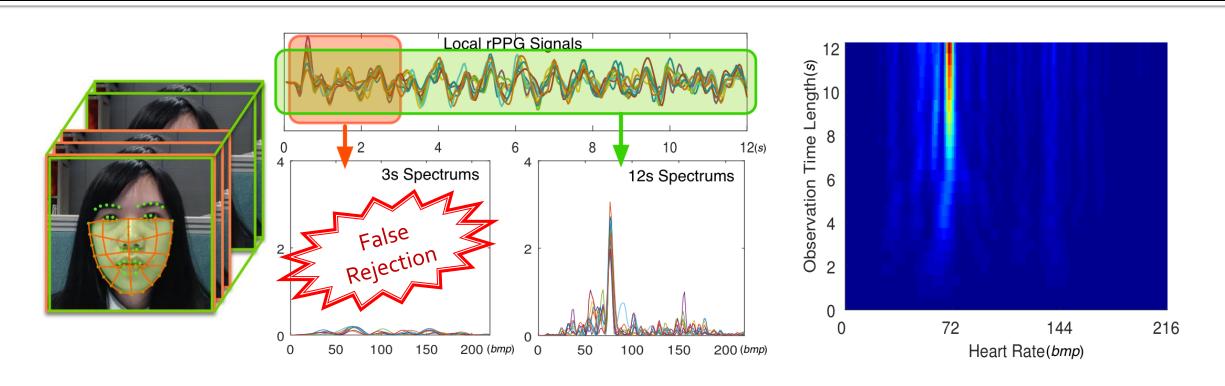






warm-light

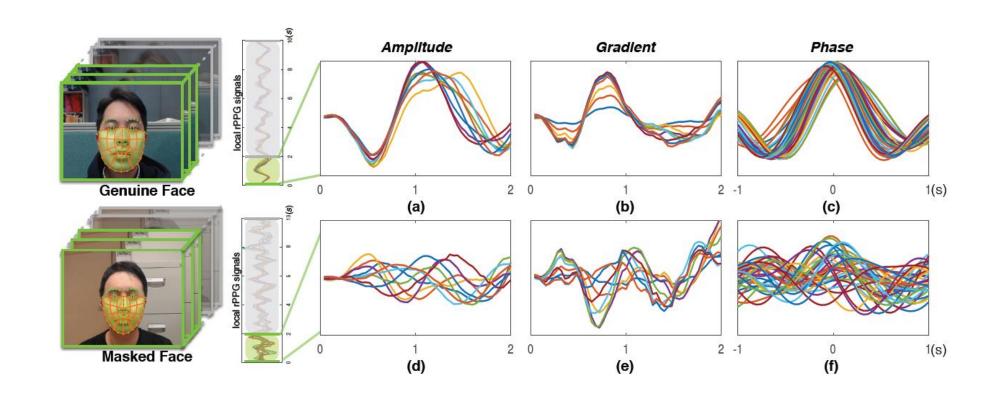
sidelight


top-light

32

CROSS-DATASET EVALUATION RESULTS (%) BETWEEN 3DMAD, HKBU-MARSV1+, HKBU-MARSV2+, AND CSMAD. A $\Leftrightarrow$ B Indicates the Evaluation Across Datasets A and B, Where the Left Column is A $\to$ B and Right one is B $\to$ A. HTER Standard Deviation Is in Bracket

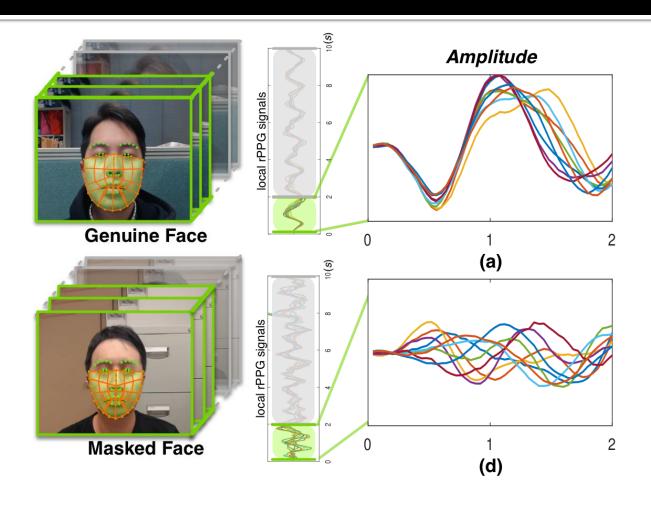
|                     | Methods        | 3DMAD⇔     | >MARsV1+                   | 3DMAD←     | >MARsV2+    | 3DMAD<     | ⇔CSMAD                     | MARsV1+<   | ⇔MARsV2+          | MARsV1+     | ⇔CSMAD     | MARsV2+    | ⇔CSMAD     |
|---------------------|----------------|------------|----------------------------|------------|-------------|------------|----------------------------|------------|-------------------|-------------|------------|------------|------------|
|                     | MS-LBP [7]     | 36.8 (2.9) | 41.3 (14.0)                | 47.7 (7.0) | 43.2 (7.3)  | 50.6 (5.6) | 42.7 (6.4)                 | 45.2 (3.9) | 24.6 (5.6)        | 42.3 (3.2)  | 45.0 (5.8) | 34.4 (3.8) | 39.9 (2.2) |
|                     | CTA [20]       | 71.8 (2.1) | 55.7 (8.7)                 | 51.5 (2.4) | 68.2 (7.7)  | 48.9 (5.8) | 58.4 (7.8)                 | 50.7 (4.8) | 20.8 (5.4)        | 53.6 (5.0)  | 37.8 (4.8) | 35.7 (3.3) | 41.3 (3.7) |
|                     | CNN            | 49.4 (1.7) | 62.5 (7.4)                 | 50.8 (1.6) | 46.5 (4.7)  | 45.6 (3.2) | 46.5 (4.0)                 | 31.3 (5.1) | 33.8 (17.0)       | 45.9 (4.3)  | 42.6 (5.6) | 45.7 (3.5) | 42.3 (2.8) |
| 24                  | FBNet-RGB [48] | 34.0 (1.4) | 12.3 (10.6)                | 44.5 (0.3) | 26.4 (21.5) | 46.3 (2.3) | 50.2 (18.1)                | 43.2 (1.4) | 36.5 (5.4)        | 41.6 (3.7)  | 40.9 (6.8) | 43.6 (3.4) | 46.1 (3.4) |
| HTER                | GrPPG [12]     | 35.9 (4.5) | 36.5 (6.8)                 | 50.5 (0.2) | 49.5 (4.0)  | 43.6 (3.7) | 50.0 (0.0)                 | 50.3 (0.2) | 50.3 (3.3)        | 54.0 (11.4) | 50.0 (0.0) | 44.1 (3.2) | 50.6 (0.3) |
| H                   | PPGSec [36]    | 14.4 (1.4) | 19.1 (2.3)                 | 33.5 (0.5) | 14.0 (2.0)  | 43.6 (1.5) | 24.8 (11.9)                | 31.5 (1.6) | 9.06 (1.4)        | 52.2 (2.2)  | 37.6 (3.9) | 41.4 (3.8) | 54.2 (4.6) |
|                     | CFrPPG-crs     | 4.46 (0.9) | 8.46 (0.3)                 | 31.4 (1.0) | 8.44 (0.6)  | 40.5 (2.6) | 17.0 (7.2)                 | 27.3 (1.5) | 5.02 (1.7)        | 40.4 (2.9)  | 13.8 (8.0) | 36.0 (4.8) | 31.7 (2.8) |
|                     | CFrPPG         | 4.23 (0.3) | 4.81 (0.4)                 | 11.0 (0.3) | 6.71 (1.1)  | 22.7 (0.6) | 6.37 (1.0)                 | 11.0 (0.2) | 3.21 (1.0)        | 22.5 (0.7)  | 2.58 (0.8) | 22.7 (1.4) | 10.4 (0.4) |
|                     | MCCFrPPG       | 3.46 (0.6) | <b>4.78</b> ( <b>0.8</b> ) | 3.76 (0.2) | 3.46 (0.6)  | 9.98 (0.4) | <b>3.71</b> ( <b>0.8</b> ) | 3.99 (0.2) | <b>1.21</b> (0.6) | 10.8 (0.5)  | 2.67(0.9)  | 10.5 (0.7) | 4.08 (0.4) |
|                     | MS-LBP [7]     | 60.7       | 62.2                       | 52.4       | 58.8        | 49.5       | 58.2                       | 53.4       | 75.3              | 52.3        | 54.8       | 68.8       | 64.1       |
|                     | CTA [20]       | 45.9       | 48.6                       | 48.9       | 40.1        | 50.7       | 46.5                       | 52.8       | 84.5              | 48.8        | 61.5       | 67.1       | 62.6       |
|                     | CNN            | 72.1       | 50.4                       | 52.7       | 86.1        | 78.2       | 75.5                       | 76.9       | 88.4              | 62.0        | 83.7       | 81.1       | 67.9       |
| ر<br>ا              | FBNet-RGB [48] | 73.6       | 89.6                       | 56.2       | 74.5        | 56.6       | 52.5                       | 59.1       | 69.3              | 57.0        | 56.1       | 58.1       | 56.0       |
| AUC                 | GrPPG [12]     | 67.2       | 66.5                       | 49.9       | 49.9        | 52.7       | 50.0                       | 49.8       | 49.8              | 48.9        | 50.0       | 59.9       | 50.0       |
|                     | PPGSec [36]    | 91.8       | 87.2                       | 73.5       | 91.8        | 60.7       | 77.2                       | 76.4       | 96.5              | 52.1        | 53.3       | 61.7       | 58.7       |
|                     | CFrPPG-crs     | 98.9       | 95.3                       | 77.3       | 95.8        | 67.0       | 84.7                       | 82.5       | 98.9              | 65.4        | 88.6       | 66.4       | 80.0       |
|                     | CFrPPG         | 99.0       | 98.1                       | 95.0       | 95.7        | 82.6       | 96.3                       | 95.0       | 98.5              | 84.0        | 99.3       | 83.9       | 95.6       |
|                     | MCCFrPPG       | 99.6       | 98.5                       | 99.1       | 97.1        | 95.7       | 98.6                       | 99.3       | 99.8              | 95.3        | 99.7       | 95.1       | 99.3       |
|                     | MS-LBP [7]     | 87.5       | 89.2                       | 86.4       | 87.5        | 89.9       | 83.9                       | 84.9       | 64.1              | 85.4        | 87.1       | 78.2       | 78.3       |
|                     | CTA [20]       | 96.8       | 89.9                       | 90.5       | 94.7        | 88.6       | 93.6                       | 83.2       | 46.3              | 90.3        | 80.2       | 67.3       | 80.6       |
| 1.0                 | CNN            | 86.4       | 90.5                       | 90.7       | 35.4        | 49.3       | 69.1                       | 61.3       | 30.2              | 84.9        | 49.8       | 65.1       | 75.5       |
| @ )=<br>==          | FBNet-RGB [48] | 65.7       | 26.8                       | 86.2       | 95.0        | 80.8       | 87.5                       | 84.2       | 78.0              | 87.1        | 86.0       | 80.4       | 87.0       |
| 自資質                 | GrPPG [12]     | 75.8       | 86.3                       | 89.9       | 90.0        | 85.5       | 90.0                       | 89.8       | 90.0              | 88.7        | 90.0       | 76.7       | 90.0       |
| BPCER@<br>APCER=0.1 | PPGSec [36]    | 16.9       | 26.2                       | 79.6       | 17.1        | 87.4       | 46.5                       | 76.6       | 9.42              | 91.6        | 83.7       | 76.3       | 79.2       |
| P B                 | CFrPPG-crs     | 1.33       | 8.79                       | 80.4       | 8.03        | 63.5       | 46.3                       | 61.6       | 2.25              | 65.1        | 39.2       | 56.7       | 71.6       |
|                     | CFrPPG         | 2.83       | 4.44                       | 12.9       | 9.88        | 51.1       | 8.26                       | 12.4       | 4.13              | 47.8        | 1.29       | 41.7       | 10.9       |
|                     | MCCFrPPG       | 0.25       | 4.00                       | 2.57       | 6.47        | 10.9       | 3.47                       | 2.38       | 0.62              | 12.0        | 0.75       | 11.5       | 2.11       |
|                     | MS-LBP [7]     | 97.0       | 99.5                       | 97.6       | 99.2        | 98.1       | 98.9                       | 96.4       | 98.8              | 97.9        | 99.0       | 96.6       | 95.8       |
|                     | CTA [20]       | 99.3       | 97.4                       | 98.8       | 99.9        | 98.1       | 99.3                       | 95.9       | 93.0              | 98.7        | 96.2       | 88.7       | 97.4       |
| @<br>=0.01          | CNN            | 99.1       | 98.7                       | 99.2       | 71.6        | 94.0       | 93.0                       | 90.8       | 72.6              | 98.2        | 87.7       | 96.6       | 96.3       |
| @ T                 | FBNet-RGB [48] | 97.8       | 66.8                       | 97.3       | 99.9        | 99.0       | 98.5                       | 96.8       | 96.2              | 99.1        | 97.2       | 94.3       | 98.4       |
| 田 田                 | GrPPG [12]     | 97.6       | 98.6                       | 99.4       | 99.7        | 96.5       | 99.0                       | 100.1      | 100.5             | 98.6        | 99.0       | 85.6       | 98.6       |
| BPCER@<br>APCER=0   | PPGSec [36]    | 25.8       | 45.0                       | 94.8       | 36.1        | 98.6       | 64.6                       | 94.8       | 17.3              | 99.9        | 96.0       | 96.2       | 89.5       |
| B]                  | CFrPPG-crs     | 31.2       | 17.0                       | 93.2       | 41.9        | 82.3       | 99.9                       | 88.4       | 31.1              | 81.5        | 98.1       | 75.3       | 94.6       |
|                     | CFrPPG         | 19.9       | 14.3                       | 68.7       | 17.9        | 89.1       | 16.7                       | 68.4       | 13.2              | 85.8        | 17.3       | 76.5       | 66.8       |
|                     | MCCFrPPG       | 7.63       | 8.59                       | 10.8       | 10.7        | 46.9       | 8.09                       | 7.92       | 2.79              | 40.9        | 5.50       | 38.6       | 7.72       |


# Limitations on existing rPPG Methods



Existing rPPG-based 3D mask PAD methods are based on spectrum analysis

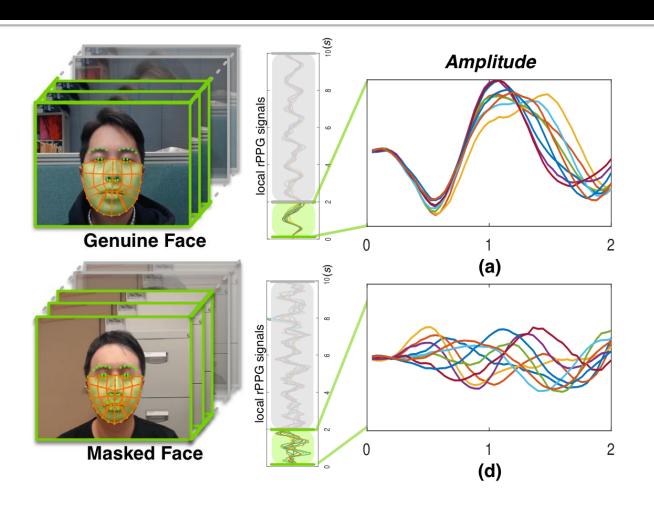
Require long observation time (8-10 seconds) to identify heartbeat information


# Learnable Temporal Similarity Analysis of rPPG (TSrPPG) for Fast 3D Mask Face PAD



#### Reference:

- 1. S Q Liu, XY Lan, and P CYuen, "Temporal Similarity Analysis of Remote Photoplethysmography (TSrPPG) for Fast 3D Mask Face Presentation Attack Detection", WACV, 2020.
- 2. S Q Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", IEEE Transactions on Information Forensics and Security (TIFS), 2022.


# The proposed TSrPPG

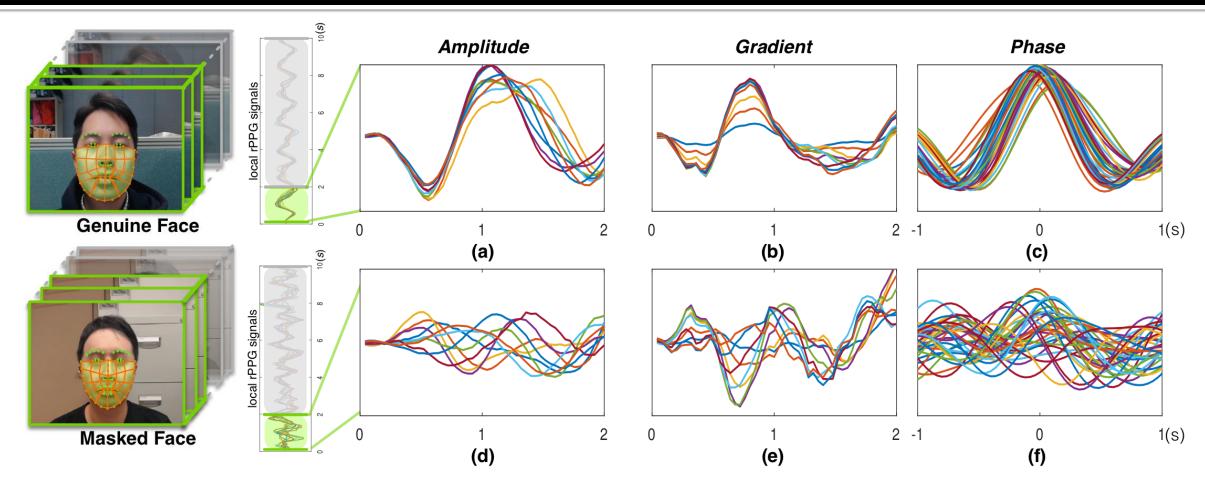


#### Rationale

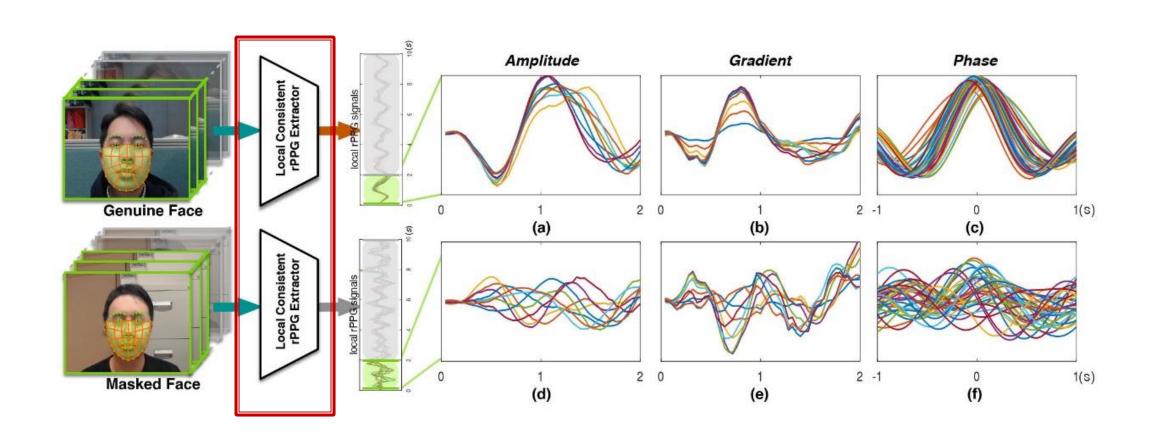
- The periodicity information is not available within short observation time.
  - Hard to adopt spectrum analysis
- Correlation of local rPPG signals on genuine faces is higher compared with those on masked faces.
- Design liveness feature in temporal space

## The proposed TSrPPG

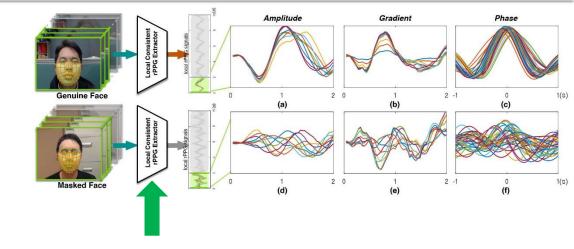


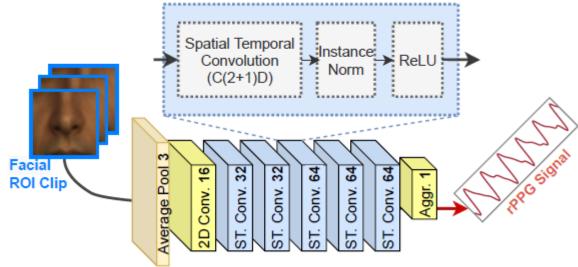

$$TSrPPG_{i,j}[m] = \int_{-\infty}^{+\infty} \mathcal{D}(s_i[t], s_j[t+m]) dt$$

$$-0.5 \qquad 0 \qquad 0.5$$


→ Min, Mean, Std (... etc.)

### The proposed TSrPPG

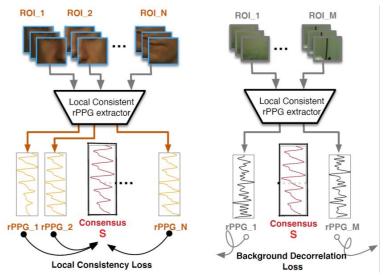

$$TSrPPG_{i,j}[m] = \int_{-\infty}^{+\infty} \mathcal{D}(s_i[t], s_j[t+m]) dt$$

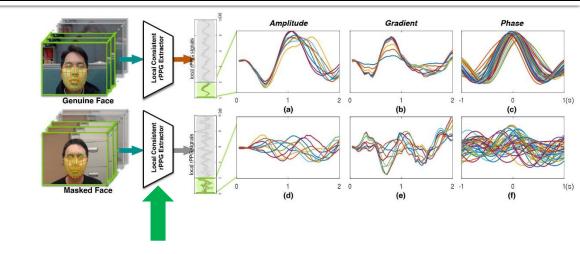


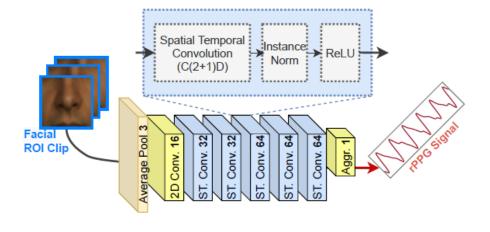

Final result is obtained through score-level-fusion



- Learnable rPPG estimator:
  - Learn robust rPPG feature through 3D convolution

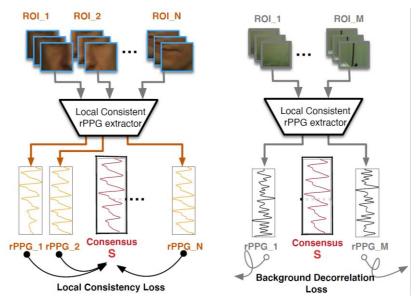


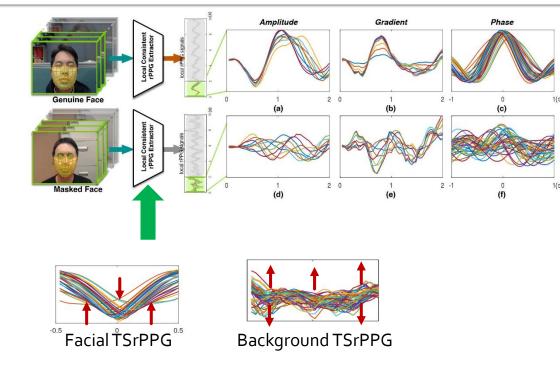





S Q Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", IEEE Transactions on Information Forensics and Security (TIFS), 2022.

#### Learnable rPPG estimator:

- Learn robust rPPG feature through 3D convolution
- Boost the discriminability of TSrPPG using local consistency loss
  - Genuine face: Enhance the temporal similarity
  - Fake face: Reduce the temporal similarity






S Q Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", IEEE Transactions on Information Forensics and Security (TIFS), 2022.

- Learnable rPPG estimator:
  - Learn robust rPPG feature through 3D convolution
  - Further boost the discriminability of TSrPPG
    - Genuine face: Enhance the temporal similarity
    - Fake face: Reduce the temporal similarity





- Improve TSrPPG in rPPG extraction stage
  - Enhance the consistency of local rPPG signals
  - Reduce the correlation between background rPPG and facial rPPG

S Q Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", IEEE Transactions on Information Forensics and Security (TIFS), 2022.

#### Experimental Setting:

|                   |                 |              |           | Lighting  |                 | Face (pixel) |             |
|-------------------|-----------------|--------------|-----------|-----------|-----------------|--------------|-------------|
|                   | #Subjects/Masks | #Video Slots | Mask Type | Condition | Camera          | Resolution   | Compression |
| 3DMAD [13]        | 17 17           | 2550         | TMF       | 1(Studio) | Kinect          | 80×80        | Motion JPEG |
| HKBU-MARsV1+ [15] | 12 12           | 2160         | TMF+RF    | 1(Room)   | Logitech C920   | 200×200      | H.264       |
| CSMAD [30]        | 14 6            | 1582         | Silicon   | 4         | RealSense SR300 | 350×350      | H.264       |
| HKBU-MARsV2+      | 16 16           | 12480        | TMF+RF    | 6         | 3               | 3            | 2           |
| Summary           | 59 39           | 18772        | 3         | 12        | 6               | 5*           | 2           |







(a) ThatsMyface

(b) REAL-f

(c) Silicone

- Evaluation Protocols:
  - Intra-dataset evaluation
    - Leave one subject out cross validation (LOOCV)
  - Cross-dataset evaluation
    - Train and test on different datasets

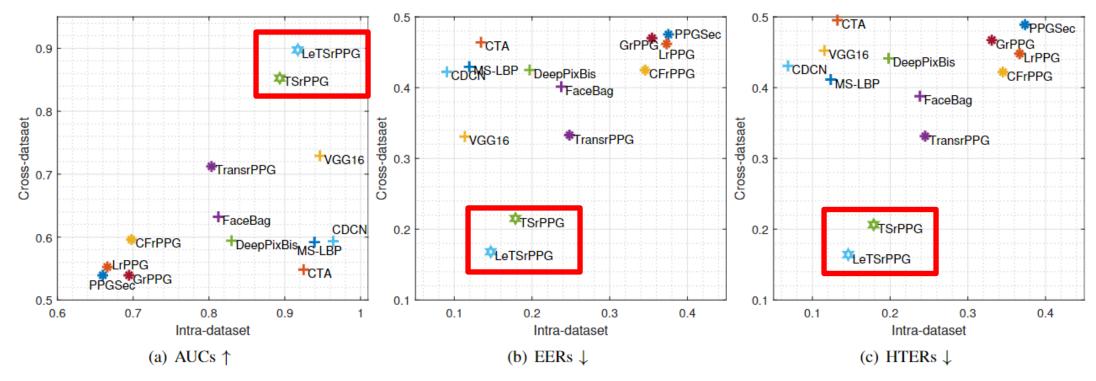


#### Intra dataset evaluation with short observation time (1 second):

|           | HTER_dvlp      | HTER_test                        | EER  | AUC  |
|-----------|----------------|----------------------------------|------|------|
| GrPPG     | $34.1 \pm 5.7$ | $33.7 \pm 11.6$                  | 38.3 | 65.9 |
| PPGSec    | $33.3 \pm 3.1$ | $33.0 \pm 8.1$                   | 34.8 | 69.4 |
| LrPPG     | $45.2 \pm 3.2$ | $44.8 \pm 8.8$                   | 45.3 | 55.7 |
| CFrPPG    | $32.8 \pm 1.7$ | $32.7 \pm 7.4$                   | 32.5 | 70.8 |
| TransrPPG | $20.7 \pm 2.2$ | $20.6 \pm 8.3$                   | 20.8 | 84.5 |
| TSrPPG    | $13.1 \pm 3.0$ | $13.4 \pm 11.2$                  | 13.3 | 93.8 |
| LeTSrPPG  | $11.5 \pm 2.7$ | $\textbf{11.8} \pm \textbf{8.6}$ | 11.9 | 94.4 |

|           | HTER_dvlp                        | HTER_test                        | EER  | AUC  |
|-----------|----------------------------------|----------------------------------|------|------|
| GrPPG     | $29.2 \pm 4.7$                   | $29.1 \pm 9.7$                   | 33.8 | 72.0 |
| PPGSec    | $42.4 \pm 2.1$                   | $42.9 \pm 5.8$                   | 43.0 | 59.3 |
| LrPPG     | $45.3 \pm 3.7$                   | $45.1 \pm 12.0$                  | 45.3 | 56.2 |
| CFrPPG    | $41.6 \pm 3.3$                   | $42.1 \pm 5.6$                   | 42.0 | 60.8 |
| TransrPPG | $32.9 \pm 2.8$                   | $32.7 \pm 6.4$                   | 33.1 | 72.0 |
| TSrPPG    | $21.5 \pm 2.6$                   | $22.3 \pm 8.8$                   | 22.0 | 85.2 |
| LeTSrPPG  | $\textbf{15.3} \pm \textbf{2.2}$ | $\textbf{15.8} \pm \textbf{6.5}$ | 15.7 | 91.5 |

3DMAD


#### HKBU-MARsV1+

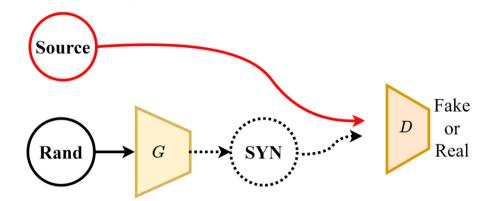
|                | 3DMAD |             |      | HKBUMARsV1+ |      |      |      |      |
|----------------|-------|-------------|------|-------------|------|------|------|------|
|                | 1s    | 2s          | 3s   | 4s          | 1s   | 2s   | 3s   | 4s   |
| GrPPG [14]     | 65.9  | 79.1        | 84.6 | 87.7        | 72.0 | 79.2 | 80.3 | 82.3 |
| LrPPG [13]     | 69.4  | 84.1        | 89.3 | 92.0        | 59.3 | 71.5 | 78.8 | 84.5 |
| PPGSec [40]    | 55.7  | 68.3        | 74.5 | 80.0        | 56.2 | 74.4 | 76.7 | 79.8 |
| CFrPPG [15]    | 70.8  | 88.1        | 93.1 | 94.4        | 60.8 | 78.6 | 85.8 | 89.0 |
| TransrPPG [41] | 84.5  | 87.3        | 89.4 | 88.1        | 72.0 | 76.8 | 77.6 | 79.6 |
| TSrPPG         | 93.8  | 97.0        | 97.7 | 98.4        | 85.2 | 89.0 | 89.9 | 90.3 |
| LeTSrPPG       | 94.4  | <b>97.1</b> | 98.0 | 98.6        | 91.5 | 96.0 | 97.3 | 98.0 |

Performance (AUC) with different length of observation

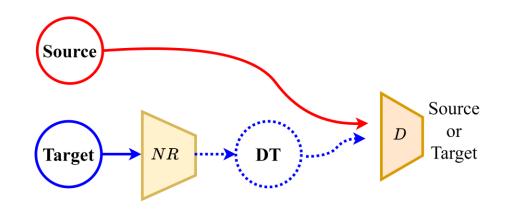
SQ Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", IEEE Transactions on Information Forensics and Security (TIFS), 2022.

- Overall comparison with state of the arts for both intra and cross dataset evaluation (1 second)
  - TSrPPG and LeTSrPPG achieve the best robustness and top-level discriminability



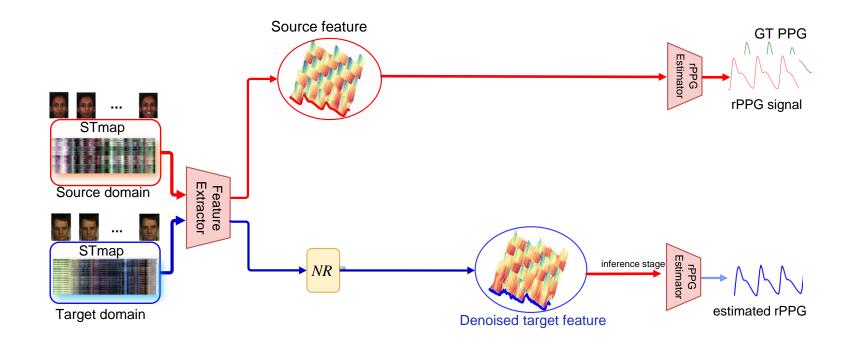

SQ Liu, XY Lan and P CYuen, "Learning Temporal Similarity of Remote Photoplethysmography for Fast 3D Mask Face Presentation Attack Detection", IEEE Transactions on Information Forensics and Security (TIFS), 2022.

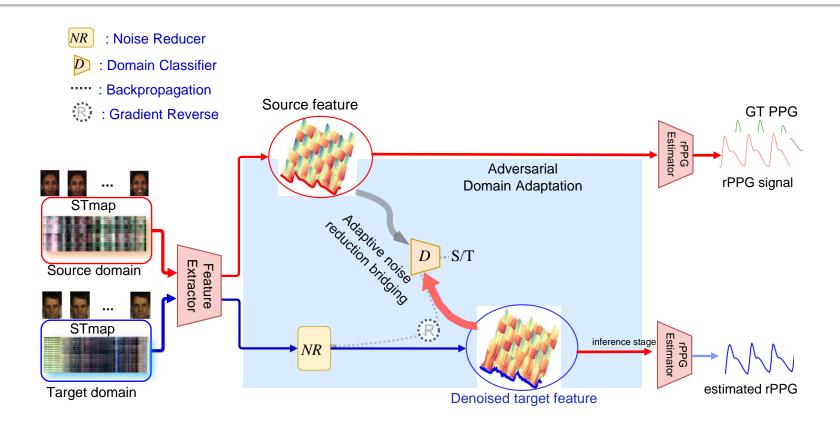
## How to improve the robustness and generalization of rPPG estimation?

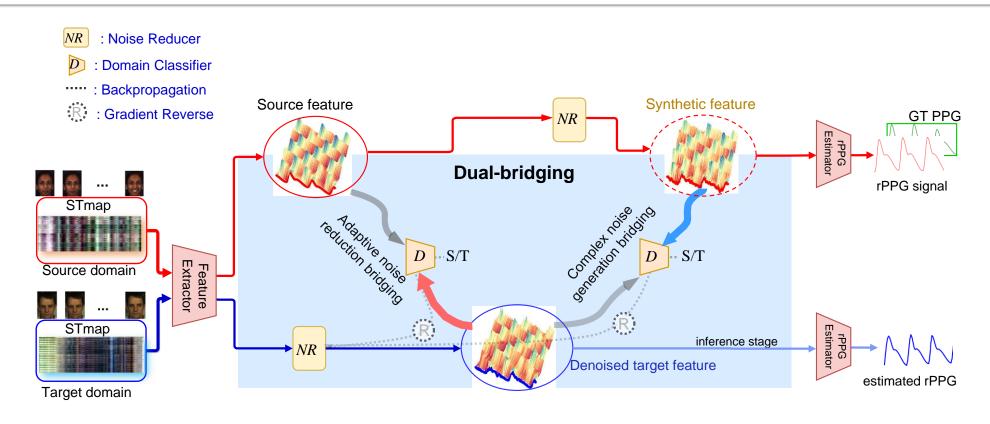

#### **Existing Approaches for Cross Domain Estimation**

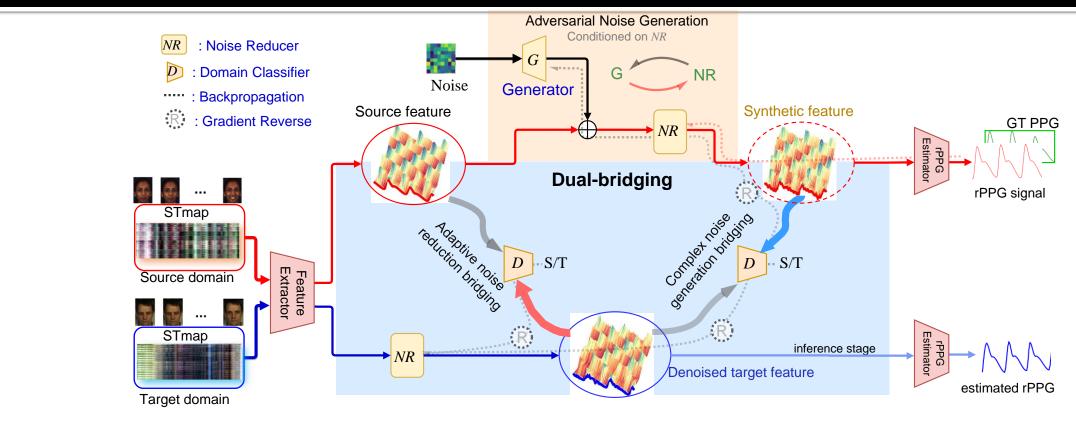
#### **Problems:**

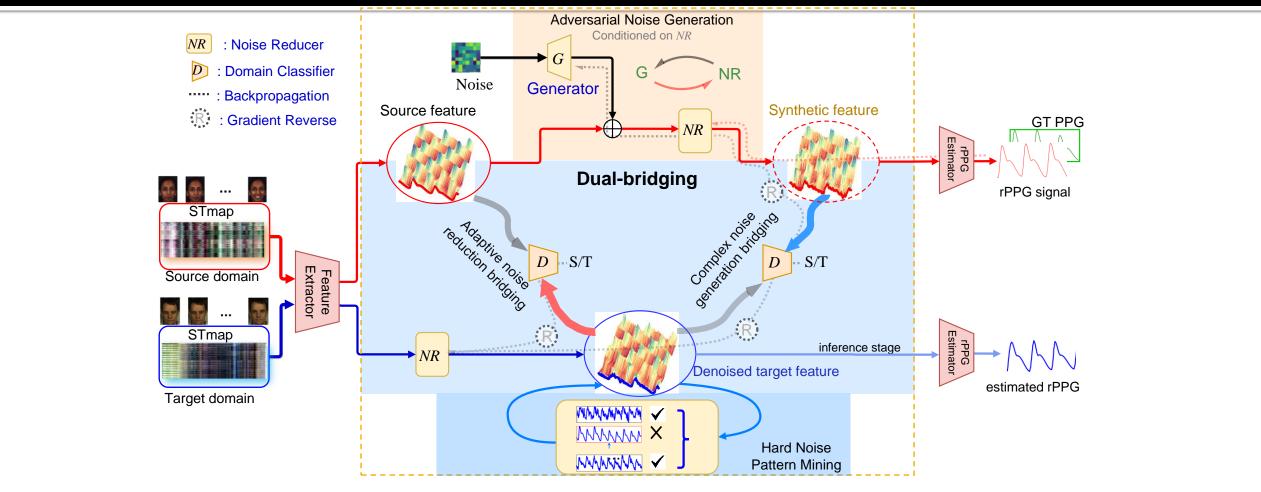
- Robust rPPG estimation
- Generalised to unseen interference
- > Solution 1: GAN-based
  - Perform well under intra-dataset evaluation
  - Not aim to handle unseen scenarios





- Solution 2: Unsupervised domain adaptation
  - Denoise -> domain invariant feature
  - Success experience in natural image tasks
  - Domain classification may not give sufficient information in rPPG regression task





[1] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The journal of machine learning research, 2016.
 [2] G. Wei, C. Lan, W. Zeng, Z. Zhang, and Z. Chen, "Toalign: Task-oriented alignment for unsupervised domain adaptation," Advances in Neural Information Processing Systems, vol. 34, 2021


NR: Noise Reducer











- 4 datasets
  - PURE, MMSE-HR, UBFC, **COHFACE**
- > Variations:
  - Illumination
  - Facial motion and expression,
  - Camera and video compression
  - Skin tone
  - Heartbeat ranges











Head translation











(a) PURE

(b) MMSE-HR









(c) UBFC

(d) COHFACE

Side light

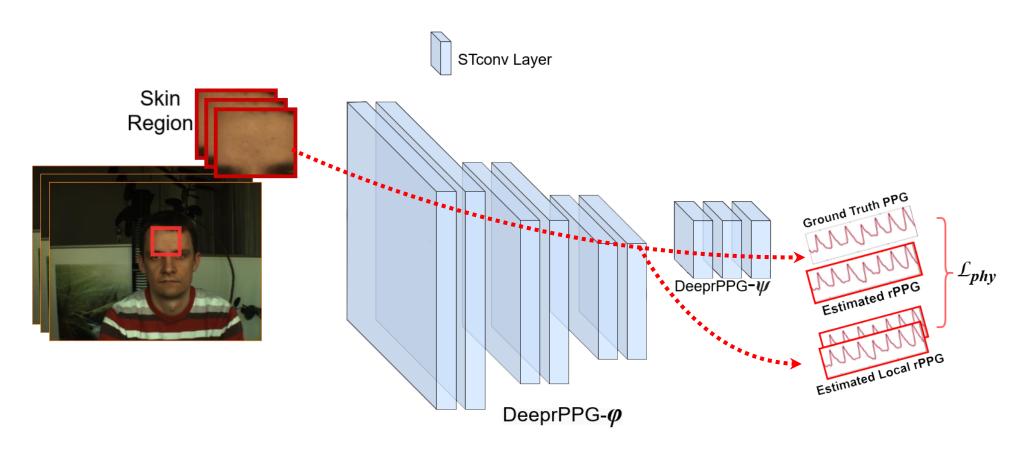
Taskindependent evaluation on MMSE-HR dataset

| Method                | MAE  | RMSE  | r    |
|-----------------------|------|-------|------|
| Li2014 [16]           | -    | 19.95 | 0.38 |
| CHROM [5]             | -    | 13.97 | 0.55 |
| Tulyakov2016 [39]     | -    | 11.37 | 0.71 |
| ST-Attention* [29]    | -    | 10.10 | 0.64 |
| RhythmNet [27]        | -    | 5.03  | 0.86 |
| CVD* [28]             | -    | 6.04  | 0.84 |
| PhysNet [47]          | -    | 13.25 | 0.44 |
| DeepPhys [3]          | 4.43 | 9.98  | 0.80 |
| TS-CAN [21]           | 3.85 | 7.21  | 0.86 |
| AutoHR [45]           | -    | 5.87  | 0.89 |
| BVPNet [4]            | -    | 7.47  | 0.79 |
| Federated2022 [23]    | 2.99 | 2.42  | 0.79 |
| EfficientPhys-C [22]  | 2.91 | 5.43  | 0.92 |
| EfficientPhys-T1 [22] | 3.48 | 7.21  | 0.86 |
| PhysFormer* [49]      | 2.84 | 5.36  | 0.92 |
| ERM [12]              | 1.30 | 2.58  | 0.99 |
| DANN [7]              | 1.24 | 2.71  | 0.99 |
| CST [17]              | 1.20 | 2.42  | 0.99 |
| Ours                  | 0.85 | 2.05  | 0.99 |

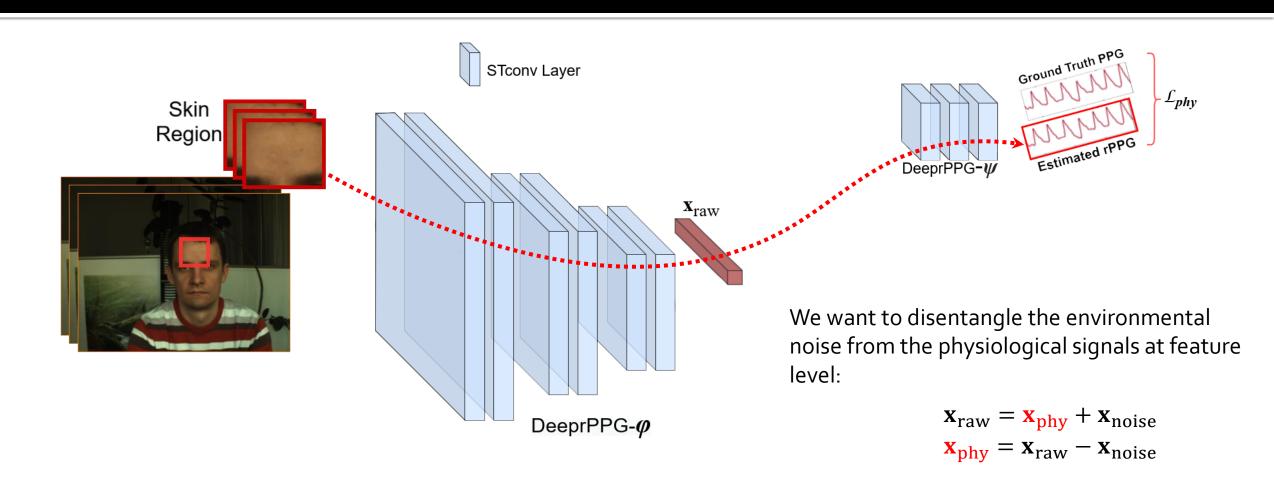
| Method             | MAE  | RMSE | r     |
|--------------------|------|------|-------|
| GREEN [40]         | 4.47 | 11.6 | 0.842 |
| ICA [32]           | 3.51 | 8.64 | 0.908 |
| CHROM [5]          | 3.44 | 4.61 | 0.968 |
| POS [41]           | 2.44 | 6.61 | 0.936 |
| CK [35]            | 2.29 | 3.80 | 0.981 |
| Frédéric [2]       | 5.45 | 8.64 | -     |
| HeartTrack [31]    | 2.41 | 3.37 | 0.983 |
| ETA-rPPGNet [10]   | 1.46 | 3.97 | 0.93  |
| DAE [34]           | 1.48 | 2.49 | 0.97  |
| PulseGAN [34]      | 1.19 | 2.10 | 0.98  |
| Meta-rPPG [13]     | 5.97 | 7.42 | 0.53  |
| CVD [28]           | 2.19 | 3.12 | 0.99  |
| Gideon2021 [8]     | 3.6  | 4.6  | 0.95  |
| Federated2022 [23] | 2.00 | 4.38 | 0.93  |
| Dual-GAN [24]      | 0.44 | 0.67 | 0.99  |
| ContrastPhys [37]  | 0.64 | 1.00 | 0.99  |
| ERM [12]           | 0.75 | 1.84 | 0.99  |
| DANN [7]           | 0.58 | 1.19 | 0.99  |
| CST [17]           | 0.41 | 1.04 | 0.99  |
| Ours               | 0.16 | 0.57 | 0.99  |

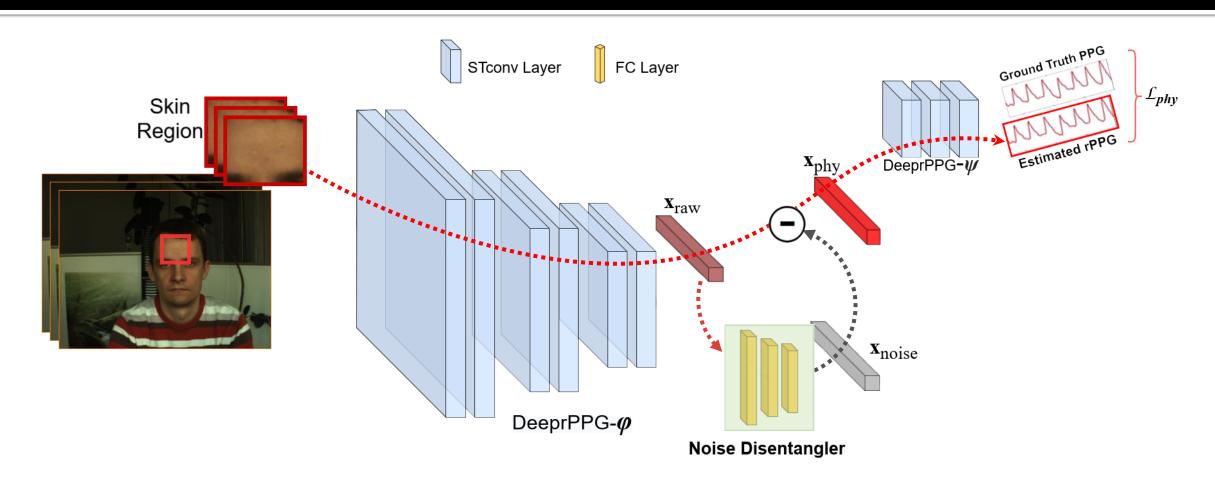
Participantindependent evaluation on UBFC-rPPG dataset

<sup>\*</sup> Trained on VIPL-HR datasets due to the large model-scale

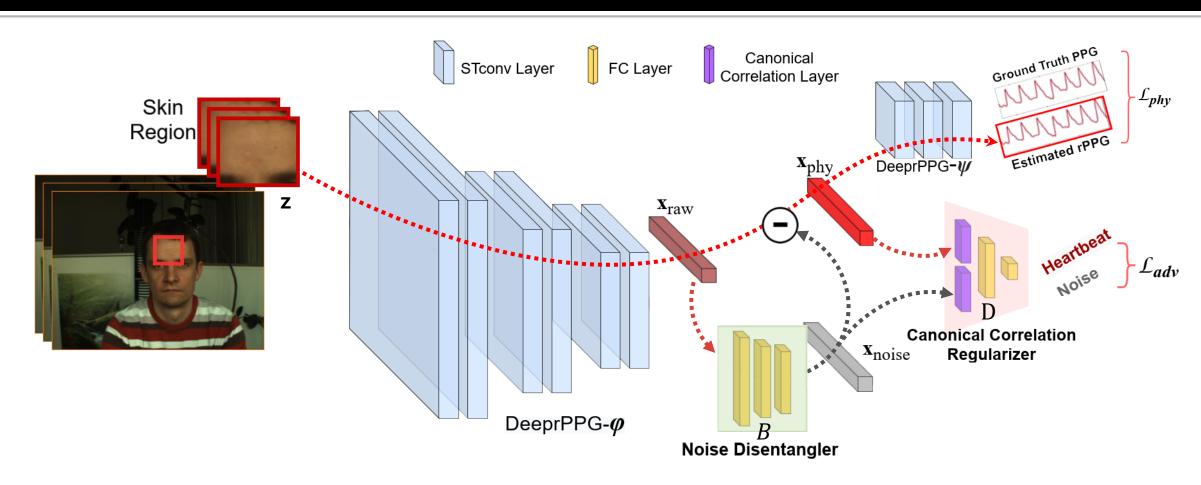

|                  | MMSI | $MMSE\text{-HR} \to PURE$ |      |      | $PURE \rightarrow MMSE\text{-}HR$ |      |  |
|------------------|------|---------------------------|------|------|-----------------------------------|------|--|
| Method           | MAE  | RMSE                      | r    | MAE  | RMSE                              | r    |  |
| CHROM [5]        | 3.25 | 12.92                     | 0.84 | 5.72 | 12.69                             | 0.58 |  |
| POS [41]         | 2.83 | 12.49                     | 0.85 | 4.98 | 13.11                             | 0.53 |  |
| CVD [28]         | 2.75 | 3.98                      | 0.98 | 4.08 | 7.03                              | 0.84 |  |
| ERM [12]         | 2.49 | 8.48                      | 0.93 | 2.59 | 5.44                              | 0.96 |  |
| DANN [7]         | 2.69 | 6.97                      | 0.95 | 2.84 | 7.65                              | 0.93 |  |
| CST [17]         | 1.27 | 2.96                      | 0.99 | 2.32 | 5.97                              | 0.96 |  |
| EfficientT1 [22] | -    | -                         | -    | 3.04 | 5.91                              | 0.92 |  |
| PhysFormer [49]  | -    | -                         | -    | 2.84 | 5.36                              | 0.92 |  |
| Synthetic [25]   | -    | -                         | -    | 2.26 | 3.70                              | 0.97 |  |
| Ours             | 1.10 | 1.67                      | 0.99 | 1.71 | 3.72                              | 0.98 |  |

**Cross-datasets** 


## How to further improve the noise robustness of rPPG estimation?

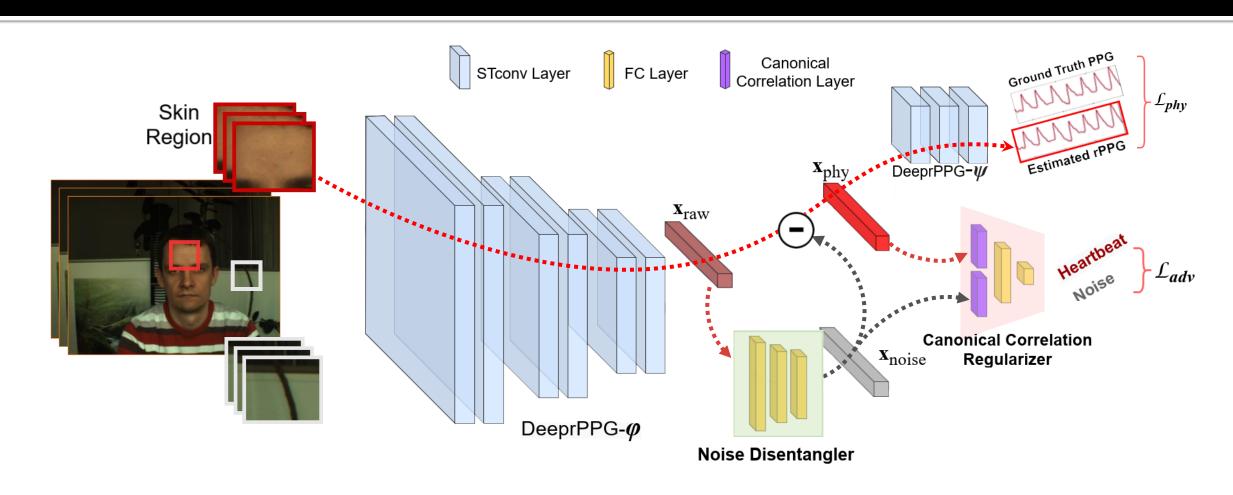

[TIP 24]

#### DeeprPPG backbone

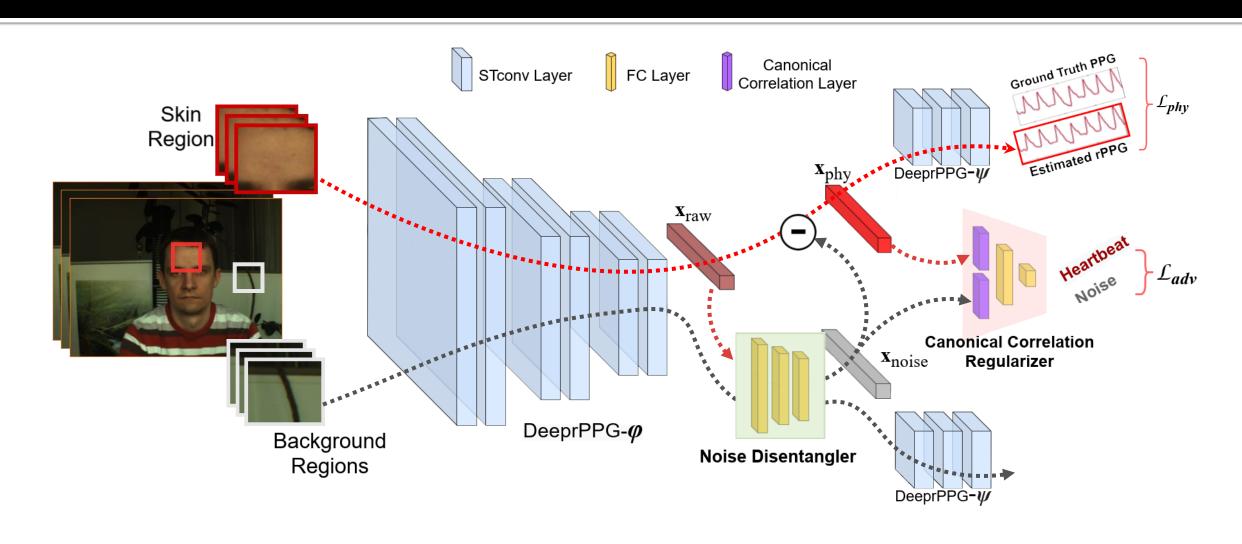


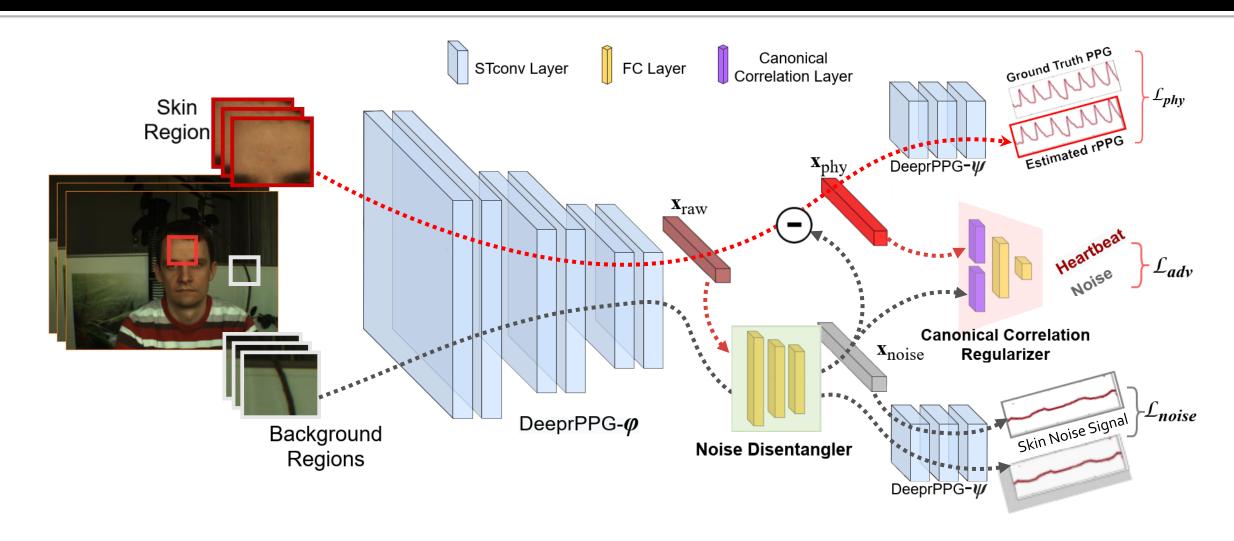

- 1. SQ. Liu and PC. Yuen, "A General Remote Photoplethysmography Estimator with Spatiotemporal Convolutional Network," FG, 2020.
- 2. S Q Liu and P CYuen, "Robust Remote Photoplethysmography Estimation With Environmental Noise Disentanglement" TIP, In Press, 2024



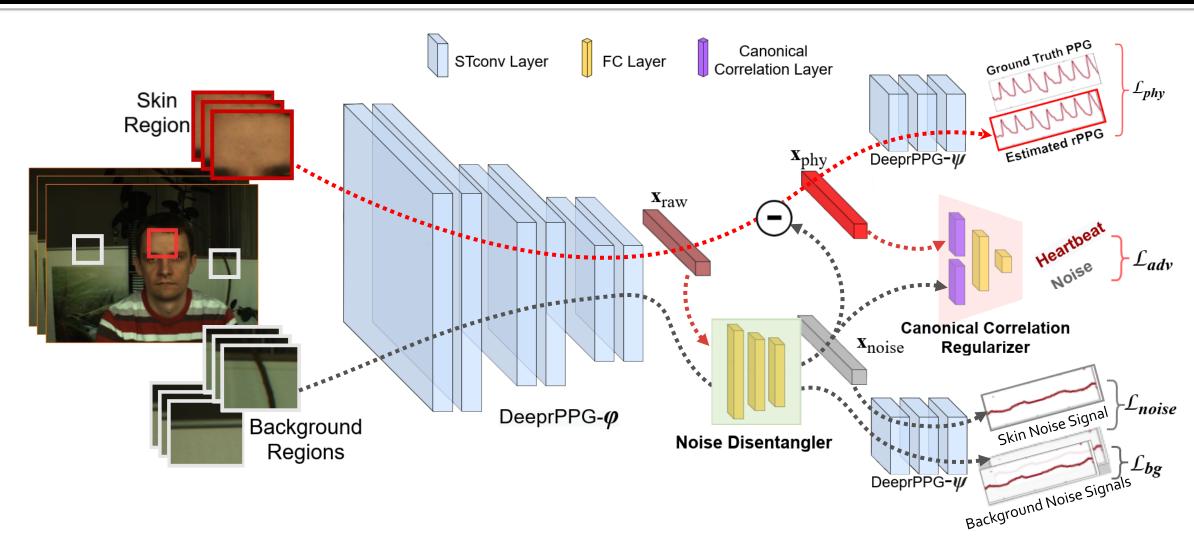



Disentangle the environmental noise  $x_{noise}$  from the observed raw signal feature x





Adversarial training: two-player min-max game:

$$L_{adv} = \min_{D} \max_{\varphi, B} Dist(D(\varphi(\mathbf{z}) - B(\varphi(\mathbf{z}))), D(B(\varphi(\mathbf{z})))$$




Use background regions as reference to train the Noise Disentangler B(x)





The noise rPPG signals extracted from skin region and background region should be similar



The noise rPPG signals extracted different background regions should be similar to each other

#### Datasets

- PURE
  - 6 statuses: steady sitting, talking, slow head translation, fast head translation, small head rotation, and medium head rotation
  - Industrial camera, uncompressed video storage.
- COHFACE
  - 2 lighting conditions: (a) studio light (b) natural side
  - Web camera, compressed video storage.
- UBFC
  - Small head movement (Subjects are asked to play a time sensitive mathematical game)
  - Larger heart rate variation (80-120 bpm)
  - Logitech C920, uncompressed video storage
- MMSE-HR
  - Spontaneous larger facial expressions and head motions
  - dark skin tones
- MAHNOB-HCI
  - subjects are stimulated with emotion-eliciting clips and behave with corresponding facial expressions and head motions

- Evaluation of average HR on PURE, COHFACE, UBFC
  - Performance metrics:
    - RMSE (root mean square error)
    - MAE (mean absolute error)
    - Pearson correlation R

|             | MAE (bpm) | RMSE (bpm) | R     |
|-------------|-----------|------------|-------|
| 2SR         | 2.44      | 3.06       | 0.98  |
| CHROM       | 2.07      | 2.50       | 0.99  |
| LiCVPR      | 28.22     | 30.96      | -0.38 |
| HR-CNN      | 1.84      | 2.37       | 0.98  |
| CVD         | 27.0      | 28.5       | 0.11  |
| DeeprPPG    | 0.28      | 0.43       | 0.999 |
| ND-DeeprPPG | 0.18      | 0.41       | 0.999 |

Evaluation results on PURE

| MAE (bpm) | RMSE (bpm)                                                                                                | R                                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 8.16      | 13.99                                                                                                     | 0.36                                                                                                                                        |
| 5.87      | 11.26                                                                                                     | 0.55                                                                                                                                        |
| 8.20      | 14.09                                                                                                     | 0.39                                                                                                                                        |
| 8.44      | 13.74                                                                                                     | 0.34                                                                                                                                        |
| 19.98     | 25.59                                                                                                     | -0.44                                                                                                                                       |
| 20.98     | 25.84                                                                                                     | -0.32                                                                                                                                       |
| 6.58      | 11.90                                                                                                     | 0.49                                                                                                                                        |
| 8.10      | 10.78                                                                                                     | 0.29                                                                                                                                        |
| 2] 8.09   | 9.96                                                                                                      | 0.40                                                                                                                                        |
| 5.89      | -                                                                                                         | 0.62                                                                                                                                        |
| 2.08      | 4.80                                                                                                      | 0.91                                                                                                                                        |
| 14.2      | 17.7                                                                                                      | 0.01                                                                                                                                        |
| 3.07      | 7.06                                                                                                      | 0.86                                                                                                                                        |
| 0.64      | 1.89                                                                                                      | 0.98                                                                                                                                        |
|           | 8.16<br>5.87<br>8.20<br>8.44<br>19.98<br>20.98<br>6.58<br>8.10<br>2] 8.09<br>5.89<br>2.08<br>14.2<br>3.07 | 8.16 13.99 5.87 11.26 8.20 14.09 8.44 13.74 19.98 25.59 20.98 25.84 6.58 11.90 8.10 10.78 2] 8.09 9.96 5.89 - 2.08 4.80 14.2 17.7 3.07 7.06 |

Evaluation results on COHFACE

|                           | MAE   | RMSE  |       |
|---------------------------|-------|-------|-------|
|                           | (bpm) | (bpm) | R     |
| GREEN                     | 4.47  | 11.6  | 0.842 |
| ICA [1]                   | 3.51  | 8.64  | 0.908 |
| CHROM[2]                  | 3.44  | 4.61  | 0.968 |
| POS[4]                    | 2.44  | 6.61  | 0.936 |
| CK [5]                    | 2.29  | 3.80  | 0.981 |
| Frédéric <sup>[6]</sup>   | 5.45  | 8.64  | -     |
| Meta-rPPG[8]              | 5.97  | 7.42  | 0.53  |
| HeartTrack <sup>[7]</sup> | 2.41  | 3.37  | 0.983 |
| CVD[9]                    | 18.8  | 23.9  | 0.10  |
| DeeprPPG                  | 0.67  | 1.70  | 0.995 |
| ND-DeeprPPG               | 0.31  | 0.98  | 0.999 |
|                           |       |       |       |

**Evaluation results on UBFC** 

- [1] Poh et.al., "Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.". Optical Society of America, 2010
- [2] G. de Haan et al., "Robust pulse rate from chrominance-based rppg", TBE, 2013
- [3] R. Spetlik et al., "Visual heart rate estimation with convolutional neural network", BMVC, 2018
- [4] Wang et.al., "Algorithmic principles of remote PPG", TBE, 2015
- [5] Song et.al., "New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method", Computers in Biology and Medicine, 2020
- [6] Frederic et.al., "3d convolutional neural networks for remote pulse rate measurement and mapping from facial video", Applied Sciences, 2019
- [7] Olga et.al., "HeartTrack: Convolutional neural network for remote video-based heart rate monitoring", CVPRW, 2020
- [8] Lee et.al., "Meta-rppg: Remote heart rate estimation using a transductive meta-learner", ECCV, 2020
- [9] Niu et.al., "Video-based Remote Physiological Measurement via Cross-verified Feature Disentangling", ECCV, 2020
- [10] Song et.al., "Remote Photoplethysmography with an EEMD-MCCA Method Robust Against Spatially Uneven Illuminations", Sensors Journal, 2021
- [11] P.Gupta et.al., "Mombat: Heart Rate Monitoring from Face Video using Pulse Modeling and Bayesian Tracking", Computers in biology and medicine, 2020
- [12] Wang et.al., "Vision-Based Heart Rate Estimation via a Two-Stream CNN", ICIP, 2019

## Qualitative comparisons

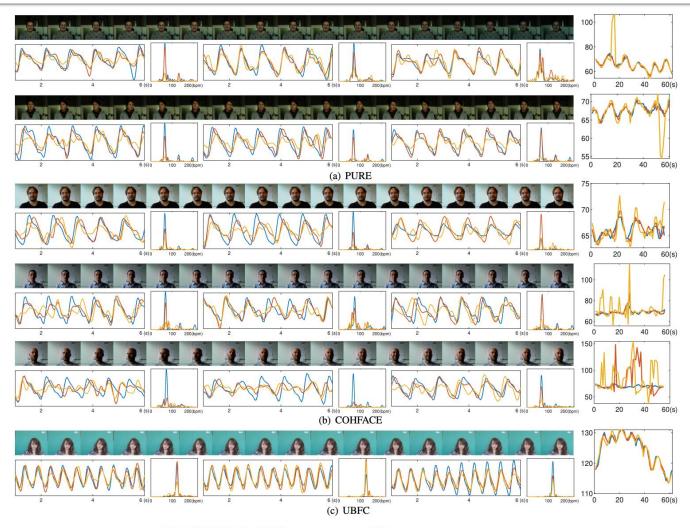
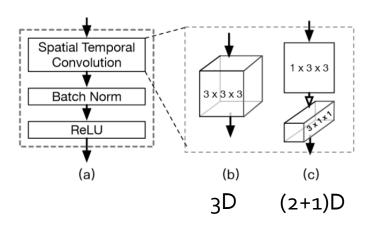


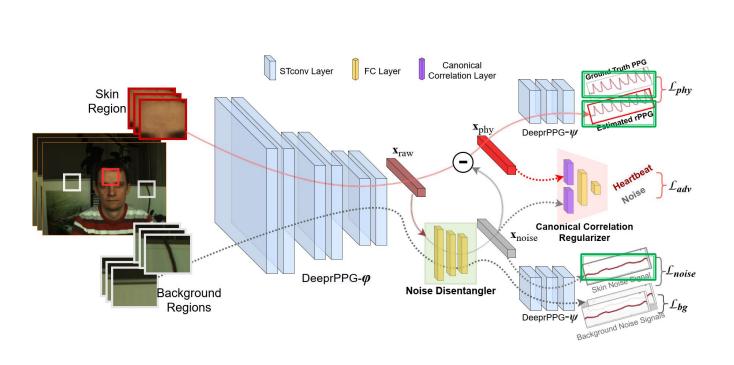

Fig. 9. Qualitative comparisons of DeeprPPG, ND-DeeprPPG, and ground-truth PPG on PURE, COHFACE, and UBFC dataset. rPPG signal slots and corresponding spectrums are visualized. Right column shows the HR trace where each point of HR (bmp) is obtained from 6 secs. signal. with stride = 1sec

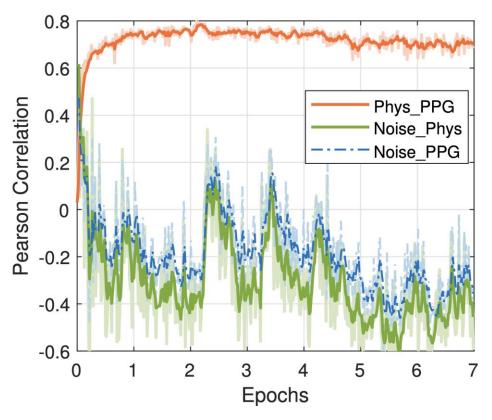
#### Ablation Study


| Components          |                     |                       | COHFACE            |           |            |      |
|---------------------|---------------------|-----------------------|--------------------|-----------|------------|------|
| $\mathcal{L}_{phy}$ | $\mathcal{L}_{adv}$ | $\mathcal{L}_{noise}$ | $\mathcal{L}_{bg}$ | MAE (bpm) | RMSE (bpm) | R    |
| $\overline{}$       |                     |                       |                    | 3.07      | 7.06       | 0.86 |
| ✓                   | $\checkmark$        |                       |                    | 1.67      | 5.85       | 0.94 |
| ✓                   | ✓                   | $\checkmark$          |                    | 1.11      | 3.90       | 0.94 |
|                     | ✓                   | ✓                     | ✓                  | 0.64      | 1.89       | 0.98 |

Ablation study of the four components of ND-DeeprPPG on COHFACE dataset

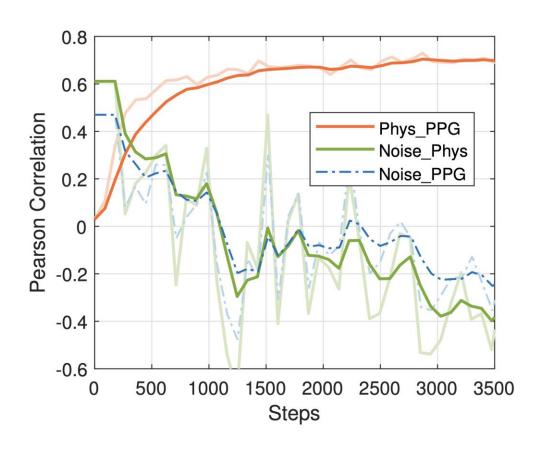
#### Different Backbone

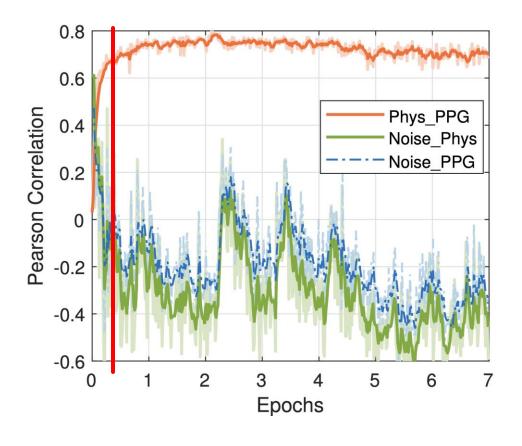

|                                         | MAE (bpm) | RMSE (bpm) | R    |
|-----------------------------------------|-----------|------------|------|
| DeeprPPG((2+1)D)                        | 3.07      | 7.06       | 0.86 |
| DeeprPPG(3D)                            | 2.05      | 6.80       | 0.82 |
| $\overline{\text{ND-DeeprPPG}((2+1)D)}$ | 0.95      | 2.84       | 0.98 |
| ND-DeeprPPG(3D)                         | 0.84      | 2.86       | 0.97 |


Evaluation the effectiveness of ND-DeeprPPG using different spatiotemporal convolutions on COHFACE dataset



### Visualization of the Disentangling Process


- Visualize the correlation of rPPG signals of  $\psi(\mathbf{x}_{phy})$  and  $\psi(\mathbf{x}_{noise})$ :






### Visualization of the Disentangling Process

- Visualize the correlation of rPPG signals of  $\psi(\mathbf{x}_{phy})$  and  $\psi(\mathbf{x}_{noise})$ :





#### Cross-dataset evaluation between PURE, COHFACE, and UBFC

|                 | PURE→COHFACE |       |      | COHFACE→PURE |       |       |
|-----------------|--------------|-------|------|--------------|-------|-------|
|                 | MAE          | RMSE  |      | MAE          | RMSE  |       |
|                 | (bpm)        | (bpm) | R    | (bpm)        | (bpm) | R     |
| HR-CNN*         | -            | -     | -    | 8.72         | 11.0  | 0.70  |
| Two-stream CNN* | -            | -     | -    | 9.81         | 11.81 | 0.42  |
| DeeprPPG        | 7.66         | 13.35 | 0.46 | 6.55         | 20.83 | 0.54  |
| ND-DeeprPPG     | 3.04         | 7.10  | 0.78 | 0.29         | 0.62  | 0.997 |

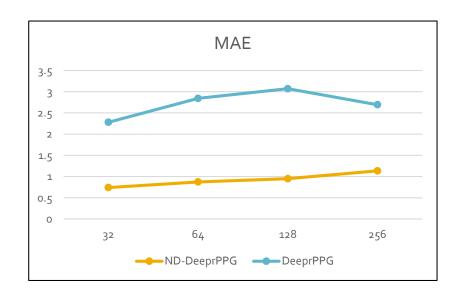
|             | UBFC→COHFACE |       |      | $COHFACE \rightarrow UBFC$ |       |       |
|-------------|--------------|-------|------|----------------------------|-------|-------|
|             | MAE          | RMSE  |      | MAE                        | RMSE  |       |
|             | (bpm)        | (bpm) | R    | (bpm)                      | (bpm) | R     |
| DeeprPPG    | 4.0          | 10.6  | 0.70 | 4.52                       | 9.69  | 0.86  |
| ND-DeeprPPG | 2.39         | 6.65  | 0.84 | 0.49                       | 1.12  | 0.998 |

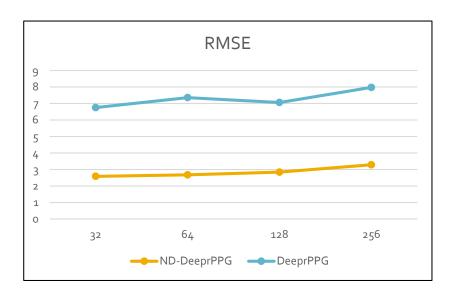
|             | PURE→UBFC |       |       | $UBFC \rightarrow PURE$ |       |       |  |
|-------------|-----------|-------|-------|-------------------------|-------|-------|--|
|             | MAE↓      | RMSE↓ | R↑    | MAE↓                    | RMSE↓ | R↑    |  |
| DAE         | 2.70      | 5.17  | 0.96  | -                       | -     | -     |  |
| PulseGAN    | 2.09      | 4.42  | 0.97  | -                       | -     | -     |  |
| Dual-GAN    | 0.74      | 1.02  | 0.997 | -                       | -     | -     |  |
| DeepPhys    | 1.02      | 2.53  | 0.99  | 5.80                    | 17.1  | 0.71  |  |
| PhysNet     | 1.99      | 4.49  | 0.97  | 8.39                    | 19.2  | 0.71  |  |
| TS-CAN      | 0.99      | 2.41  | 0.99  | 5.75                    | 16.3  | 0.74  |  |
| DeeprPPG    | 2.30      | 4.15  | 0.97  | 0.29                    | 0.63  | 0.997 |  |
| ND-DeeprPPG | 0.34      | 0.98  | 0.999 | 0.17                    | 0.35  | 0.999 |  |

- DeeprPPG for 3D mask face PAD
  - Extract local rPPG signals from forehead, cheek and low-face region



Apply LrPPG on the extracted 3 local rPPG signals


|             | 3DMAD       |              |        | HKBU-MARsV1+ |             |              |       |        |
|-------------|-------------|--------------|--------|--------------|-------------|--------------|-------|--------|
|             | HTER_dev(%) | HTER_test(%) | EER(%) | AUC(%)       | HTER_dev(%) | HTER_test(%) | EER   | AUC(%) |
| CHROM       | 10.82       | 11.65        | 11.68  | 94.69        | 8.83        | 10.10        | 9.81  | 96.48  |
| DeeprPPG    | 16.46       | 17.15        | 17.04  | 89.68        | 37.67       | 38.83        | 38.28 | 64.90  |
| ND-DeeprPPG | 8.42        | 8.81         | 8.51   | 94.77        | 1.88        | 2.67         | 2.19  | 99.14  |

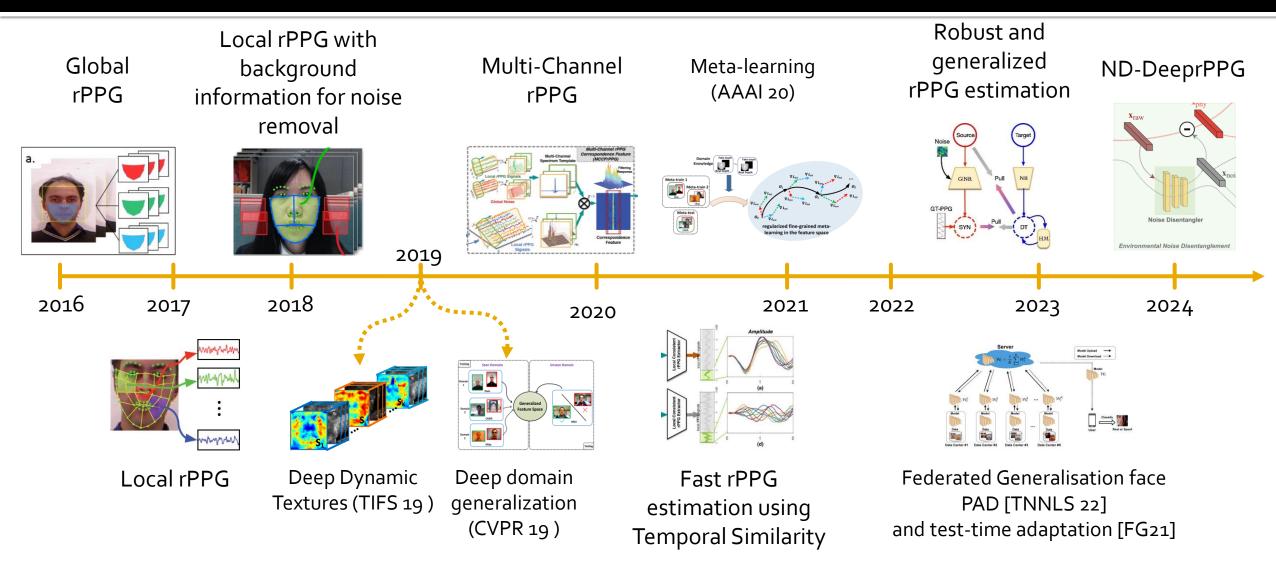

Intra-dataset evaluation on 3DMAD and HKBU MARs V1+ using LrPPG with different rPPG extractor

|             | HKBU-MARsV1+→3DMAD |        |        | 3DMAD→HKBU-MARsV1+ |       |        |  |
|-------------|--------------------|--------|--------|--------------------|-------|--------|--|
|             | HTER_test(%)       | EER(%) | AUC(%) | HTER_test(%)       | EER   | AUC(%) |  |
| CHROM       | 12.47              | 12.47  | 93.97  | 11.23              | 10.90 | 94.88  |  |
| DeeprPPG    | 48.25              | 51.03  | 50.03  | 40.83              | 47.42 | 54.39  |  |
| ND-DeeprPPG | 7.24               | 7.76   | 95.76  | 2.81               | 3.42  | 99.12  |  |

Cross-dataset evaluation between 3DMAD and HKBU MARs V1+ using LrPPG with different rPPG extractor

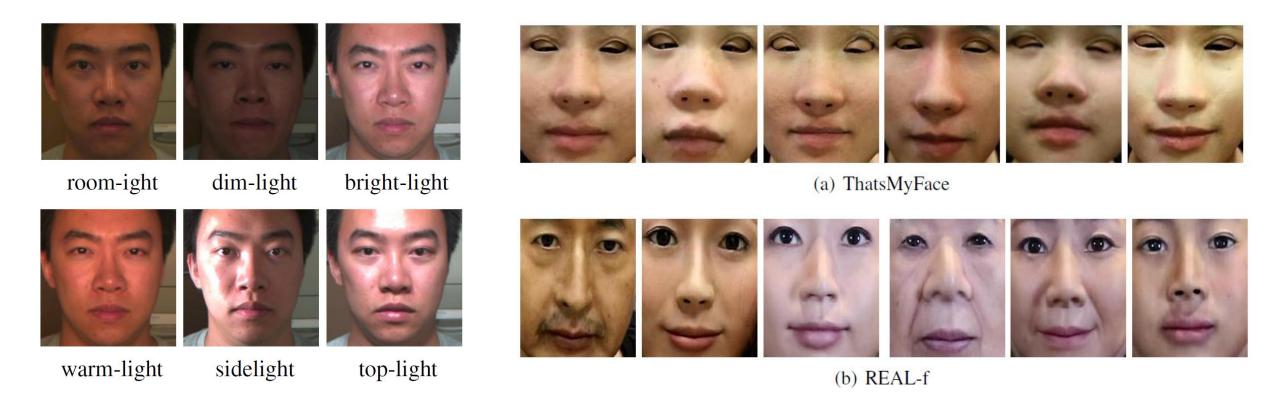

- Performance comparison with various training video clip lengths: T=32, 64, 128, 256
  - Demonstrate the effectiveness of ND-DeeprPPG using different video clip length settings






**COHFACE:** 

Real-time Implementation of our rPPG-based Face PAD Method




#### My Journey: Face PAD



#### Our dataset: HKBU-MARs

#### http://rds.comp.hkbu.edu.hk/mars



#### Conclusions

- PAD is an important and un-solved issue in biometric systems
- Rapid progress in the past 5 years, still a lot issues needed to be solved
- Face PAD has high academic and commercial values
- rPPG offer very good generalisation ability for face PAD, in particular 3D mask attack. Performance can be further improved by integrating other PAD methods
- rPPG is also a powerful tool in healthcare domain

#### Special Thanks ...

#### **Collaborators:**

- Prof. GY Zhao, The University of Oulu
- > Prof. V Patel, Johns Hopkins University

#### Current/Former PhD Students:

- > Dr. Siqi Liu, CUHK Shenzhen
- > Dr. Rui Shao, HIT Shenzhen
- > Dr. X Lan, Pengcheng Lab Shenzhen
- > Mr. J Du



Prof. GY Zhao



Prof. V Patel



Dr. Siqi Liu



Dr. Rui Shao



Dr. X Lan



Mr. J Du

#### Funding:

Hong Kong Research Grant Council

#### Welcome Submission to TBIOM

Browse Journals & Magazines > IEEE Transactions on Biometric...



#### IEEE Transactions on Biometrics, Behavior, and Identity Science



Fun Selfie Filters In Face Recognition: Impact Assessment And Removal

**Manuscript** 



To My Alerts



Add to My Favorites



Home Popular Early Access **About Journal** Current Issue All Issues





The articles in this journal are peer reviewed in accordance with the requirements set forth in the IEEE PSPB Operations Manual (sections 8.2.1.C & 8.2.2.A). Each published article was reviewed by a minimum of two independent reviewers using a single-blind peer review process, where the identities of the reviewers are not known to the authors, but the reviewers know the identities of the authors. Articles will be screened for plagiarism before acceptance.

Corresponding authors from low-income countries are eligible for waived or reduced open access APCs. Read Full Aims & Scope

#### **Author Resources**

**Popular Articles** 

Submission Guidelines

Cristian Botezatu; Mathias Ibsen; Christian Rathgeb; Christoph Busch

Submit Manuscript

Latest Published Articles



Supplement your engineering curriculum with new eBooks from IEEE LEARN MORE >



- Simplifies the Publishing Process
- Manages Costs for Authors
- Pays for APC Fees in Advance

#### Hong Kong PhD Fellowship Scheme (HKPFS)

 Outstanding applicants (top students from top universities) will be recommended for nomination to the HKPFS scheme

| HKPFS Applicants                                         | Scholarship                                                                                                                |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Nominated by HKBU<br>and awarded by HK<br>Government     | HKD 1,920,000 during 4-year PhD study (Plus up to HKD 220,000 tuition fee waive & overseas conference/attachment support)* |
| Nominated by HKBU but<br>not awarded by HK<br>Government | HKD 960,000<br>during 4-year PhD study<br>(Plus up to HKD 55,000 overseas<br>conference/attachment support)*               |



## Thank you!