2025 Winter School on Biometrics 12th January 2025

Contactless Palmprint Recognition

Ajay Kumar

Department of Data Science and Artificial Intelligence The Hong Kong Polytechnic University

Contactless Palmprint

Estimated FinTech Market Size and Beyond

Contactless Palmprint

> Applications

- Mobile Security and FinTech Applications
- Public Security and Surveillance
- Medical Diagnosis of Some Diseases
- Failure of Fingerprints \rightarrow Manual Laborers, Elderly people, etc.
- Improving Performance → Multimodal Biometrics

The History and Journey ...

Early Palm Evidences

https://onin.com/fp/fphistory.html

The History and Journey ...

Early Palm Evidences

- राष्ट्राइम्पार्ट्र उत्राहे क्राइग्राहेन्य भाषार्ट्रम

אושייי שו משל של נדי היא און השר אירישיטים וא שלייי שו משל של נדי היא און השר אירישי שישי געוד של האל או שלי חיץ אירישי לשל הישאיניד ער גדי איל היא או שלי היא אירישי לשל הישאיניד ניר גדי אישי ארשי לישי אירטי די אשיים אידור מהיד ערי לשור לשור איד ערי אידי אידור לא אירישי וא דידי אידור אידור אידור אידור אידור לא אידור אידור שוויר אידור אידור אידור אידור אידור שוויר אידור אידור אידור אידור אידור שוויר אידור אידו

Contract for 2,000 maunds (165,200 Lbs.) of road-metalling, between W.J. Herschel and Rajyadhar Konai, in Konai's handwriting

https://onin.com/fp/fphistmiru/hershcel_konai_contract.jpg

The History and Journey ...

Law Enforcement

Latent Palmprint Matching, Biometric Identification

https://issda.memberclicks.net/why-law-enforcement-agencies-in-iowa-should-capture-complete-palm-prints

Contactless Palm Acceptance

Historical Perspective

- Cultural, Religious and Social Context
- Service, Power, Hope, Expectations, and Gesture
- Palmistry, Uniqueness, and Hygiene

Images from Google

Contactless Palmprint Identification

Market Explosion, Opportunities and Challenges

Contactless Palmprint Identification

First Paper

• AVBPA03, Contactless and Peg-free imaging using a camera

- Relative cooperation during imaging
- Simultaneous use of hand geometry features

A. Kumar, D. C. M. Wong, H. C. Shen, and A. K. Jain, "Personal verification using palmprint and hand geometry biometric," *Proc. 4th Intl. Conf. Audio- and Video-Based Biometric Authentication* (AVBPA), pp. 668-675, Guildford, UK, June 2003 9

Contactless Palmprint Identification

Commercial Deployments

TenCent, Amazon One, Fujitsu, PCS, ZKTeco, Realme. *etc*.

From 1st Paper to Commercial Deployment in about 20 years! 10

Early Acquisition Devices

- Online → Immediate palm imaging
- Better image quality
- Pegs \rightarrow Limits the rotation and translation
- More reliable and stable coordination system

• Limitations \rightarrow Bulk, Cost

NG Altman, Palm Print Identification System, US Patent No. US3581282A. 1968

Palmprint Preprocessing

Preprocessing

- Rotational and Translational Changes \rightarrow Normalization
- Segmentation → Region of Interest Images

W. Shu and D. Zhang, "Automated Personal Identification by Palmprint," *Optical Engineering*, 1998.

W. Li, D. Zhang, and Z. Xu, "Palmprint Identification by Fourier Transform," Intl. J. Pattern Recognition and Artificial Intelligence, 2002.C. C. Han, H. L. Cheng, K. C. Fan and C. L. Lin, "Personal Authentication Using Palmprint Features," Pattern Recognition, 2003.

Palmprint Segmentation – Earlier Work

Limitations

- Only suitable for palm images acquired under constrained and uniform environments
 - The background is generally very different from the palm skin color
 - Images are usually acquired under a stable/static environment

Sample from CASIA dataset

Sample from IITD dataset

Child-Palm Sample from PolyU-IITD dataset

➢ Current Palm Detectors → Keypoints, Pixel-wise Operators
➢ Fails → Completely Contactless Palm Detection
➢ Faster-RCNN Based Contactless Palmprint Detection

Y. Liu, A. Kumar, "A Deep Learning Based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild," arXiv preprint arXiv:1812.11319, 2018

S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," TPAMI 2017

Network Training

- \circ Videos \rightarrow 11 different backgrounds \rightarrow Pose, Illumination
- Videos are segmented every 10 frames

Raw segmented frame

Aligned segmented frame

Y. Liu, A. Kumar, "Contactless Palmprint Identification Using Deeply Learned Residual Features," *IEEE Transactions on Biometrics, Behavior, and Identity Science*, vol. 2, no. 2, pp. 172-181, April 2020.

Data Augmentation

- Multiple traditional augmentation^[1] methods including
 - Gaussian Blur
 - Randomly adding and multiplying on the three channel.
 - Contrast normalization
 - Additive Gaussian noise
- Scale and Aspect ratio augmentation^[2]
 - *Random area ratio* (a=[0.08, 1])
 - Random aspect ratio (s=[3/4, 4/3])
 - Crop size: W'=sqrt(W*H*a*s), H'=sqrt(W*H*a/s)
- Augmented 10 times to get totally 30K dataset

 Weblink for downloading codes for Data Augmentation: <u>https://github.com/aleju/imgaug</u>
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 7-12-2015.

े 🔀

Limitations

- Matching oblique palm images can be difficult and complex
- Sample images acquired/detected from the same hand/palm

Observed ROI *rotation* can significantly degrade the match accuracy

Keypoint Detection using Object Detection Models

• *Tiny Yolo v2, MobileNet* + *SSD, PeleeNet*

Y. Zhang, L. Zhang, X. Liu, S. Zhao, Y. Shen, and Y. Yang, "Pay By Showing Your Palm: A Study of Palmprint Verification on Mobile Platforms," *Proc. ICME 2019*, pp. 862–867, July 2019.

Keypoint Detection using Object Detection Models

• ROI Extraction using Keypoint Detection

Tongji Mobile Palmprint Dataset (MPD dataset)

- 16000 Contactless palmprint images from 200 subjects
- 288,577 images after augmentation
- Each rotated images are labelled on four finger gap points

Sample images from MPD dataset

Self Labelled Dataset (Ours)

- 4363 Contactless palmprint images from 20 different hands
- 43630 images after augmentation
- Each rotated images are labelled on four finger gap points

Sample images from our dataset

Comparative Summary Between Datasets

	MPD	Self-labelled
Number of indoor images	16000	2839
Number of outdoor images	0	<mark>1524</mark>
Number of subjects	160	13
Imaging Distance	Varies slightly	Varies greatly
Images with closed finger	0	2058
Images with stretched finger	16000	2305
Total number of images	16000	4363

Experimental Results

• Average time cost for detection of one image

Detector	Time cost (ms)
YOLOv4	57.4
YOLOv3(416*416)	60.1
YOLOv3(320*320)	52.7
PeleNet	37.2
Faster R-CNN	632.7

Linux version	3.10.0
CPU	Intel(R) Xeon(R) Silver 4108 CPU @ 1.80GHz
GPU	NVIDIA GeForce GTX 1080 Ti, 11GB
Hard ware acceleration	CUDA10.1 CUDNN 7.6.4

Experimental Results

• Comparative Results and Performance Analysis

MediaPipe Based Contactless Palmprint Detection

Figure 1: ROI (Zhou & Kumar, T-IFS 2010)

Figure 2: Palmprint Area Keypoints

Figure 3: Illustrate how to find points C in (a) and D in (b)

Real World Challenges

Figure A: Connection of Vectors

(a) (b) Figure B: Experimental Results of Single Unit Vector

Real World Challenges

Less-Constrained Contactless Palm Detection

Less-Constrained Contactless Palm Detection

		Original Image	Zero Padding Image	
Database Name	Total	Success Result	Success Result	Image Type
CASIA-Palmprint [18]	5502	1164	4635	Palm Image
CASIA-Multi-	7200	7200	6514	Whole Hand
Spectral-				Image
PalmprintV1 [24]				
COEP [19]	1305	1305	1305	Whole Hand
				Image
IITD Palmprint V1	2601	2564	2571	Whole Hand
[20]				Image
MPD [21]	16000	5945	13160	Palm Image
SMPD [22][25]	3677	487	1301	Palm Image
REST [23][26]	1948	1926	1946	Whole Hand
				Image

Popular Methods - Theoretical Limitations

Unified Framework for Palm Matchers

TABLE 1: Summary of several competing 2D palmprint matchers.

Method	① Pre-template	2 Number of	3 Encoding	④ Number of	5 Matching
	generating method	pre-template (r)	method	encoding classes (λ)	method
CompCode [10]	convolution	6	min	6	one-to-one
RLOC [7]	convolution	6	min	6	one-to-many
Ordinal Code [18]	convolution	2	\max / \min	2	one-to-one

Popular Methods - Theoretical Limitations

Modelling Matching Attempts among Templates

- Distribution of inter-class matching distances $D_{inter} \sim B(n_{inter}, p)$
- Feature Templates (Uncorrelated), Inter-Class match $p = 1 \frac{1}{\lambda}$.

• Let, $n_{intra} = \omega . n_{inter} (0 < \omega < 1)$

> Desirable number of encoding classes $\rightarrow \lambda = 2$

Q. Zheng, A. Kumar, G. Pan, "Suspecting Less and Achieving More: New Insights on Palmprint Identification for Faster and More Accurate Matching," *IEEE Trans. Info. Forensics & Security*, 2016

Fast-CompCode, Fast-RLOC

Table: Comparative Results on PolyU Palmprint Database

Method	Fast-RLOC	RLOC (in [7])	RLOC	Fast-CompCode	CompCode (in [7])	CompCode
FAR (%)	4×10^{-5}					
FRR (%)	0.94	1.631	2.10	0.31	4.86	2.90
EER (%)	0.089	0.16	0.30	0.041	0.47	0.76

Comparative ROC on Four Different Public Palmprint Databases

Fast-CompCode, Fast-RLOC

Complexity Analysis (bytes, millisecond)

Method	Template Size	FeaExt	Matching
Fast-CompCode	128	1.3	0.017
CompCode	384	4.0	0.054

Comparative ROC for Fast-RLOC on PolyU Palmprint Databases

Q. Zheng, A. Kumar, G. Pan, "Suspecting Less and Achieving More: New Insights on Palmprint Identification for Faster and More Accurate Matching," *IEEE Trans. Info. Forensics & Security*, 2016

Fast-RLOC on Contactless Palmprint Databases

IITD (Left), CASIA (Right)

Fully Reproducible, Download Codes → https://www4.comp.polyu.edu.hk/~csajaykr/3DPalmprint.htm

Q. Zheng, A. Kumar, G. Pan, "Suspecting Less and Achieving More: New Insights on Palmprint Identification for Faster and More Accurate Matching," *IEEE Trans. Info. Forensics & Security*, 2016

Contactless Palmprint Feature Descriptor

Difference of Vertex Normal Vectors (DoN)

- Recovers and Matches 3D Shape using a single 2D Image
 - Ordinal Measure \rightarrow Difference of Neighboring point normal vectors
 - Theoretical Formulation & Support → Contactless Biometric Imaging

$$DoN(i) = \tau\left(\sum_{j \in R_i^1} z_j - \sum_{j \in R_i^2} z_j\right) \qquad \tau(\alpha) = \begin{cases} 0, & \alpha < 0\\ 1, & \alpha \ge 0 \end{cases}$$

Q. Zheng, A. Kumar, G. Pan, "A 3d feature descriptor recovered from a single 2d palmprint image," T-PAMI, 2016

Contactless Palmprint Feature Descriptor

Difference of Normal Vectors (DoN)

■ Difference between Intensity → Two Regions

Q. Zheng, A. Kumar, G. Pan, "A 3d feature descriptor recovered from a single 2d palmprint image," T-PAMI, 2016

Contactless Palmprint Feature Descriptor

Difference of Normal Vectors (DoN)

- Spatial Divisions → Candidate Feature Extractors
 - Symmetry \rightarrow Orthogonal or Parallel

Q. Zheng, A. Kumar, G. Pan, "A 3d feature descriptor recovered from a single 2d palmprint image," T-PAMI, 2016

Comparative Performance using DoN

Comparative Results on CASIA Contactless Palmprint Database

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER	0.53	1.0	0.76	0.79

Complexity Analysis, Smallest Template Size (one-bit-per-pixel)

Method	Feature Extraction	Matching
Ours	1.1	0.054
RLOC	0.13	1.2
Competitive Code	4.0	0.054
Ordinal Code	3.2	0.054

Note: The experimental environment is: Windows 8 Professional, Intel(R) Core(TM) i5-3210M CPU@2.50GHz, 8G RAM, VS 2010.

Comparative Performance using DoN

PolyU 2D/3D Contactless Palmprint Database

IITD Palmprint Database

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER (%)	0.22	0.64	0.68	0.33
Accuracy (%)	100	99.77	99.21	99.77

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER (%)	0.68	0.88	1.0	1.25
Accuracy (%)	99.15	99.00	98.85	98.92

10

8

Comparative Performance using DoN

PolyU Palmprint Database

Extended Yale Face Database B

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER (%)	0.033	0.089	0.076	0.038
Accuracy (%)	100	99.95	99.76	100

Method	Ours	PP+LTP/DT [19]	G_LDP [20]
Rank-1 rate (%)	99.3	99.0	97.9

Effective for a Range of Other Biometrics and Applications

Fully Reproducible, *Download Codes* → https://www4.comp.polyu.edu.hk/~csajaykr/2Dto3D.htm

Comparative Performance using DoN with Recent Methods

- CASIA Contactless Palmprint Database, *Duplicate Subjects/Images* (19, 301)
- 300 Different Subjects, Challenging Protocol (all-to-all approach)
- 20608 genuine and 6,846, 412 impostor match scores

In addition to huge computational simplicity!

Cross-Sensor Contactless Palmprint Matching

Different Palmprint Acquisition Devices

MPD Contactless Palm Database, Several Sensors in PolyU-IITD Database

Sensor 1 (Smartphone H)

Sensor 2 (Smartphone M)

Y. Zhang, et al. "Towards palmprint verification on smartphones," https://arxiv.org/abs/2003.13266v2, August 2020.

Experimental Results (Cross-Sensor Matching)

Comparative Performance using DoN with Recent Methods

- MPD Contactless Palm Dataset Database, 200 Subjects (2 Sensors, H and M)
- Train: 1st Session Left Hand H Sensor, Test: 2nd Session Right Hand M Sensor
- 20,000 (200*10*10) genuine and 3,980,000 (200*199*100) impostor match score

	Algorithm	Rank-1	EER	GAR@	GAR@
		Accuracy		FAR=10-3	FAR=10-4
	PalmNet	78.90%	8.03%	75.44%	67.84%
	EE-PRNet	75.65%	7.69%	72.00%	61.60%
	DDR	57.15%	17.19%	12.40%	1.30%
	DoN	90.20%	5.74%	80.50%	70.70%
	fast-ComCode	89.40%	5.94%	82.35%	71.65%

The EER and Rank-1 accuracy for MPD dataset (HM)

PalmNet (*TIFS, Dec. 2019*) EE-PRNet (*TIFS, Jan. 2020*) DDR (*PR 2020*)

45

Experimental Results (Cross-Sensor Matching)

Comparative Performance using DoN with Recent Methods

- MPD Contactless Palm Dataset Database, 200 Subjects (2 Sensors, H and M)
- Train: 1st Session Left Hand M Sensor, Test: 2nd Session Right Hand H Sensor
- 20,000 (200*10*10) genuine and 3,980,000 (200*199*100) impostor match score

	Algorithm	Rank-1	EER	GAR@	GAR@
		Accuracy		FAR=10-3	FAR=10-4
·	PalmNet	82.50%	7.56%	78.84%	71.44%
	EE-PRNet	80.80%	7.25%	77.95%	69.90%
	DDR	53.85%	17.82%	29.60%	13.60%
DoN –	DoN	88.90%	6.35%	80.35%	72.85%
	fast-ComCode	88.70%	6.10%	81.45%	73.30%

The EER and Rank-1 accuracy for MPD dataset (MH)

Cross-Spectral Palmprint Matching

Matching Palmprint with PalmVein Images

- PolyU Multispectral Database from 250 Different Subjects
- Train: 1st Session, Test: 2nd Session
- 1500 (250*6) genuine scores, 373500 (250*249*6) impostor scores

Cross-Spectral Palmprint Matching

Matching Palmprint with PalmVein Images

- CASIA Multispectral Palmprint Database from 100 Different Subjects
- Train: 1st Session, Test: 2nd Session
- 300 (100*3) genuine scores, 329700 (100*99*3) impostor scores

A. Kumar, "Discriminative Micropattern Exemplars for Fine-Grained Biometric Recognition," AVSS 2024

Palmprint Synthesis

Synthesis of Large-Scale Datasets

- Restrictions due to Privacy Regulations like GDPR
- Deep Networks → Large Scale Datasets
- Geometric Model \rightarrow Palmar Creases with Parameterized Bezier curves

(a) A left palm with 3 principal (b) Control points (Start ($\mathbf{\nabla}$), control (green) and several wrinkles (blue(\star) and end (\bullet)) of principal lines.

Palmprint Synthesis

Synthesis of Large-Scale Datasets

- Restrictions due to Privacy Regulations like GDPR
- Geometric model, \rightarrow Palmar creases with parameterized Bezier curves

Contactless Palmprint Synthesis

Synthesis of Large-Scale Datasets

Synthesis of Multi-View Contactless Palmprint Database

Chengdong Dong and Ajay Kumar, "Synthesis of Multi-View 3D Fingerprints to Advance Contactless Fingerprint Identification," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Nov. 2023

Best Practices in Performance Evaluation

- ➢ Deep Neural Networks → Always provide Cross-DB Results
- ➢ Performance Evaluation → Use ROC (GAR Vs FAR using semi-log scale), not just EER
- Always use Masks or Clarify if Matching Palmprint or Palmprint+ (Noise/Background)
- ➤ Two Session Databases → 1st Session (Train/Registration), 2nd Session (Test/Evaluation)
- Single Session Databases: Challenging Protocol (all-to-all)
- Also use conventional baseline with Public Codes (e.g. DoN and stronger ones if you know!)
- Present results on Left/Right hand palmprints separately. Avoid enlarged database results using (L+R) images
- Present Template Size and Complexity

Collaborators

- Yulin Feng
- Yang Liu
- Qian Zheng
- Vivek Kanhangad
- Kuo Wang
- Hu Jiaxin

References

- Y. Liu, A. Kumar, "Contactless Palmprint Identification Using Deeply Learned Residual Features," *IEEE Transactions on Biometrics, Behavior, and Identity Science*, vol. 2, no. 2, pp. 172-181, April 2020.
- A. Genovese, V. Piuri, K. N. Plataniotis, and F. Scotti, "PalmNet: GaborPCA convolutional networks for touchless palmprint recognition," *IEEE Transactions on Information Forensics and Security*, Dec, 2019.
- W. M. Matkowski, T. Chai, and A. Kong, "Palmprint Recognition in Uncontrolled and Uncooperative Environment," *IEEE Transactions on Information Forensics and Security*, pp. 1601–1615, Jan. 2020.
- Hu Jiaxin, Online palmprint detection under complex background, MSc Dissertation, PolyU, 2020.
- L. Zhang, L. Li, A. Yang, Y. Shen, M. Yang, "Towards contactless palmprint recognition: A novel device, a new benchmark, and a collaborative representation based identification approach," *Pattern Recognition*, vol. 69, pp. 199–212, 2017.
- A. Kumar, "Toward pose invariant and completely contactless finger knuckle recognition," *IEEE Transactions on Biometrics, Behavior, and Identity Science*, vol. 1, no. 3, pp. 201–209, 2019.
- A. Kumar, <u>https://hugefiles.comp.hkbu.edu.hk/album/web/other/wsb2021/slides/Ajay_Kumar.pdf</u> 2021
- X. Wu, Q. Zhao, "Deformed palmprint matching based on stable regions," *IEEE Transactions on Image Processing*, vol. 24, pp. 4978–4989, Dec. 2015.
- S. Zhao and B. Zhang, "Deep discriminative representation for generic palmprint recognition," *Pattern Recognition*, vol. 98, p. 107071, 2020.
- A. Kumar, K. Wang, "Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network," *Proc. DLPR*, Cancun, 2016.
- R. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision. (2015) 1440–1448.
- Data augmentation for machine learning experiments. https:// github.com/aleju/imgaug Jan. 2018.

References

- A. Kumar, "Discriminative micropattern exemplars for fine-grained biometric recognition," *Proc. 20th IEEE Intl. Conf. on Advanced Video and Signal-Based Surveillance*, AVSS 2024, July 2024.
- A. Kumar and D. Zhang, "Personal recognition using shape and texture," *IEEE Trans. Image Process.*, vol. 15, no 8, pp. 2454-2461, Aug. 2006.
- D. Zhang, W. K. Kong, J. You, and M. Wong, "On-line palmprint identification," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. 25, pp. 1041-1050, Sep. 2003.
- Z. Sun, T. Tan, Y. Yang, and S. Z. Li, "Ordinal palmprint representation for personal identification," *Proc. CVPR 2005*, pp. 279-284, 2005.
- W. K. Kong and D. Zhang, "Competitive coding scheme for palmprint verification," *Proc. ICPR 2004*, pp. 520-523, 2004,
- A. Kumar and D. Zhang, "Hand geometry recognition using entropy-based discretization," *IEEE Trans. Info. Security Forensics*, vol. 2, pp. 181-187, Jun. 2007.
- N. L. Johnson, A. W. Kemp, and S. Kotz, *Univariate Discrete Distributions*, 3rd edition, New York, Wiley, 2005.
- The PolyU Palmprint Database (version 2.0); http://www.comp.polyu.edu.hk/~biometrics
- M. E. Schuckers, "Using the beta-binomial distribution to access performance of a biometric identification device," *Int. J. Image & Graphics*, vol. 3, no. 3, pp. 523-529, 2003.
- E. T. Bradlow, P. J. Everson, "Bayesian inference for the Beta-Binomial distribution via polynomial expansions," *J. Comput. & Graphical Statistics,* vol. 11, no. 1, pp. 200-207, Mar. 2002.
- IITD Palmprint Database, http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm
- J. Daugman, "The importance of being random: Statistical principles of iris recognition," *Pattern Recognition*, vol. 36, no. 2, pp. 279-291, 2003.
- Y. Zhang, L. Zhang, X. Liu, S. Zhao, Y. Shen, and Y. Yang, "Pay By Showing Your Palm: A Study of Palmprint Verification on Mobile Platforms," Proc. ICME, pp. 862–867, Jul. 2019.
- Contactless Palmprint Detection, https://www.youtube.com/watch?v=003YHoX0llg 2018.
- Some more from (internet) open sources ...

