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Introduction



Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces y
y=Hx+v
where H is a degradation matrix, v is additive noise

1
X = arg min §||y — Hx||* + A\®(x)

fidelity term regularization
term




Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces y
y=Hx+v

where H is a degradation matrix, v is additive noise

1
X = arg min §||y — Hx||? + A0 (x)

If we know the H and v, then is a non-blind super-resolution. Otherwise it is a blind super-resolution
(how to deal with this problem?).



Challenges

Real-world degradations usually come from complicate processes, such as imaging system of
cameras, image editing, and Internet transmission.

Take Photo

v

Social Media Sharing
(©)




Challenges

Learning-based methods will suffer severe

M2
performance drop when the pre-defined "
degradation is different from the real one =

o)

* This phenomenon of kernel mismatch will 2
introduce undesired artifacts to output "
. 2!
images .
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SR sensitivity to the kernel mismatch. g
o, r denotes the kernel used for downsampling and o5y denotes the gz :

kernel used for SR.

Figure credit: J. Gu et al., Blind Super Resolution With Iterative Kernel Correction, CVPR 2019



Challenges

e Highly ill-posed problem - one LQ image corresponds to infinite number of HQ images




Challenges

* Vice versa - one HQ image corresponds to infinite number of LQ images




Architectures — some examples

Convolutional neural networks
* SRCNN
* FSRCNN
* VDSR

Generative adversarial network
* SRGAN
* ESRGAN

Transformers
* SwinlR
* Uformer
* Restormer

Diffusion models
* StableSR
* DiffBIR
ResShift
SeeSR
CoSeR
SUPIR



Losses

Mean squared error

* Minimizing the loss between the reconstructed images F (Y; ®) and the corresponding ground truth
high-resolution images X

1 mn
L(©) =~ Y [IF(Y::0) - X
1=1

* The loss is minimized using stochastic gradient descent with the standard backpropagation



Losses

Perceptual loss

Encourages the output image to ' Jw : T | o TR

be perceptually similar to the r L : @ f i

target image, but does not force Input Elma Transform N : ﬁ i

them to match exactly image '+ 200 Transtorm et Yo | LossNetwork (VGG16) || & i
Content Target E?;Z{I“B N

The feature reconstruction loss is the (squared,
normalized) Euclidean distance between feature
representations

activations of the j-th layer of target image

052..(9,y) = C H W 165 (@) — 5 (W)I5

feature map of shape (; X H; X W; activations of the j-th layer of output image

Justin Johnson et al., Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV 2016



https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf

Losses

Adversarial |
4 Natural Image Manifold dversarial loss

MSE-based Solution

ST TP, The MSE-based solution appears overly
ke smooth due to the pixel-wise average of
possible solutions in the pixel space

Generative Adversarial Network (GAN)
drives the reconstruction towards the
natural image manifold producing
perceptually more convincing solutions

C. Ledig et al., Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, CVPR 2017



https://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf

Losses
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Losses
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Handling complex degradation

Degradation model

I ={|(Ip® kg)J,r + n5]JPEGq }Tr

Blur Upsample



Handling complex degradation

Degradation model

}Ersr order _
Resize : JPEG
Blur (Downsampling) Noise Compression
* (Generalize) : * Gaussian noise o
Gaussian filter ’ Rbﬁ_’SIZS_ * Poisson noise VB
- 1sotropic = Ll
- anisotll:opic 7 bilinear * Color noise
* 2D sinc filter - area  Gray noise
second order
Resize : JPEG W Bosd
Blur (Downsampling) ek {Jr 2D sinc ﬁlter} J b

Not a silver bullet - merely extends the solvable degradation boundary of previous blind SR
methods through modifying the data synthesis process

X. Wang et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data, AIM 2021



https://openaccess.thecvf.com/content/ICCV2021W/AIM/papers/Wang_Real-ESRGAN_Training_Real-World_Blind_Super-Resolution_With_Pure_Synthetic_Data_ICCVW_2021_paper.pdf

Metrics

Peak signal-to-noise ratio (PSNR) is an expression for the ratio between the maximum possible value
(power) of a sighal and the power of distorting noise that affects the quality of its representation

MAX? MAX; = Maximum possible pixel value of the image. For 8
PSNR =10 -log;g bits image, this is 255
MSE
201 (MAX,)
o * 10
810 VISE

= 20 - loglo(MAX[) — 1010g10(MSE)

Cons: Doesn’t reflect human perception well



Metrics

* Perceptual metric

FID (Heusel et al., 2017)
LPIPS (Zhang et al., 2018a)
MUSIQ (Ke et al., 2021)

CLIP-IQA (Wang et al., 2023)

Example:
Datasets Metrics RealSR BSRGAN DASR Real-ESRGAN+ FeMaSR LDM  SwinlR-GAN IF.III StableSR
PSNR 1 24.62 24.58 24.47 24.29 23.06 23.32 23.93 23.36 23.26
SSIM 0.5970 0.6269 0.6304 0.6372 0.5887 0.5762 0.6285 0.5636 0.5726
DIV2K Valid LPIPS | 0.5276 0.3351 0.3543 0.3112 0.3126 0.3199 0.3160 0.4641 0.3114
FID | 49.49 44,22 49.16 37.64 35.87 26.47 36.34 37.54 24.44
CLIP-IQA 1T | 0.3534 0.5246 0.5036 0.5276 0.5998 0.6245 0.5338 0.3980 0.6771
MUSIQ ¢t 28.57 61.19 55.19 61.05 60.83 62.27 60.22 43.71 65.92
PSNR ¢ 27.30 26.38 27.02 25.69 25.06 25.46 26.31 25.47 24.65
SSIM t 0.7579 0.7651 0.7707 0.7614 0.7356 0.7145 0.7729 0.7067 0.7080
RealSR LPIPS | 0.3570 0.2656 0.3134 0.2709 0.2937 0.3159 0.2539 0.3462 0.3002
CLIP-IQA 1 | 0.3687 0.5114 0.3198 0.4495 0.5406 0.5688 0.4360 0.3482 0.6234
MUSIQ ¢t 38.26 63.28 41.21 60.36 59.06 58.90 58.70 41.71 65.88
PSNR ¢ 30.19 28.70 29.75 28.62 26.87 27.88 28.50 28.66 28.03
SSIM 0.8148 0.8028 0.8262 0.8052 0.7569 0.7448 0.8043 0.7860 0.7536
DRealSR LPIPS | 0.3938 0.2858 0.3099 0.2818 0.3157 0.3379 0.2743 0.3853 0.3284
CLIP-IQA 1 | 0.3744 0.5091 0.3813 0.4515 0.5634 0.5756 0.4447 0.2925 0.6357
MUSIQ 1 26.93 57.16 42.41 54.26 53.71 53.72 52.74 30.71 58.51
DPED-iphone CLIP-IQA 1 0.4496 0.4021 0.2826 0.3389 0.5306 0.4482 0.3373 0.2962 0.4799
MUSIQ 1 45.60 45.89 32.68 42.42 49.95 44.23 43.30 37.49 50.48




Types of Prior for Restoration



The importance of prior

Xintao Wang et al. Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform, CVPR 2018



Existing priors (using face restoration as example)

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Geometric prior

Common Branch

Gate

{11;,.1; EM}

High-Frequency Branch

EVi

High-frequency prior indicates
the location with high-
frequency details

S.Zhu, S. Liu, C. C. Loy, X. Tang, Deep Cascaded Bi-Network for Face Hallucination, ECCV 2016



Reference prior
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Generative prior from GAN

z ~ N(0,I)

Latent space Generator

Can we leverage a GAN trained on large-scale natural images for richer priors?

GAN is a good approximator for natural image manifold.



Generative prior from GAN

z ~ N (0, 1)

Latent space Generator

gray hole  low resolution

degraded images Generator restored images

Xingang Pan et al., Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation, ECCV 2020 (Oral)



Generative prior from GAN

l

? degradation ¢
B
8
Optimize X
T TEEEEETEEmEmmEmmEmm—— N

GAN generator
param: @

degradation @

U e —
et L L L L L T T

L L L L D L L L L L T L T T T N

¢(G(z;0))

Need to solve an
expensive optimization
problem

0*,z* = argming, L(X,p(G(2z;0))) (Relaxed GAN-inversion)

Xingang Pan et al., Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation, ECCV 2020 (Oral)



Generative prior from GAN
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Condition the bank by passing both the latent vectors and multi-resolution convolutional features from the encoder to achieve
high-fidelity results. Symmetrically, multi-resolution cues need to be passed from the bank to the decoder.

K. C. K. Chan, X. Wang, X. Xu, J. Gu, C. C. Loy, GLEAN: Generative Latent Bank for Image Super-Resolution and Beyond, TPAMI 2022



Generative prior from GAN

GLEAN (ours) GLEAN (ours)




Generative prior from GAN

484x484

242x242

121x121 60x60




Generative prior from GAN




Discrete codebook prior

VQ-VAE is a type of variational autoencoder that uses to obtain a representation. It differs
from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt
rather than static (the posteriors and priors in VAEs are assumed normally distributed with diagonal covariance).

S

HQ
Encoder Ep — L

Codebook € !
Z h l """" ¢ Z c

e e e g e e o o

HQ
— | Dy Decoder

i | menEie
(L] _ 7 ey
: Zgli]) — arg mln ||Z’(lli]) g Ck || E ' :FSZV 12 1 0 i 28 E
E ck€eC ! e

1

-------------------

Nearest-Neighbor Matching S

[VQGAN] Esser et al., Taming Transformers for High-Resolution Image Synthesis, CVPR 2021
[VQVAE] Oord et al., Neural Discrete Representation Learning, NeurlPS 2017



Discrete codebook prior - CodeFormer

Learn
to reduce the uncertainty and ambiguity

of restoration mapping by, while providing rich
visual atoms for generating high-quality faces.

CIREN- | — —> Cast blind face restoration as a
S C
HQ

Discrete prior
(finite space)

IOJRISUAN) |¢

Jopoouy |-
JOULIOJSURIT,

LQ

A Transformer-based prediction network to

model the of
the low-quality faces for code prediction

Enable the discovery of natural faces that

closely approximate the target faces even when
the inputs are

Shangchen Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer, NeurlPS 2022



Discrete codebook prior - CodeFormer

higher fidelity

higher quality

Real Input w =O

EEEEEEEEEEEEEES Wh---------------
I e, v

il J R = Q
3 2 i S

—> ||| g F — 8 —>
ol | DI -
LQ Discrete prior HQ

(finite space)

Shangchen Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer, NeurlPS 2022



Stable Diffusion 2.1 Output Enhanced by CodeFormer
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Stable Diffusion 2.1 Output Enhanced by CodeFormer
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Stable Diffusion 2.1 Output Enhanced by CodeFormer
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Midjourney Output 7 Enhanced by CodeFormer




Enhanced by CodeFormer

Midjourney Output




Enhanced by CodeFormer
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Midjourney Output Enhanced by CodeFormer
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Code and demo

Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurlPS 2022).

& CodeFormer is a robust face restoration algorithm for old photos or Al-generated faces.

& Try CodeFormer for improved stable-diffusion generation!

Background_Enhance
Face_Upsample
Rescaling_Factor (up to 4)

Codeformer_Fidelity (0 for better quality, 1 for better identity) 0.7

out.png 1.7MB Download

Clear

O https://github.com/sczhou/CodeFormer

~ . https://huggingface.co/spaces/sczhou/CodeFormer



Diffusion Prior



More Generic Prior from Diffusion Models?

Encoder (forward/diffusion process) Decoder (reverse process)
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It is unclear how restoration can be achieved via diffusion model
e Diffusion model is stochastic! How to keep the prior and maintain fidelity?

e Diffusion model hasn’t seen relevant degradations! How to handle complex degradations?
e Diffusion model is slow! How to improve inference efficiency?

Image Credit: Simon J.D. Prince, Understanding Deep Learning, 2023



https://udlbook.github.io/udlbook/

StableSR | Framework

* Frozen stable diffusion model as a backbone

* Minimal alterations to prevent disrupting the prior

Denoising U-Net

Jianyi Wang et al. Exploiting Diffusion Prior for Real-World Image Super-Resolution. IJCV 2024



StableSR | Framework

* Train only the time-aware
encoder and spatial feature

transformation layer q W
a™,B" = My(F") : 13.
leif — (1 + Oin) ® ngf -+ ﬁn LR " Encoder | l

* Adaptively adjust the
condition strength derived
from the LR feature through t

Z = frainable SFT layes -~~~ - Z Denoising U-Net
Denoising U-Net

Xintao Wang et al. Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. CVPR 2018

Z,

Decoder




StableSR | Fidelity-Realism Trade-off

* Add a controllable skip
connection to benefit from
structural guidance from the

A
LR image, enhancing fidelity m;‘
Encoder
* Control the modulation LR =
strength through w
\—
! S ;
« Alarger w allows stronger i i H
structural guidance N | Y | TN Ly |
Z, e T Z,, “Denoising U-Net Z,

Denoising U-Net

Shangchen Zhou et al. Towards Robust Blind Face Restoration with Codebook Lookup Transformer. NeurlIPS 2022
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PGDiff | A Versatile Solution

(d) Old Photo Restoration (w/o scratches)

(c) Face Inpainting (e) Old Photo Restoration (w/ scratches)

Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurlIPS 2023



PGDiff | Motivation

* Modelling degradation is hard

 Just model easily accessible properties, e.g., image structure and color statistics of high-
qguality images

* Apply this guidance during the reverse diffusion process

* Inspired by classifier guidance, which is originally used by class-conditional generation (see
next two slides)

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. NeurlPS, 2021.



Conditional generation

If the data has associated labels ¢, these can be exploited to
control the generation.

How about modifying the denoising update from z; to z,_4
to take into account class information c?

Adding an extra term into the update step during the
reverse process to bias the denoising update toward that
class

Dhariwal & Nichol, Diffusion Models Beat GANs on Image Synthesis, NeurlPS 2021.



https://arxiv.org/abs/2105.05233

Conditional generation

Algorithm - Sampling

Input: Model, g,[e, ¢,]
Output: Sample, x
ZT ~ NOl"mz[O,I] // Sample last latent variable

fort=T...2do

Zi 1= \/ﬁzt — \/ﬁgﬁgt[zt,qbt] // Predict previous latent variable

eg: . € ~ Norm, [O,I] // Draw new noise vector

Classifier guidance . , , ,
Zi_1 = Z4_1+ O4€ // Add noise to previous latent variable

A classifier Iearns to i(.jentify the X = '—11—51 71 — \/I—Ofi/l—[ﬁ g [Zl, (,bl] // Generate sample from z; without noise
category of object being
synthesized at each step
This is used to bias the denoising 5 0 log [PI‘(C|Z¢):|
update toward that class Zi_1 — ﬁit_l + (o + O¢E.

3zt

gradient of the log likelihood of
an auxiliary classifier model

Dhariwal & Nichol, Diffusion Models Beat GANs on Image Synthesis, NeurlPS 2021.



https://arxiv.org/abs/2105.05233

PGDIff | Framework

y lightness y lightness

| O ST

Yeolor Ycolor Color Stats

Partial Guidance

Po(Xe—1|x¢)

Unconditional Diffusion Prior

Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



PGDIff | Face Colorization

Color Stats
Input

Color Stats

Input PGDiff
Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



PGDIff | Face Inpainting

Input PGDiff
Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



PGDIff | Blind Face Restoration

e

Input PGDiff

Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



PGDIff | Blind Face Restoration

CodeFormer

GDP DDNM DDNM PGDiff

Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



PGDIff | Reference-based Restoration

GDP Ground Truth PGDiff (w/o Ref) PGDiff (w/ Ref)

Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



PGDIff | Combine Multiple Guidances

‘ "A“‘A

Input PGDiff Input PGDiff

Input PGDiff PGDiff
Peiging Yang. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance. NeurIPS 2023



Scaling Up Image Restoration

The image features a close-up of a white

.(') . and gray cat sitting on a wooden
Trainable Fixed LDM Multi-Modal Large ~ _. surface...... The cat's fur is fluffy, and its
Low-Quality Image Decoder Language Model eyes are wide open, ... with its front
Image paws resting on the wooden surface.
Restoration

e o0 | Result

2 * \J v V
Q (ﬂTrimmed ControlNet ) X T ((r,Trimmed ControlNet ) 5 “
2t e e Image Decoder > g
Pre-Trained SDXL Pre-Trained SDXL ZO ' :

Degradation-
Robust Encoder

Scaling Up

* Model: SDXL

* Data: The authors collected a large- S,
scale dataset of high-resolution ﬁ £ 848y .
images, which includes 20 million ] s AT ] |
1024x1024 high-quality, texture-rich "i, LD ' n' '
images -

Low-Quality Input Trained on DIV2K Trained on LSDIR  Trained on Our Data



Scaling Up Image Restoration

o ;_,J' e g
-§UPIR output

Fanghua Yu et al., Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild, CVPR 2024



Upscale-A-Video | Motivation

Temporal Consistency of Video Diffusion Models for VSR
* Local low-level consistency

* Global temporal consistency in longer videos



Upscale-A-Video | Framework
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Upscale-A-Video | Local Consistency within Video Segments

Additional temporal layers that are integrated with the existing spatial layers.

v ‘ !

ResBlock2D ( )
| / ResBlock2D

ResBlock3aD . .
| . ResBlock2D

_ J

Cross Attention

\ >
| ( )

ResBlock3D )

Temporal Attention | L p

' v

Finetuning U-Net and VAE-Decoder, while keeping the pretrained spatial layers unchanged.



Upscale-A-Video | Global Consistency cross Video Segments

A training-free flow-guided recurrent propagation module within the latent space.
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YouHQ Dataset

CATEGORY COUNTS

Features:

* Video Number: ~37,000

* Video Resolution: 1080 x 1920

* Video Length: 1s clips (i.e., 32 frames with 30fps)
* Scenes: diverse (human face, animal, street view,

landscape, static object, outdoor, indoor, nighttime ...)

M Nature Scene M Street view B Animal B Human face

B Underwater ™ Night Food Static object



Upscale-A-Video | Quantitative Evaluation

Datasets | Metrics | Real-ESRGAN [66] | SD x4 Upscaler [2] | ResShift [34] | StableSR [63] || RealVSR [81] | DBVSR [48] | RealBasicVSR [10] | Ours

PSNR 1 22.89 23.19 23.27 22.71 23.88 24.28 24.51 25.32

SPMCS SSIM 4 0.669 0.631 0.667 0.657 0.681 0.726 0.717 0.741
LPIPS | 0.238 0.304 0.257 0.231 0.437 0.302 0.198 0.222

Elarp 1.364 5.008 4.942 4.815 0.294 1.360 0.559 0.367

PSNR 1 27.13 28.07 27.62 26.45 27.38 29.60 29.11 30.79

UDMIO SSIM 1 0.843 0.811 0.827 0.825 0.825 0.880 0.876 0.878
LPIPS | 0.190 0.186 0.222 0.181 0.278 0.155 0.172 0.133

E ot 1.462 1.710 2.196 2.797 0.531 1.943 0.602 0.446

PSNR 1 22.40 22.98 23.00 23.72 23.05 24.37 23.91 24.41

REDS30 SSIM 1 0.591 0.572 0.580 0.635 0.603 0.633 0.636 0.631
LPIPS | 0.303 0.399 0.369 0.352 0.658 0.588 0.249 0.335

Bl 4 3.658 3753 4.131 1.645 0.378 9.659 1.557 1.278

PSNR 1 24.37 19.71 23.77 24.53 24.19 25.37 24.09 25.83

YouHQdo | SSMT 0.710 0.579 0.654 0.711 0.695 0.719 0.689 0.733
LPIPS | 0.272 0.442 0.376 0.271 0.484 0.430 0.306 0.268

By L 1.856 3.399 4.426 1.529 0.485 1.149 1.052 0.737

VideoLq | CLIP-IQA 1 0.360 0.158 0.430 0.344 0.211 0.274 0.387 0.530
MUSIQ 1 49.48 26.21 40.95 44.23 24.52 29.15 55.33 57.99

DOVER 1 7.161 2.884 4.679 6.783 2.531 3.628 7.562 7.811

AlGC30 | CLIPIQA T 0.430 0.329 0.569 0.467 0.276 0.290 0.565 0.674
MUSIQ 1 47.09 35.30 4332 44.93 24.39 27.22 58.87 57.66

DOVER 1 9.710 5.646 7.042 9.668 3.285 3.523 10.68 11.67

Red and indicate the best and the second best performance



Upscale-A-Video | Qualitative Comparisons on Real Data

Bicubic

“A squirrel on a tree” SD x4 Upscaler RealBasicVSR Upscale -A-Video (OUIS)
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Upscale-A-Video | Temporal Profile




Upscale-A-Video | Effectiveness of Text Prompt
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- More Results on Real-world Videos -



Remove Flickers For Old Movie

Old Movie Clip Upscale-A-Video (Ours)






- More Results on AIGC Videos -



AIGC Video Upscale-A-Video (Ours)




AIGC Video

“campfire at night in a snowy forest

th starry sky in the background”
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“A steam train movind
on a mountainside
by Vincent van Gogh”
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Scaling Up Video Restoration

14.5

14.0 SeedVR
(Ours)

13.5 1

# Params

VEnhancer

12.5 1 ResShift (ArXiv24)

TPAMI24

| MGLD-VSR
(ECCV24)
11.0 A SD x4 Upscaler
(Opensource)
10.51 . Upscale-A-Video
(CVPR24)
= 72 Input Res- SD x4 Upscale-
Runtime (s/video (31x768x1344)) Bicubic Shift Upscaler A-Video

DOVER 1

V- SeedVR
Enhancer (Ours)

10.0

Despite its 2.48B parameters, SeedVR is over 2x faster than
existing diffusion-based video restoration approaches

Jianyi Wang et al., SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration, arXiv 2025



Scaling Up Video Restoration

Add Noise

Patching &
Flatten

Linear

Caption
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Diffusion Transformer
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MLP

Sinusoidal
Encoding

Modulation

Unpatching &
Unflatten

T
Timestep

Extending the MMDIT block from SD3 with shifted window
attention like Swin

Use a large non-overlapping window attention - effective
for achieving competitive quality at a lower computational
cost

Large-scale Training

- We trained the model on image and video data
simultaneously.

- We collected about 100 million images and 5 million
videos

Encoding a 720p video with 21 frames takes approximately
2.9s on average. Precomputing high-quality (HQ) and LQ
video latent features along with text embeddings, we can
achieve a 4x speed up in training.
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Problems to solve

i -!Iil e =

stableSRE

* Recovering natural scene with the right
semantics is hard
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Problems to solve

* Diffusion model is still slow

* /InvSR mitigates this problem by
allowing arbitrary-step restoration
through diffusion inversion

Noise Map

Zongsheng Yue et al., Arbitrary-steps Image Super-resolution via Diffusion Inversion, arXiv 2024
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