Foundations of Vision-Language Models: Concepts and Roadmap

Kaiyang Zhou

Outline

- History
- Pre-training
- Prompting
- Applications

Outline

- History
- Pre-training
- Prompting
- Applications

Vision Models

Teach computers to see

Teach computers to see

The key question is how to build discriminative visual representations

Visual representations

limb quadruped biped bird

thick-limb cow human ostrich

CylindersBrooks & Binford '79

Visual representations

Edges Canny '86

Local Features (SIFT)
Lowe '99

Visual representations

Deep neural network

C

$$y_{l} = f(z_{l})$$

$$z_{l} = \sum_{k \in H2} w_{kl} y_{k}$$

$$y_k = f(z_k)$$

$$z_k = \sum_{j \in H1} w_{jk} y_j$$

$$y_j = f(z_j)$$

 $z_j = \sum_i w_{ij} x_i$
 $i \varepsilon \text{ Input}$

Compare outputs with correct answer to get error derivatives

$$\frac{\partial E}{\partial y_{j}} = \sum_{\substack{k \in H2}} w_{jk} \frac{\partial E}{\partial z_{k}}$$

$$\frac{\partial E}{\partial z_{j}} = \frac{\partial E}{\partial y_{j}} \frac{\partial y_{j}}{\partial z_{j}}$$

Convolutional neural network

- ReLU non-linearity
- Feature normalization
- Dropout
- Data augmentation
- Multi-GPU training

Deep residual network

Problem: Deeper networks are difficult to train

Solution: Residual connection

He et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Vision Transformer

Language Models

Word representations (embeddings)

Sentiment Analysis

Machine Translation

Text Summarization

Email Filtering

Chatbot

etc.

Word2vec

Predicts the current word based on the context

Predicts context words given the current word

Skip-gram

Window Size	Text	Skip-grams
	[The wide road shimmered] in the hot sun.	wide, the wide, road wide, shimmered
2	The [wide road shimmered in the] hot sun.	shimmered, wide shimmered, road shimmered, in shimmered, the
	The wide road shimmered in [the hot sun].	sun, the sun, hot
	[The wide road shimmered in] the hot sun.	wide, the wide, road wide, shimmered wide, in
3	[The wide road shimmered in the hot] sun.	shimmered, the shimmered, wide shimmered, road shimmered, in shimmered, the shimmered, hot
	The wide road shimmered [in the hot sun].	sun, in sun, the sun, hot

Seq2seq

- Autoregressive
- "Large" NN
- "Large" datasets

Encoder-Decoder

GPT

Autoregressive training (scaled up)

Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI

Karthik Narasimhan OpenAI

Tim Salimans Ilya Sutskever OpenAI tim@openai.com ilyasu@openai.com

OpenAI

alec@openai.com karthikn@openai.com

"Al is the new"	
	Transformer ()

	Word	Probability
	а	0.00001
	ah	0.00002
	•••	•••
	elect	0.000022
	electricity	0.03
	•••	•••
	zip	0.00034

$\max \sum \log P(u_i u_{i-k},,u_{i-1};\theta)$						
heta i						
	Next token	Previous tokens	Model parameters			

GPT

Language Models are Unsupervised Multitask Learners

Alec Radford * 1 Jeffrey Wu * 1 Rewon Child 1 David Luan 1 Dario Amodei ** 1 Ilya Sutskever ** 1

Zero-shot (autocomplete)

Table 4. Summarization performance as measured by ROUGE F1 metrics on the CNN and Daily Mail dataset. Bottom-Up Sum is the SOTA model from (Gehrmann et al., 2018)

GPT

Few-shot in-context learning

"Translate English into French: Hello => Bonjour Thank you => Merci Goodbye => Au revoir Excuse me => "

	Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
	SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2 ^c	40.2^{d}	38.5^{e}	39.9 ^e
	XLM [LC19]	33.4	33.3	26.4	34.3	33.3	31.8
	MASS [STQ ⁺ 19]	<u>37.5</u>	34.9	28.3	35.2	<u>35.2</u>	33.1
	mBART [LGG ⁺ 20]	-	-	<u>29.8</u>	34.0	35.0	30.5
	GPT-3 Zero-Shot	25.2	21.2	24.6	27.2	14.1	19.9
	GPT-3 One-Shot	28.3	33.7	26.2	30.4	20.6	38.6
Good at X -> Er	GPT-3 Few-Shot	32.6	39.2	29.7	40.6	21.0	39.5

Tom B. Brown*

Christopher Hesse

Sam McCandlish

Benjamin Chess

Sandhini Agarwal

Mark Chen

Alec Radford

Language Models are Few-Shot Learners

Ariel Herbert-Voss

Daniel M. Ziegler

Jack Clark

OpenAI

Eric Sigler

Nick Ryder*

Ilya Sutskever

Gretchen Krueger

Mateusz Litwin

Melanie Subbiah'

Girish Sastry

Tom Henighan

Scott Gray

Dario Amodei

Brown et al. Language Models are Few-Shot Learners. NeurIPS'20.

Chain-of-thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Symbolic reasoning

Commonsense reasoning

Math Standard prompting

Equation only

Variable compute only

Reasoning after answer

Chain-of-thought prompting

Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS'22.

Zero-shot chain-of-thought prompting

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

		MultiArith	GSM8K
Zero-Shot		17.7	10.4
Few-Shot (2 samples)		33.7	15.6
Few-Shot (8 samples)		33.8	15.6
Zero-Shot-CoT	Significantly beats zero-shot	← 78.7	40.7
Few-Shot-CoT (2 samples)		84.8	41.3
Few-Shot-CoT (4 samples: First) (*1))	89.2	-
Few-Shot-CoT (4 samples : Second) ((*1)	90.5	-
Few-Shot-CoT (8 samples)	Manual CoT is still better	93.0	48.7

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Large Language Models are Zero-Shot Reasoners

t.koj

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Mach Google

> Shuny Princeton

> > **Thom** Prince

LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS

†Google Research, E

Denny Zhou†* Na SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT Dale Schuurmans REASONING IN LANGUAGE MODELS

> Jason Wei[†] Dale Schuurmans[†] Quoc Le[†] Ed H. Chi[†] Xuezhi Wang^{†‡} Sharan Narang[†] Aakanksha Chowdhery[†] Denny Zhou^{†§}

†Google Research, Brain Team

[‡]xuezhiw@google.com, [§]dennyzhou@google.com

Forbes

FORBES > INNOVATION > ENTERPRISE TECH

The Hot New Job That Pays Six Figures: AI Prompt Engineering

Bloomberg

Al's Hottest Job: Prompt Engineer

So-called AI whisperers can earn six-figure salaries, no programming experience necessary.

Conrad Quilty-Harper met one of these prompt engineers to find out how to coax the best out of a large-language model. (Source: Bloomberg)

July 5th, 2023, 11:27 PM GMT+0800

Al 'prompt engineer' jobs can pay up to \$375,000 a year and don't always require a background in tech

Britney Nguyen May 1, 2023, 11:34 PM GMT+8

→ Share

□ Save

The rise of generative AI tools like ChatGPT is creating a hot market for "prompt engineers" who test and improve chatbot answers.

Getty Images

BUSINESS INSIDER

Convergence of Vision and Language Models

Traditional vision models struggle to generalize

A classifier trained to recognise horse images would not be able to recognise zebra, though the latter is just like horse but with black-and-white stripes

Why traditional vision models struggle to generalize?

Why traditional models struggle to generalize?

THE

There is no class prototype for tiger

Need to re-train the model!

Early methods

Associate classes with auxiliary information like **attributes**, which encode distinguishing properties of objects

Early methods

Associate images with semantic word vectors (i.e., word2vec)

Early methods

Learn a joint embedding space for images and text

Today's methods

Learn a joint embedding space for images and text, using large-capacity models and web-scale datasets

Outline

- History
- Pre-training
- Prompting
- Applications

Key idea: joint embedding space learning

Contrastive learning

The goal is to associate each image with the correct label

Contrastive learning

Pull together matched pairs while push away unmatched pairs

Reduce pair-wise feature distance (equivalent to increasing feature similarity)

Increase pair-wise feature distance (equivalent to decreasing feature similarity)

Architecture: image encoder

Architecture: image encoder

Architecture: text encoder

Vocabulary

word	index	word embedding
а	0	
and	1	
of	2	
•	•	:
<eot></eot>	49,151	
	a and of :	a Oand 1of 2: :

Data: LAION-5B

Backend url:

https://knn5.laior

Index:

laion_5B

french cat

Clip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embedddings

Display captions Display full captions Display similarities

Safe mode Hide duplicate urls

Hide (near) duplicate images

✓ Search over

Search with multilingual clip

french cat

Hipster cat

How to tell if your feline is french. He wears a b...

イケメン猫モデル 「トキ・ナンタケッ ト」がかっこいい -

French Bread Cat Loaf Metal Print

網友挑戰「加幾筆畫 出最創意貓咪圖片」 笑到岔氣之後我也手

cat in a suit Georgian sells tomatoes

Contrastive Language-Image Pre-training (CLIP)

1. Contrastive pre-training

Decrease feature similarity

Outline

- History
- Pre-training
- Prompting
- Applications

Zero-shot prompting

2. Create dataset classifier from label text

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML'21.

guacamole (90.1%) Ranked 1 out of 101 labels v a photo of guacamole, a type of food. x a photo of ceviche, a type of food. x a photo of edamame, a type of food. x a photo of tuna tartare, a type of food.

x a photo of **hummus**, a type of food.

SUN397

television studio (90.2%) Ranked 1 out of 397

- ✓ a photo of a television studio.
- × a photo of a podium indoor.
- × a photo of a conference room.
- × a photo of a **lecture room**.
- × a photo of a control room.

YOUTUBE-BB

airplane, person (89.0%) Ranked 1 out of 23

- ✓ a photo of a airplane.
- × a photo of a bird.
- x a photo of a bear.
- × a photo of a giraffe.
- x a photo of a car.

EUROSAT

annual crop land (12.9%) Ranked 4 out of 10

- x a centered satellite photo of permanent crop land.
- × a centered satellite photo of pasture land.
- \times a centered satellite photo of **highway or road**.
- a centered satellite photo of annual crop land.
- \times a centered satellite photo of **brushland or shrubland**.

CIFAR-10

bird (40.9%) Ranked 1 out of 10 labels

- ✓ a photo of a bird.
- x a photo of a cat.
- x a photo of a deer.
- x a photo of a frog.
- x a photo of a dog.

CLEVR COUNT

4 (17.1%) Ranked 2 out of 8

- x a photo of 3 objects.
- ✓ a photo of 4 objects.
- x a photo of 5 objects.
- × a photo of 6 objects.
- × a photo of 10 objects.

FACIAL EMOTION RECOGNITION 2013 (FER2013)

angry (8.2%) Ranked 5 out of 7

- × a photo of a **happy** looking face.
- ${\color{red} imes}$ a photo of a **neutral** looking face.
- ${\color{red} \times}$ a photo of a **surprised** looking face.
- x a photo of a **fearful** looking face.
- \checkmark a photo of a **angry** looking face.

UCF101

Volleyball Spiking (99.3%) Ranked 1 out of 101

- ✓ a photo of a person volleyball spiking.
- x a photo of a person jump rope.
- \times a photo of a person long jump.
- × a photo of a person soccer penalty.
- × a photo of a person table tennis shot.

STANFORD CARS

2012 Honda Accord Coupe (63.3%) Ranked 1 out of 196

- ✓ a photo of a 2012 honda accord coupe.
- × a photo of a 2012 honda accord sedan.
- x a photo of a 2012 acura tl sedan.
- x a photo of a 2012 acura tsx sedan.
- x a photo of a 2008 acura tl type-s.

SUN

kennel indoor (98.6%) Ranked 1 out of 723

- ✓ a photo of a kennel indoor.
- × a photo of a **kennel outdoor**.
- x a photo of a jail cell.
- × a photo of a jail indoor.
- × a photo of a veterinarians office.

KINETICS-700

country line dancing (99.0%) Ranked 1 out of 700

- ✓ a photo of country line dancing.
- × a photo of square dancing.
- × a photo of swing dancing.
- × a photo of dancing charleston.
- x a photo of salsa dancing.

FLOWERS-102

great masterwort (74.3%) Ranked 1 out of 102

- ✓ a photo of a great masterwort, a type of flower.
- x a photo of a bishop of llandaff, a type of flower.
- x a photo of a pincushion flower, a type of flower.
- x a photo of a globe flower, a type of flower.
- \times a photo of a **prince of wales feathers**, a type of flower.

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML'21.

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML'21.

Why CLIP works?

- Scaling (model & data)

- Transformer

- Contrastive learning

2. Create dataset classifier from label text

2015

Prompt engineering

Text prompts

A photo of a {dog}

A photo of a {cat}

A photo of a {bird}

• • •

A photo of a {tiger}

a bad photo of a {}. a photo of many {}. a sculpture of a {}. a photo of the hard to see {}. a low resolution photo of the {}. a rendering of a {}. graffiti of a {}. a bad photo of the {}. a cropped photo of the {}. a tattoo of a {}. the embroidered {}. a photo of a hard to see {}. a bright photo of a {}. a photo of a clean {}. a photo of a dirty {}. a dark photo of the {}. a drawing of a {}. a photo of my {}. the plastic {}. a photo of the cool {}. a close-up photo of a {}. a black and white photo of the {}. a painting of the {}. a painting of a {}.

a pixelated photo of the {}. a sculpture of the {}. a bright photo of the {}. a cropped photo of a {}. a plastic {}. a photo of the dirty {}. a jpeg corrupted photo of a {}. a blurry photo of the {}. a photo of the {}. a good photo of the {}. a rendering of the {}. a {} in a video game. a photo of one {}. a doodle of a {}. a close-up photo of the {}. a photo of a {}. the origami {}. the {} in a video game. a sketch of a {}. a doodle of the {}. a origami {}. a low resolution photo of a {}. the toy {}. a rendition of the {}.

a photo of the clean {}. a photo of a large {}. a rendition of a {}. a photo of a nice {}. a photo of a weird {}. a blurry photo of a {}. a cartoon {}. art of a {}. a sketch of the {}. a embroidered {}. a pixelated photo of a {}. itap of the {}. a jpeg corrupted photo of the {}. a good photo of a {}. a plushie {}. a photo of the nice {}. a photo of the small {}. a photo of the weird {}. the cartoon {}. art of the {}. a drawing of the {}. a photo of the large {}. a black and white photo of a {}. the plushie {}.

Prompt engineering is hard

Caltech101	Prompt	Accuracy	Flowers102	Prompt	Accuracy
	a [CLASS].	82.68		a photo of a [CLASS].	60.86
The same of the sa	a photo of [CLASS].	80.81		a flower photo of a [CLASS].	65.81
	a photo of a [CLASS].	86.29		a photo of a [CLASS], a type of flower.	66.14
	[V] ₁ [V] ₂ [V] _M [CLASS].	91.83		[V] ₁ [V] ₂ [V] _M [CLASS].	94.51
Describable Textures (DTD) Prompt	Accuracy	EuroSAT	Prompt	Accuracy
	a photo of a [CLASS].	39.83		a photo of a [CLASS].	24.17
	a photo of a [CLASS] texture.	40.25		a satellite photo of [CLASS].	37.46
	[CLASS] texture.	42.32		a centered satellite photo of [CLASS].	37.56
	[CEASS] texture.				

Fine-tuning is also hard

Context Optimization (CoOp)

/ku:p/

By forwarding a prompt t to the text encoder $g(\cdot)$, we can obtain a classification weight vector representing a visual concept (still from the [EOS] token position). The prediction probability is computed as

$$p(y = i | \boldsymbol{x}) = \frac{\exp(\cos(g(\boldsymbol{t}_i), \boldsymbol{f})/\tau)}{\sum_{j=1}^{K} \exp(\cos(g(\boldsymbol{t}_j), \boldsymbol{f})/\tau)},$$
 (3)

where the class token within each prompt t_i is replaced by the corresponding word embedding vector(s) of the i-th class name.

Zhou et al. "Learning to prompt for vision-language models." International Journal of Computer Vision 130.9 (2022): 2337-2348.

Why do prompt learning?

- Enjoys rich gradient information
- Mitigates overfitting (few parameters)
- Reduces storage cost (one per task or user)

Few-shot learning

- Works on diverse tasks (objects, animals, scenes, actions, etc.)
- Significantly beats hand-crafted prompts (also needs labels for tuning)

Domain generalization

- Train on one dataset but test on a different one with domain shifts
- Still beats hand-crafted prompts despite being a learning-based approach

Interpretable? Not really

Finding 1: few are somewhat relevant

Finding 2: the whole prompt does not make much sense

#	ImageNet	Food101	OxfordPets	DTD	UCF101
1	Potd (1.7136)	Lc (0.6752)	Tosc (2.5952)	Boxed (0.9433)	Meteorologist (1.5377)
2	That (1.4015)	Enjoyed (0.5305)	Judge (1.2635)	Seed (1.0498)	Exe (0.9807)
3	Filmed (1.2275)	Beh (0.5390)	Fluffy (1.6099)	Anna (0.8127)	Parents (1.0654)
4	Fruit (1.4864)	Matches (0.5646)	Cart (1.3958)	Mountain (0.9509)	Masterful (0.9528)
5	, (1.5863)	Nytimes (0.6993)	Harlan (2.2948)	Eldest (0.7111)	Fe (1.3574)
6	°(1.7502)	Prou (0.5905)	Paw (1.3055)	Pretty (0.8762)	Thof (1.2841)
7	Excluded (1.2355)	Lower (0.5390)	Incase (1.2215)	Faces (0.7872)	Where (0.9705)
8	Cold (1.4654)	N/A	Bie (1.5454)	Honey (1.8414)	Kristen (1.1921)
9	Stery (1.6085)	Minute (0.5672)	Snuggle (1.1578)	Series (1.6680)	Imam (1.1297)
10	Warri (1.3055)	\sim (0.5529)	Along (1.8298)	Coca (1.5571)	Near (0.8942)
11	Marvelcomics (1.5638)	Well (0.5659)	Enjoyment (2.3495)	Moon (1.2775)	Tummy (1.4303)
12	.: (1.7387)	Ends (0.6113)	Jt (1.3726)	Ih (1.0382)	Hel (0.7644)
13	N/A	Mis (0.5826)	Improving (1.3198)	Won (0.9314)	Boop (1.0491)
14	Lation (1.5015)	Somethin (0.6041)	Srsly (1.6759)	Replied (1.1429)	N/A
15	Muh (1.4985)	Seminar (0.5274)	Asteroid (1.3395)	Sent (1.3173)	Facial (1.4452)
16	.# (1.9340)	N/A	N/A	Piedmont (1.5198)	During (1.1755)

Generalize beyond the training labels?

... only works for a subset of classes (overfitting)

ImageNet ↓8.86%

FGVCAircraft ↓18.14%

Caltech101 ↓8.19%

DTD **138.26%**

Flowers102 **\$37.93%**

EuroSAT ↓37.45%

StanfordCars ↓17.72%

UCF101 128.64%

What is a good prompt?

- Contains instance-specific information
- Pushes text features closer to image features

Zhou et al. "Conditional prompt learning for vision-language models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

Conditional Context Optimization (CoCoOp)

/kəʊˌku:p/

Let $h_{\boldsymbol{\theta}}(\cdot)$ denote the Meta-Net parameterized by $\boldsymbol{\theta}$, each context token is now obtained by $\boldsymbol{v}_m(\boldsymbol{x}) = \boldsymbol{v}_m + \boldsymbol{\pi}$ where $\boldsymbol{\pi} = h_{\boldsymbol{\theta}}(\boldsymbol{x})$ and $m \in \{1, 2, ..., M\}$. The prompt for the i-th class is thus conditioned on the input, i.e., $\boldsymbol{t}_i(\boldsymbol{x}) = \{\boldsymbol{v}_1(\boldsymbol{x}), \boldsymbol{v}_2(\boldsymbol{x}), \ldots, \boldsymbol{v}_M(\boldsymbol{x}), \boldsymbol{c}_i\}$. The prediction probability is computed as

$$p(y|\mathbf{x}) = \frac{\exp(\sin(\mathbf{x}, g(\mathbf{t}_y(\mathbf{x})))/\tau)}{\sum_{i=1}^{K} \exp(\sin(\mathbf{x}, g(\mathbf{t}_i(\mathbf{x}))/\tau)}.$$
 (3)

Zhou et al. "Conditional prompt learning for vision-language models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

1. Conditional prompt learning is more generalizable

Zhou et al. "Conditional prompt learning for vision-language models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

- 1. Conditional prompt learning is more generalizable
- 2. Conditional prompt learning is more transferable

Table 2. Comparison of prompt learning methods in the cross-dataset transfer setting. Prompts applied to the 10 target datasets are learned from ImageNet (16 images per class). Clearly, CoCoOp demonstrates better transferability than CoOp. Δ denotes CoCoOp's gain over CoOp.

	Source						Target					
	ImageNet	Caltech101	OxfordPets	StanfordCars	Flowers102	Food101	FGVCAircraft	SUN397	DTD	EuroSAT	UCF101	Average
CoOp [62] CoCoOp	71.51 71.02	93.70 94.43	89.14 90.14	64.51 65.32	68.71 71.88	85.30 86.06	18.47 22.94	64.15 67.36	41.92 45.73	46.39 45.37	66.55 68.21	63.88 65.74
Δ	-0.49	+0.73	+1.00	+0.81	+3.17	+0.76	+4.47	+3.21	+3.81	-1.02	+1.66	+1.86

- 1. Conditional prompt learning is more generalizable
- 2. Conditional prompt learning is more transferable
- 3. Conditional prompt learning is more robust

Table 3. Comparison of manual and learning-based prompts in domain generalization. CoOp and CoCoOp use as training data 16 images from each of the 1,000 classes on ImageNet. In general, CoCoOp is more domain-generalizable than CoOp.

		Source	Target					
	Learnable?	ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R		
CLIP [40]		66.73	60.83	46.15	47.77	73.96		
CoOp [62]	\checkmark	71.51	64.20	47.99	49.71	75.21		
CoCoOp	✓	71.02	64.07	48.75	50.63	76.18		

- 1. Conditional prompt learning is more generalizable
- 2. Conditional prompt learning is more transferable
- 3. Conditional prompt learning is more robust
- 4. Conditional prompt learning is very slow to train (batch_size=1)

Multimodal prompt learning

- Idea: simultaneously adjust text and image features
- Same performance but much faster training

# Method	Source		Tar	Average	OOD				
	1,1001100	ImageNet	-V2	-S	-A	-R	11,010,80	Average	
1	CoOp	71.51	64.20	47.99	49.71	75.21	61.72	59.28	
2	CoCoOp	71.02	64.07	48.75	50.63	76.18	62.13	59.91	
3	VPT-shallow	68.98	62.10	47.68	47.19	76.10	60.38	58.27	
4	VPT-deep	70.57	63.67	47.66	43.85	74.42	60.04	57.40	
5	UPT	72.63	64.35	48.66	50.66	76.24	62.51	59.98	

Have more compute? Do prompt search

Take home messages

- VLMs largely reshaped the landscape of visual recognition
- Deploying VLMs in the real world is a non-trivial problem
- Prompt learning is a data-efficient adaptation method
- Conditional prompt learning works better but is too slow
- Multimodal prompt learning strikes a good balance between performance and speed
- Do NAS to search for the best adaptation modules if more compute is available

Relevant prompting papers

- Learning to Prompt for Vision-Language Models
- Conditional Prompt Learning for Vision-Language Models
- Unified Vision and Language Prompt Learning
- Neural Prompt Search

Open-source code: https://github.com/KaiyangZhou/CoOp

Outline

- History
- Pre-training
- Prompting
- Applications

Open-Vocabulary Perception

Zang et al. "Open-vocabulary detr with conditional matching." European Conference on Computer Vision. 2022.

blurry car, sharp car

Bill Gates, Steve Jobs

Batman, Joker

3D Understanding and Generation

Hong et al. "AvatarCLIP: zero-shot text-driven generation and animation of 3D avatars." ACM Transactions on Graphics (TOG) 41.4 (2022): 1-19.

Generative Models and Creativity

panda mad scientist mixing sparkling chemicals, artstation

Chen et al. "Text2light: Zero-shot text-driven hdr panorama generation." ACM Transactions on Graphics (TOG) 41.6 (2022): 1-16.

Recap

• History:

evolution of vision and language models, convergence to VLMs

Pre-training

contrastive learning, dual encoders, image-text pairs

Prompting

prompt engineering, prompt learning

Applications

open-vocabulary perception, 3D, GenAl