MICHIGAN STATE MBZUA

Biometric Matching in
Encrypted Domain

Karthik Nandakumar
Associate Professor

CSE Department, Michigan State University, USA

CV Department, MBZUAI, Abu Dhabi, UAE

https://www.sprintai.org



https://www.sprintai.org/

How Biometric Systems Work?
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« Templates consist of features extracted from biometric images/samples
« Usually stored in a database during enrollment —to be used later for verification

« A biometric template should be salient, invariant and compact



Examples of Biometric Templates
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Potential Misuse of Biometric Templates
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Biometric Template Protection/Encryption

Can we generate an
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Password Protection With Cryptographic Hashing

Cryptographic mmmm) 9AB3 6847 F1DE 26AC

Enrollment Hashing l
Comparator == Match
e Cryptographic l
Verification mmm) 9AB3 6847 F1DE 26AC

Hashing

« Passwords provided during enrollment & verification must be exactly identical

« Since two biometric samples from the same person are seldom identical, the above approach
cannot be directly applied to secure biometric templates



Cryptographic vs. Biometric Hashing

Cryptographic Hash Functions Robust Biometric Hash

Following problems should be

computationally infeasible « Giveny, it should be computationally

. Given y, find x such that h(x) = y (first infeasible to find x such that h(x) = y

pre-image resistance) (first pre-image resistance)
« Givenx, find x' # xsuchthat h(x) = « Givenx,anyx’ # x withd,(x,x") < ¢,
h(x") (second pre-image resistance) then h(x) = h(x") (or d,(h(x),h(x")) < &,)
* Find (x, x") with x’ # x, such that h(x) =  + For any (x,x") with d,(x,x") < &, then

h(x") (collision resistance) h(x) = h(x") (ord,(h(x),h(x")) < &,)

Is a robust biometric hash with above properties practically feasible?



Taxonomy of Biometric Encryption Approaches

Biometric
Template
Protection

Cryptographic Feature Biometric
Solutions Transformation Cryptosystem

Standard Homomorphic Invertible Non-invertible Key Binding Key Generating
Encryption Encryption Transformation Transformation Cryptosystem Cryptosystem

Hybrid schemes employ more than one basic approach



Threat Models for Security Analysis (IS0-30136)

* Naive Model
No information, black box, no access to any biometric data

« Collision Model
Adversary possesses a large amount of biometric data

* General Models
Full knowledge of the underlying template protection scheme

» Standard Model

o None of the secrets
o Related to known ciphertext attack

» Advanced Model
o Augmented with the capability of the adversary to execute part of or all submodules that make use of the secrets
o Related to chosen plaintext attack and chosen ciphertext attack

» Full Disclosure Model
o Augmented by disclosing the secrets to the adversary (e.g. malicious insider)



Taxonomy of Biometric Encryption Approaches

Biometric
Template
Protection

Cryptographic Feature

Biometric
Solutions Transformation

Cryptosystem

Standard Homomorphic Invertible

Non-invertible Key Binding Key Generating
Encryption Encryption Transformation

Transformation Cryptosystem Cryptosystem

<
<

Security is analyzed under the Standard Model,
l.e., keys are assumed to be secrets

»
»

Security is analyzed under the Full Disclosure
Model, i.e., keys are NOT secrets
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Standardized Biometric Encryption Framework

Enrolment Storage Verification
Signal processing Comparison Signal processing
Subsystem RBR Subsystem Subsystem
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Standard Encryption Approach

Enrollment
N \ _ Standard Sy .
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Sy Encrypted '
Key (K) Template decryption key
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Key (K) s % « Matcher needs original
= template; decrypted

templates are vulnerable
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match
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Query (x)




Biometric System on Card/Device

« Complete system (sensor, feature extractor, matcher, template) resides on card/device

 Template is stored within a secure enclave and is never transmitted or released outside
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Homomorphic Encryption Approach

« Homomorphic Encryption (HE) provides the ability to perform an algebraic operation on
plaintext by performing a (possibly different) algebraic operation on ciphertext

Plaintext space ? Ciphertext space ¢
X, X, c; € Enc(x) o c,
N N
CI) y € Dec(d) G\L@
y « d

« “Raw RSA” is an example of multiplicative homomorphism
Enc: ¢ < x¢mod N, Dec: x € cdmod N

C,C, = X1® X,% = (X1X;) e mod N



Fully Homomorphic Encryption

Four procedures: KeyGen, Enc, Dec, Eval

(sk,pk) <« KeyGen(A)

» Generate random public/secret key-pair
c < Enc(pk, m)

» Encrypt a message with the public key
m < Dec(sk, c)

» Decrypt a ciphertext with the secret key
c <« Eval(pk, f, cq,...,C})

» C;lis the encryption of input m,

» fis function to be evaluated

» cisthe encryption of the output f(m,,...,m,)

FHE scheme should work for any
well-defined function f (currently only
low-degree polynomials are feasible)
and be computationally “efficient”
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Simple Construction of a FHE

« Shared secret key: odd number p

« Toencryptabitmin{0,1}: The “noise”
» Choose at random smallr, large g should be
much smaller
» Outputc =-+ Pq e

o Ciphertext is close to a multiple of p
o m = LSB of distance to nearest multiple of p
« Todecryptc:

» Output m = (c mod p) mod 2 _ o
s Semantic security is based on the

« Public key is many “encryptions of 0” approximate GCD problem
> X=qp + 2r, « Given many x.= s+ q;p, output p
« Best known attacks (lattices)
require 2 time

L)

«  Enc,(m) = subset-sum(x;'s)+m

« Decg(c) = (c mod p) mod 2



Homomorphic Properties of FHE

Suppose c;=m4+2r;+q4p, C,=M,+2r,+q,pP

Noise: Distance to nearest multiple of p

c, + ; MM F2ERR)+ (0, +a2)p

» If (my+m,)+2(r +r,) still much smaller than p
> cy+c,mod p = (my+m,) + 2(ry+r,)
» (c,+c,mod p) mod 2 = my;+m, mod 2

Noise: Distance to nearest multiple of p

C1XCy =_+(C1CI2+CI1C2'C|1C|2)I3

»  If (my+2r)(M,+2r,) still much smaller than p
> c,xc,mod p = (my+2r,)(m,+2r,)

» (cxc,mod p) mod 2 = myxm, mod 2

Every operation increases the
noise level of the ciphertext

If the noise exceeds p/4,
decryption may fail

This limits the “depth” of the
operations

17



Verification Protocol based on HE

Client Device Encrypted Database
S —>~[Encryption] (E(z), )
Enrollment 6. 1 >
‘ Key Gen O
>( 6,
V. Bodetti, “Secure Face
Client Device Encrypted Database Matching USI.ng Fully C
r . p . Homomorphic Encryption”,
(E(y). ") BTAS 2019
iz D—> Encryption >
[ )
- . 0. -
Verification ¥ ) ... e
(di,...,dn) 1—' DecryptionJI <

While match scores can be computed in the encrypted domain, the result still needs to be decrypted
using the decryption key



Feature Fusion in Encrypted Domain
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Sperling et al., “HEFT: Homomorphically Encrypted Fusion of Biometric Templates”, IJCB 2022
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SIMD Operations in Encrypted Domain

A well-designed ciphertext packing strategy
enables efficient computations in the
encrypted domain by leveraging Single
Instruction Multiple Data (SIMD) operations

Sperling et al., “HEFT: Homomorphically Encrypted Fusion of Biometric Templates”, IJCB 2022
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Secure Multiparty Computation

Encoding
Homomorphic
A Encryption
T Biometric
Public Key S Database
Homomorphic Secure
D—  Encryption — Distance
(Optional) Calculation
Encrypted
Distance :
Threshold
4

Decision

» Rane et al., “Secure Biometrics: Concepts,
authentication architectures, and challenges”, IEEE
Signal Processing Magazine, Sept 2013

» Bringer et al., “Privacy-Preserving Biometric
Identification Using Secure Multiparty Computation: An
Overview and Recent Trends”, IEEE Signal Processing
Magazine, 30(2): 42-52, 2013
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Challenges in HE Approach

« Exponential increase In
« Template size
« Computational complexity
« Communication overhead
 How to handle real numbers?

« Efficient and secure protocols are required for matching in the encrypted
domain — especially if the parties are malicious

22



Feature Transformation Approach

Supplementary
Data (Optional)

Transformation

Parameters/Key Blometric
Reference
Biometric v \l/ Data
Template] . Transformation > System
Function Database
Enrollment
Authentication l
Biometric 4
Query Transformation _}# :rtg;::?nleg Match/
Function Non-match

Domain

?

Transformation

Parameters/Key
Supplementary

Data (Optional)

« Template is revoked by
changing transformation
parameters/key

e Matching in transformed
domain; if transformation is
non-invertible, security of key
IS not critical

23



Invertible Transformation: BioHashing

Biometric
Feature Yector

(x)

Transformation Function

Biometric
Trait
Orthogonal
—010100— == Projection
Secret Key Matrix (A,)
(x)

Projected
Feature Vector

y = Ax

Thresholding

) | e 011001101

Transformed
Feature Vector
f(x.x)

An effective technique for features represented as fixed-length
vectors; significant “improvement” in matching performance
due to increased uniformity of feature distribution

How difficult is its inversion?

Teoh et al., "Random Multispace
Quantization as an Analytic
Mechanism for BioHashing of
Biometric and Random Identity
Inputs," IEEE TPAMI, 28(12),
pp.1892,1901, Dec 2006



(Ir)reversibility of BioHashing

« Original features are obtained as solution of the following problem for

argmin ||x—a||2 ,

; where ais the biometric feature from a

_2 M, X, <6, jif b =0 database,M is the transformation matrix, b
=1 is the transformed feature and g, is the

] threshold for the i-th feature
Z M”xJ >0 ,1f b =1

« Weighted combination of multiple solutions is used as the final estimate of x

Original Face Recovered Face

A. Nagar, K. Nandakumar & A. K. Jain, “Biometric Template Transformation: A Security
Analysis”, Proc. SPIE Electronic Imaging, Media Forensics and Security XII, Jan 2010
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Non-Invertible Transformation

Many-to-one transforms that are locally smooth and globally non-smooth

600 T T T T T 600

soof 5001

4001

L
l
]

400 F

Ratha et al., "Generating Cancelable
Fingerprint Templates," IEEE TPAMI,

3001

300}

~tu | .

—+ RT, 29(4), pp.561,572, April 2007
wop |y (=7

100F

100f ’\‘-‘. = . ol
0 . . . L . -100 L L L L
0 50 100 150 200 250 300 -100 0 100 200 300 400 -100 0 100 200 300 400

Original minutiae Transformed minutiae Transformed minutiae

using Trans-1 (¥=30) using Trans-2 (7=60)

* Requires core-point based alignment
« Trade-off between irreversibility & accuracy
» Lack of theoretical analysis of irreversibility
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(Ir)reversibility of Feature Transformation

Distribution of biometric features

Before Transformation

f(0i,Ks).

After Transformation

Pre-image of f(b;,K,)

A pre-image of a transformed template
Is the collection of all the templates in
the original domain that can generate
the given transformed template

27



Example of Reversing a Non-Invertible Template

« Transformed squares encasing a minutia correspond to its pre-image
« Most likely pre-image element is taken as inverse
— More pre-images considered in order of likelihood to improve feature recovery

A. Nagar and A. K. Jain, “On the Security of
N Non-Invertible Fingerprint Template
- N\ Transforms”, IEEE WIFS, Dec. 2009

/ A\ ! \
) é u

i !
Original Fingerprint Trans%ormed Fingerprint
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Template Protection via Input Transformation
)

Key
o Pseudonymous
e — % — > T ——p | PSeydonymous| 8
) . Template encoder Protected
Biometric Feature template
sample extraction
Feature Transformation
Key

'

O Pseudonymous O

@) | identifer |—® DB > % > a
. . encoder Protected
Biometric Protected Feature template

sample sample extraction

Input Transformation

Rathgeb et al., “Deep Learning in the Field of Biometric Template Protection: An Overview”, https://arxiv.org/pdf/2303.02715
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Protecting Facial Privacy via Adversarial Attacks

» Face recognition algorithms can be misused for unauthorized tracking of individuals based on
images posted on social media, which constitutes a serious threat to privacy in the digital world

» Can face images be adversarially modified to protect facial privacy?

Noise-based Patch-based Adv-glasses  Adv-hat Patch-based



Input Transformation for Face Privacy Protection

Real Face Protected Face

Unauthorized Face Recognition System:

= in But al € Ui Yy in Target set L

Yang et al., “Towards Face Encryption by Generating Adversarial Identity Masks”, ICCV 2021
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Makeup Transfer for Face Privacy Protection

Adversarial
Images

—

References

Target identity

Hu et al., “Protecting Facial Privacy: Generating Adversarial Identity Masks via Style-robust Makeup Transfer”, CVPR 2022
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Protecting Facial Privacy via Adversarial Attacks

A two-step approach to find adversarial latent codes within the low-
dimensional manifold of a pretrained generative model

Latent Code Initialization

ext-Guided Aversarial Optimization

Adversarial Loss

Repel Attract

— Forward I-

- --- Backward!®

Textuil Loss \ Ey / \ ET/

Froze I E
a rozen I : tmakeup L’ (EJLOES? ‘-I
G Learned | = é

I _______ I B URGE e e e e e e ae e e e e e e e e e e e e e s o . A

"SI EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEN

Shamshad, Naseer, and Nandakumar, “CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversarial Latent Search”, CVPR 2023



Protecting Facial Privacy via Adversarial Attacks

User-defined makeup prompts can effectively hide attack information
In the desired makeup style

Original

Protected

Red lipstick, purple ~ No makeup  Pink eyeshadows Clown makeup Big eyebrows with Tanned makeup, Tanned makeup,
eyeshadows pink eyeshadows  black lipstick purple lipstick

Shamshad, Naseer, and Nandakumar, “CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversarial Latent Search”, CVPR 2023



Biometric Cryptosystems

Supplementary
Data (Optional)

Secure Sketch
Parameters/Key

\ Biometric

Biometric 4 ‘l/ Rewl‘:?rttence
Template 5 Secure Sketch aa\ System
Generation i Database

Enrollment

Authentication

Biometric l l
Error &
Query Correction S \?Aldltg | B NIVIatch;‘ h
Decoding Reconstructed ec on-matc
A Template/Key

Secure Sketch
Parameters

Supplementary
Data (Optional)

J

Biometric cryptosystems
enhance security and user
privacy by binding biometric
template & cryptographic
key as one entity
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Fuzzy Commitment

Encoder Decoder
( ) ( Feature vector )
Feature vector 011100001
011100001 C o
C o mem) 101110110 | =es————) | 101110110
110010111 Helper Data . Juels and Wattenberg, “A
Codeword (C) 110010111 fuzzy commitment scheme,”
= T Codeword (C)) = in Proc. 6th ACM Conf.
Template (1) - 4 Query (Q) Computer & Communications
ECC Security, 1999
T
Key l
[5234] Key
[5234]

Variability in binary biometric features is translated to variability in codeword of an error correction
scheme, which is indexed by a key

Corrupted codeword can be corrected to recover the embedded key

Lack of perfect code for desired code length

36



Basic Concept of Fuzzy Commitment

1 1 . Enroliment
0 /01—'0\ 1 O Biometric
=P
NE £
0 E> p A [> 0 o Coset of
: 1 1-p 1 . Enroliment
. > - 2
BSC-
(1) \’ = 5 '/ (1') "=+ Acceptance
0<pxk0.5 .} Regions
1 1 . ECC
0 1 Codewords
1 0
0 0 Accepted
: : Probe
1 0
0 1 o Rejected
Probe

Variability in binary biometric feature
vectors can be related to errors introduced
by a binary symmetric channel

Pictorial representation of ECC-based
biometric cryptosystem

Rane et al., “Secure Biometrics: Concepts, authentication architectures,
and challenges”, IEEE Signal Processing Magazine, Sept 2013
37



Fuzzy Vault

Fuzzy Vault Encoder Fuzzy Vault Decoder . .
v v ¢ Decoder identifies
Vault (V . enuine points in
Polynomial Evaluation % aulttv) Polynomlgl g : p :
A . ° ,  Reconstruction mixture of genuine &
L e o o chaff points
- ° « How to generate chaff
o points that are
> — >~ indistinguishable from
P(X)=5x"+2x"+3x+4 . .
] 1 genuine points?
P(X) = 5x>+2x°+3x+4 Match/
Non-match

1

Vault Key (K)
[5234]

Nandakumar, Jain and
Pankanti, "Fingerprint-
£ based Fuzzy Vault:
Biometric Implementation and
Template (T) Generation of Chaff Points Query (Q) Performance", IEEE T-IFS,
2007

=
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Hybrid Secure Face Template

_____________________________________ -~
Orthogonal I
& Triplet Loss £,; |
Feature Extraction I
Network

4 |8\s | |
o Randomized I
O Triplet Loss L, |

—————————————————— :

Random
Permutation-Flip

! Randomized CNN
N i

= Enrollment
— Query
| SS Encoding . :
------ SS Decoding J

- . S S S S S S S S .

Mai et al., “SecureFace: Face Template Protection”, IEEE T-IFS, 16, pp. 262-277, 2021 39



Multibiometric Cryptosystems

Multibiometrics provides high matching accuracy and high universality
Match score level fusion i1s most effective; but cryptosystems do not output scores
Feature fusion leads to significant improvement versus cascade cryptosystems

Major challenges
— Heterogeneous biometric data

— Feature adaptation for biometric cryptosystems

I
Biometric Embedding | |
Template (x;5) i Algorithm Ey(.) Key (k) |
| l | A. Nagar, K. Nandakumar and A.
| e e Multibiometr K. Jain, “Multibiometric
Biometric Embedding | %2 Fusion 2| Helper Data | uitibiornetric System ) !
Template (x5 —T*| Algorithm E.() [ Module C() [ Extraction f.() [T~ f‘zggf)sﬁif;‘ ™ Database Cryptosystems based on Feature
| : | e e Level Fusion”, IEEE T-IFS, 2012
I . |
Biometric | Embedding |
I

Template (xyF) | Algorithm Ew(.) |
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Multibiometric Fusion in the Input Domain

Enrollment ldentlt}hmdmg
Authentication o

Random Binary Codes T Polar Encoding

L

- J Encoder H;l lP”

# 1 Residual Network -
LD U\- L_P l i esidual Networ T,

tH ~
. Ve, LN S, O R Cryptographic

M/ GAN " Fusion |~ O~ OO el FolaE AP e 7
T —p — ( j " f_-) X f-_\‘ Decoding : ELIEN
| | V' X i O 70

- 5 . -

[
)f V Feature Extraction Module Template Protection Module

Jiang et al., “Cross-Modal Learning Based Flexible Bimodal Biometric
Authentication With Template Protection”, IEEE T-IFS, 2024

T

\"-\-._,_‘_‘_‘____._._'_,_.-r""’

\'\-..._‘_‘_‘_‘_____._'_._,_,.,-"

H‘H-._\_‘_‘_‘_‘—._._._'_._,-r"l
Database

Y

(]

user: { ID,T,, |

Matcher

}
Yes/No
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Multibiometric Fusion in the Input Domain

fv O Pre-trained & fixed

----------------------- @ . Trainable

g x=G(' :
3 daleilal! » Real/Fake

Voice-F ace pairs

- B

% Voice Encoder (u.nuator Discriminator

Synthetic Face

Original Face Images generated

images from Voice
(a) (b)
Key Points for - Fusion of Original
Alignment ‘ & Synthetic Face
| Images
(c) (d)

Jiang et al., “Cross-Modal Learning Based Flexible Bimodal Biometric
Authentication With Template Protection”, IEEE T-IFS, 2024 42



Metrics for Template Security Evaluation

Encoding

Stored Data S

) Enrollment A l E
< Vector

& ,»’J Secret Key K J :-—J'—- _ _
‘ | Biometric
m S | Database Rane et al., “Secure Biometrics:

“._ Probe Vector Concepts, authentication
and Secret Key (B, K) (D, L) architectures, and challenges”, IEEE

g —*\/br X Signal Processing Magazine, Sept 2013

_______ Attack Vector (€, J) —O

and Fake Key Decision

False Non-match Rate (FNMR) = P(g = Non-match | D = B, L = K)
False Match Rate (FMR) = P(g =Match | D=C, L=1J)
Successful Attack Rate (SAR) = P(g = Match | D =C, L = K, side info)

Privacy Leakage = Mutual Information (A; V = (S, K))

43



Information-Theoretic Framework for Irreversibility

H(A,V)

H(A) H(V)

A: Enrollment Biometric Vector (Template)
V: Stored Data (includes AD, PI, SD)

» Privacy Leakage (Entropy Loss) = I(A; V)

 Suitable only for comparing two BTP schemes acting on same A

44



Measuring Irreversibility

How difficult it is to recover the original template from the stored data?

Typically expressed in bits & measured based on
— Avg. no. of trials needed to recover the template

— Entropy of original template given the stored data (H(A|V))

Estimate of security requires a model of the biometric feature distributions

FRR, FAR, and SAR are reported separately

45



Irreversibility of Biometric Cryptosystems

« Fuzzy vault?

H(A|V) = log, [C(r, n+1)

C(t,n+1)

t: no. of genuine points

j r: total no. of points in the vault
n: degree of polynomial used

Assumption: Both genuine and chaff points are uniformly distributed

e Fuzzy commitment?

2I
H(A|V) = log (C(I I)j

Assumption: Reliable estimate of entropy (no. of i.i.d bits) is available

I: Entropy of binary template
p: Fraction of errors corrected

How to modify features to satisfy these assumptions?

[1] Nandakumar, Jain and
Pankanti, "Fingerprint-
based Fuzzy Vault:
Implementation and

Performance", IEEE T-IFS,

2007

[2] Hao, Anderson, and
Daugman, “Combining
Crypto with Biometrics
Effectively,” IEEE Trans.
Computers, 2006
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Gap Between Theory & Practice of Biometric Encryption

« 7 algorithms in FVC-onGoing have equal error rate (EER) less than 0.2% without
BTP; best BTP algorithm has EER of 1.54% on same data

« AES system with a 128-bit key or a RSA cryptosystem with a 3072-bit key can
provide a security strength of approximately 128 bits. No consensus on metrics
to measure the irreversibility of a BTP scheme

 Still no consensus on how to define & measure the unlinkability of a BTP scheme

Akerlof’s ‘market for lemons’ explains why so many information security products are poor:
buyers are unwilling to pay a premium for quality they cannot measure.

- Anderson and Moore, 2009
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J. Daugman, “Information Theory and the IrisCode,” IEEE T-IFS, 2016 i Dt



Measuring Unlinkability

« Possible definition of unlinkability

o Given two instances of stored data V, and V, generated from the same
biometric trait of the same person, what is the probability of determining that
they are linked?

« Often, unlinkability is possible only under the assumption that the second factor
(supplementary data) is not compromised

V,=X+Cq, V, =X +C,
Vi+V,)=X+X)+(C,+C)=A+C,
If Hamming weight of A is small, one can decode successfully

« What are the reasonable assumptions for analyzing unlinkability?
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Summary

« Biometric matching in the encrypted domain is an important issue because
compromised templates cannot be revoked/reissued

« A biometric encryption scheme with provable security & acceptable performance
has remained elusive

« Challenge is to design transforms/cryptosystems that

— generate unlinkable templates

— provide good trade-off between accuracy & security

e Future lies in leveraging advancements in deep learning and generative models to
develop new schemes that work at the input/signal level
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