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How Biometric Systems Work?
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• Templates consist of features extracted from biometric images/samples

• Usually stored in a database during enrollment – to be used later for verification

• A biometric template should be salient, invariant and compact



Examples of Biometric Templates
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Potential Misuse of Biometric Templates
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It is possible to determine if the same 
person is enrolled in different 
applications (privacy issue)

Biometric data can be replayed 
back to enable intrusion attacks 

(security vulnerability)  

Fake biometric traits can be 
reconstructed from templates to 
enable presentation attacks

(security vulnerability)  

Goal: Protect biometric templates by 
“encrypting” them and matching 

them in the encrypted domain 



Biometric Template Protection/Encryption
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Can we generate an 
irreversible AND 

unlinkable biometric 
template without 
compromising on 

matching accuracy?

Template 
Protection

“Encryption”



Password Protection With Cryptographic Hashing

6
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Enrollment

Verification

• Passwords provided during enrollment & verification must be exactly identical

• Since two biometric samples from the same person are seldom identical, the above approach 
cannot be directly applied to secure biometric templates

Comparator Match



Cryptographic vs. Biometric Hashing
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Cryptographic Hash Functions

Following problems should be 
computationally infeasible

• Given 𝒚, find x such that ℎ(𝒙)  =  𝒚 (first 
pre-image resistance)

• Given 𝒙, find 𝒙′ ≠  𝒙 such that ℎ(𝒙)  =
 ℎ(𝒙′) (second pre-image resistance)

• Find (𝒙, 𝒙′) with 𝒙′ ≠  𝒙, such that ℎ(𝒙)  =
 ℎ(𝒙′) (collision resistance)

Robust Biometric Hash

• Given y, it should be computationally 
infeasible to find 𝒙 such that ℎ(𝒙)  =  𝒚 
(first pre-image resistance) 

• Given 𝒙, any 𝒙′ ≠  𝒙  with 𝑑1(𝒙, 𝒙′)  ≤  𝜀1, 
then ℎ(𝒙)  =  ℎ(𝒙′) (or 𝑑2(ℎ(𝒙), ℎ(𝒙′)) ≤ 𝜀2)

• For any (𝑥, 𝑥′) with 𝑑1(𝒙, 𝒙′)  ≤  𝜀1, then 
ℎ(𝒙)  =  ℎ(𝒙′) (or 𝑑2(ℎ(𝒙), ℎ(𝒙′)) ≤ 𝜀2)

Is a robust biometric hash with above properties practically feasible?



Taxonomy of Biometric Encryption Approaches
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Hybrid schemes employ more than one basic approach
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Threat Models for Security Analysis (ISO-30136)
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• Naïve Model
No information, black box, no access to any biometric data

• Collision Model
Adversary possesses a large amount of biometric data

• General Models
Full knowledge of the underlying template protection scheme

➢ Standard Model
o None of the secrets
o Related to known ciphertext attack

➢ Advanced Model
o Augmented with the capability of the adversary to execute part of or all submodules that make use of the secrets
o Related to chosen plaintext attack and chosen ciphertext attack 

➢ Full Disclosure Model
o Augmented by disclosing the secrets to the adversary (e.g. malicious insider)



Taxonomy of Biometric Encryption Approaches
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Security is analyzed under the Standard Model, 
i.e., keys are assumed to be secrets

Security is analyzed under the Full Disclosure 
Model, i.e., keys are NOT secrets



Standardized Biometric Encryption Framework
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Standard Encryption Approach
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• Key management problem: 
security of encryption/ 
decryption key

• Matcher needs original 
template; decrypted 
templates are vulnerable 



Biometric System on Card/Device
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• Complete system (sensor, feature extractor, matcher, template) resides on card/device

• Template is stored within a secure enclave and is never transmitted or released outside



Homomorphic Encryption Approach
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Plaintext space P Ciphertext space C

x1 x2
ci  Enc(xi) c1           c2

 

y d
y  Dec(d)

• Homomorphic Encryption (HE) provides the ability to perform an algebraic operation on 
plaintext by performing a (possibly different) algebraic operation on ciphertext

• “Raw RSA” is an example of multiplicative homomorphism 
 
 Enc:   c  xe mod N, Dec:   x  cd mod N

       c1c2 = x1
e x2

e  =  (x1x2) e mod N 



Fully Homomorphic Encryption
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Four procedures: KeyGen, Enc, Dec, Eval

• (sk,pk) ← KeyGen(λ)

➢ Generate random public/secret key-pair

• c ← Enc(pk, m)

➢ Encrypt a message with the public key

• m ← Dec(sk, c)

➢ Decrypt a ciphertext with the secret key

• c  ← Eval(pk, f, c1,…,ct)

➢ ci is the encryption of input mi

➢ f is function to be evaluated

➢ c is the encryption of the output f(m1,…,mt) 

FHE scheme should work for any 
well-defined function f (currently only 
low-degree polynomials are feasible) 
and be computationally “efficient”



• Shared secret key: odd number p

• To encrypt a bit m in {0,1}:

➢ Choose at random small r, large q

➢ Output c = m + 2r + pq

o Ciphertext is close to a multiple of p

o m = LSB of distance to nearest multiple of p 

• To decrypt c:

➢ Output m = (c mod p) mod 2

• Public key is many “encryptions of 0”

➢ xi= qip + 2ri

• Encpk(m) = subset-sum(xi’s)+m

• Decsk(c) = (c mod p) mod 2

Simple Construction of a FHE
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The “noise” 
should be 

much smaller 
than p

❖ Semantic security is based on the 
approximate GCD problem
• Given many xi= si+ qip, output p
• Best known attacks (lattices) 

require 2λ time



• Suppose c1=m1+2r1+q1p, c2=m2+2r2+q2p

• c1 + c2 = (m1+m2) + 2(r1+r2) + (q1+q2)p

➢ If (m1+m2)+2(r1+r2) still much smaller than p

➢ c1+c2 mod p = (m1+m2) + 2(r1+r2)

➢ (c1+c2 mod p) mod 2 = m1+m2 mod 2

• c1 x c2 = (m1+2r1)(m2+2r2) +(c1q2+q1c2-q1q2)p 

➢ If (m1+2r1)(m2+2r2) still much smaller than p

➢ c1xc2 mod p = (m1+2r1)(m2+2r2) 

➢ (c1xc2 mod p) mod 2 = m1xm2 mod 2

Homomorphic Properties of FHE
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Noise: Distance to nearest multiple of p

Noise: Distance to nearest multiple of p

❖ Every operation increases the 
noise level of the ciphertext

❖ If the noise exceeds p/4, 
decryption may fail

❖ This limits the “depth” of the 
operations



Verification Protocol based on HE
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Enrollment

Verification

While match scores can be computed in the encrypted domain, the result still needs to be decrypted 
using the decryption key

V. Bodetti, “Secure Face 
Matching Using Fully 
Homomorphic Encryption”, 
BTAS 2019



Feature Fusion in Encrypted Domain

19Sperling et al., “HEFT: Homomorphically Encrypted Fusion of Biometric Templates”, IJCB 2022



SIMD Operations in Encrypted Domain

20Sperling et al., “HEFT: Homomorphically Encrypted Fusion of Biometric Templates”, IJCB 2022

A well-designed ciphertext packing strategy 
enables efficient computations in the 
encrypted domain by leveraging Single 
Instruction Multiple Data (SIMD) operations



Secure Multiparty Computation
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Homomorphic 
Encryption

Homomorphic 
Encryption 
(Optional)

• Rane et al., “Secure Biometrics: Concepts, 
authentication architectures, and challenges”, IEEE 
Signal Processing Magazine, Sept 2013

• Bringer et al., “Privacy-Preserving Biometric 
Identification Using Secure Multiparty Computation: An 
Overview and Recent Trends”, IEEE Signal Processing 
Magazine, 30(2): 42-52, 2013



Challenges in HE Approach
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• Exponential increase in 

• Template size

• Computational complexity

• Communication overhead

• How to handle real numbers?

• Efficient and secure protocols are required for matching in the encrypted 

domain – especially if the parties are malicious



Feature Transformation Approach
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• Template is revoked by 
changing transformation 
parameters/key

• Matching in transformed 
domain; if transformation is 
non-invertible, security of key 
is not critical



Invertible Transformation: BioHashing
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An effective technique for features represented as fixed-length 
vectors; significant “improvement” in matching performance 
due to increased uniformity of feature distribution

How difficult is its inversion?

Teoh et al., "Random Multispace 
Quantization as an Analytic 
Mechanism for BioHashing of 
Biometric and Random Identity 
Inputs," IEEE TPAMI, 28(12), 
pp.1892,1901, Dec 2006



(Ir)reversibility of BioHashing
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• Original features are obtained as solution of the following problem for 

• Weighted combination of multiple solutions is used as the final estimate of x 

Original Face Recovered Face

2

1
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M x if b
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where    is the biometric feature from a 
database,     is the transformation matrix,    
is the transformed feature and    is the 
threshold for the i-th feature

a
M b

i

A. Nagar, K. Nandakumar & A. K. Jain, “Biometric Template Transformation: A Security 
Analysis”, Proc. SPIE Electronic Imaging, Media Forensics and Security XII, Jan 2010



Non-Invertible Transformation
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Many-to-one transforms that are locally smooth and globally non-smooth

Original minutiae Transformed minutiae 
using Trans-2 (   =60)

Transformed minutiae 
using Trans-1 (   =30)

Ratha et al., "Generating Cancelable 
Fingerprint Templates," IEEE TPAMI, 
29(4), pp.561,572, April 2007

• Requires core-point based alignment
• Trade-off between irreversibility & accuracy 
• Lack of theoretical analysis of irreversibility



(Ir)reversibility of Feature Transformation
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A pre-image of a transformed template 
is the collection of all the templates in 
the original domain that can generate 
the given transformed template

f(bi,K1)

f(bi,K3)

Before Transformation After Transformation

f(bi,K2)

Distribution of biometric features

bi

Before Transformation

f(bi,K1)

f(bj,K1)

f(bk,K1)

bi

bj

bk

Pre-image of f(bi,K1)



Example of Reversing a Non-Invertible Template

28

A. Nagar and A. K. Jain, “On the Security of 
Non-Invertible Fingerprint Template 
Transforms”, IEEE WIFS, Dec.  2009

• Transformed squares encasing a minutia correspond to its pre-image

• Most likely pre-image element is taken as inverse 

– More pre-images considered in order of likelihood to improve feature recovery

Original Fingerprint Transformed Fingerprint



Template Protection via Input Transformation
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Feature Transformation

Input Transformation

Rathgeb et al., “Deep Learning in the Field of Biometric Template Protection: An Overview”, https://arxiv.org/pdf/2303.02715 



Protecting Facial Privacy via Adversarial Attacks
➢ Face recognition algorithms can be misused for unauthorized tracking of individuals based on 

images posted on social media, which constitutes a serious threat to privacy in the digital world

➢ Can face images be adversarially modified to protect facial privacy?



Input Transformation for Face Privacy Protection
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Yang et al., “Towards Face Encryption by Generating Adversarial Identity Masks”, ICCV 2021

Real Face Protected Face 



Makeup Transfer for Face Privacy Protection

32Hu et al., “Protecting Facial Privacy: Generating Adversarial Identity Masks via Style-robust Makeup Transfer”, CVPR 2022



Protecting Facial Privacy via Adversarial Attacks

Shamshad, Naseer, and Nandakumar, “CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversarial Latent Search”, CVPR 2023

A two-step approach to find adversarial latent codes within the low-
dimensional manifold of a pretrained generative model



Protecting Facial Privacy via Adversarial Attacks

Shamshad, Naseer, and Nandakumar, “CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversarial Latent Search”, CVPR 2023

User-defined makeup prompts can effectively hide attack information 
in the desired makeup style



Biometric Cryptosystems
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Biometric cryptosystems 
enhance security and user 
privacy by binding biometric 
template & cryptographic 
key as one entity



Fuzzy Commitment
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Feature vector
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Codeword (C)
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Encoder Decoder

Juels and Wattenberg, “A 
fuzzy commitment scheme,” 
in Proc. 6th ACM Conf. 
Computer & Communications 
Security, 1999

• Variability in binary biometric features is translated to variability in codeword of an error correction 

scheme, which is indexed by a key

• Corrupted codeword can be corrected to recover the embedded key

• Lack of perfect code for desired code length



Basic Concept of Fuzzy Commitment
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Variability in binary biometric feature 
vectors can be related to errors introduced 

by a binary symmetric channel

Pictorial representation of ECC-based 
biometric cryptosystem

Rane et al., “Secure Biometrics: Concepts, authentication architectures, 
and challenges”, IEEE Signal Processing Magazine, Sept 2013



Fuzzy Vault
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Fuzzy Vault Encoder Fuzzy Vault Decoder

Biometric 

Query (Q)

• Decoder identifies 
genuine points in 
mixture of genuine & 
chaff points

• How to generate chaff 
points that are 
indistinguishable from 
genuine points?

Nandakumar, Jain and 
Pankanti, "Fingerprint-
based Fuzzy Vault: 
Implementation and 
Performance", IEEE T-IFS, 
2007



Hybrid Secure Face Template

39Mai et al., “SecureFace: Face Template Protection”, IEEE T-IFS, 16, pp. 262-277, 2021



Multibiometric Cryptosystems
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• Multibiometrics provides high matching accuracy and high universality

• Match score level fusion is most effective; but cryptosystems do not output scores

• Feature fusion leads to significant improvement versus cascade cryptosystems

• Major challenges

– Heterogeneous biometric data

– Feature adaptation for biometric cryptosystems

Embedding 
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Embedding 
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Embedding 
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Secure Sketch 
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System 
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A. Nagar, K. Nandakumar and A. 
K. Jain, “Multibiometric 
Cryptosystems based on Feature 
Level Fusion”, IEEE T-IFS, 2012



Multibiometric Fusion in the Input Domain
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Jiang et al., “Cross-Modal Learning Based Flexible Bimodal Biometric 
Authentication With Template Protection”, IEEE T-IFS, 2024



Multibiometric Fusion in the Input Domain

42

Jiang et al., “Cross-Modal Learning Based Flexible Bimodal Biometric 
Authentication With Template Protection”, IEEE T-IFS, 2024

Original Face 
Images

Synthetic Face 
Images generated 

from Voice

Fusion of Original 
& Synthetic Face 

Images

Key Points for 
Alignment



Metrics for Template Security Evaluation
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False Non-match Rate (FNMR) = P(g = Non-match | D = B, L = K)

False Match Rate (FMR) = P(g = Match | D = C, L = J)

Successful Attack Rate (SAR) = P(g = Match | D = C, L = K, side info)

Privacy Leakage = Mutual Information (A; V = (S, K)) 

Rane et al., “Secure Biometrics: 
Concepts, authentication 
architectures, and challenges”, IEEE 
Signal Processing Magazine, Sept 2013



Information-Theoretic Framework for Irreversibility
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H(A|V) H(V|A)I(A;V)
H(A) H(V)

H(A,V)

A: Enrollment Biometric Vector (Template)
V: Stored Data (includes AD, PI, SD)

• Privacy Leakage (Entropy Loss) = I(A; V)

• Suitable only for comparing two BTP schemes acting on same A



Measuring Irreversibility
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• How difficult it is to recover the original template from the stored data?

• Typically expressed in bits & measured based on

– Avg. no. of trials needed to recover the template

– Entropy of original template given the stored data (H(A|V))

• Estimate of security requires a model of the biometric feature distributions

• FRR, FAR, and SAR are reported separately



Irreversibility of Biometric Cryptosystems
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• Fuzzy vault1

2

( , 1)
log

( , 1)

C r n

C t n

 +
 

+ 
H(A|V) =

r: total no. of points in the vault

t: no. of genuine points

n: degree of polynomial used

• Fuzzy commitment2

2

2
log

( , )

I

C I I

 
 
 

I: Entropy of binary template

ρ: Fraction of errors corrected

Assumption: Both genuine and chaff points are uniformly distributed

Assumption: Reliable estimate of entropy (no. of i.i.d bits) is available

How to modify features to satisfy these assumptions? 

[1] Nandakumar, Jain and 
Pankanti, "Fingerprint-
based Fuzzy Vault: 
Implementation and 
Performance", IEEE T-IFS, 
2007

[2] Hao, Anderson, and 
Daugman, “Combining 
Crypto with Biometrics 
Effectively,” IEEE Trans. 
Computers, 2006

H(A|V) =



Gap Between Theory & Practice of Biometric Encryption

47

• 7 algorithms in FVC-onGoing have equal error rate (EER) less than 0.2% without 

BTP; best BTP algorithm has EER of 1.54% on same data

• AES system with a 128-bit key or a RSA cryptosystem with a 3072-bit key can 

provide a security strength of approximately 128 bits. No consensus on metrics 

to measure the irreversibility of a BTP scheme

• Still no consensus on how to define & measure the unlinkability of a BTP scheme

Akerlof’s ‘market for lemons’ explains why so many information security products are poor: 
buyers are unwilling to pay a premium for quality they cannot measure.

                    - Anderson and Moore, 2009



Biometric Entropy Estimation

48

• A 2048-bit IrisCode may have only 245 

degrees of freedom

• Entropy of IrisCode is only 0.469 bits per 

encoded bit 

J. Daugman, “Information Theory and the IrisCode,” IEEE T-IFS, 2016



Measuring Unlinkability 

49

• Possible definition of unlinkability

o Given two instances of stored data V1 and V2 generated from the same 

biometric trait of the same person, what is the probability of determining that 

they are linked?

• Often, unlinkability is possible only under the assumption that the second factor 

(supplementary data) is not compromised

V1 = X + C1,  V2 = X’ + C2

(V1 + V2) = (X + X’) + (C1 + C2) = Δ + C3

If Hamming weight of Δ is small, one can decode successfully

• What are the reasonable assumptions for analyzing unlinkability?



Summary

50

• Biometric matching in the encrypted domain is an important issue because 

compromised templates cannot be revoked/reissued

• A biometric encryption scheme with provable security & acceptable performance 

has remained elusive

• Challenge is to design transforms/cryptosystems that 

– generate unlinkable templates 

– provide good trade-off between accuracy & security

• Future lies in leveraging advancements in deep learning and generative models to 

develop new schemes that work at the input/signal level 
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