
Electronics and Computer Science

Introduction to Biometrics
and

Gait Biometrics

Mark Nixon

University of Southampton UK

Editor in Chief, IEEE Transactions on 
Biometrics, Behaviour, and Identity Science 



Electronics and Computer Science



Electronics and Computer ScienceObjectives of introduction

•Cover all biometrics!

•Clarify terminology

•Define scope

•Mention IEEE TBIOM



Electronics and Computer ScienceAssumptions

•We are unique (!!)

•Identification is central to our 
lifestyle

•We want it to be fast and 
convenient

•We want it to be secure

•We want/need to use it 
everywhere
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Electronics and Computer ScienceLet’s find a single person in Southampton

Characteristic – chance Remaining population

300000

60000>> 21 (!!) – 1/5

Male – 1/2 30000

White (?) – 2/3

Northerner – 1/40

(was) 6’ – 1/10

Slim – 1/5

Non-manicured hair – 1/10

20000

500

50

10

1

popn Southampton
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Let’s visualise it: 7 measurements take us to a single point
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Electronics and Computer ScienceEarly Face Recognition (Taylor, ‘67)

“The machine consists basically of a 10 x 10 input matrix of 100 
photomultipliers, each connected through automatically adapting weighting 
units to ten output-indicating units”

“The weights, proportional to the angle through which potentiometers are 
turned by small driving motors,”

After 250 presentations, 
100% recognition was 
achieved.
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H
is

to
ry



Electronics and Computer ScienceInfluence of deep learning on face publications
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A. Bertillon, Identification of Criminals 1889

History: Bertillonage
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History: Mark!

M Nixon, Proc. SPIE 1985

Eye spacing measurement for facial recognition



Electronics and Computer ScienceMatching basis - implementation



Electronics and Computer ScienceMatching basis – result

ClientImposter
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Only by biometrics…

18
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True

match
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male female

Meng, Nixon and Mahmoodi, IEEE 

TBIOM, 2021

Where is gender in ears?
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70 40 20

70 40 20

70 40 20

Woman

Man

Man

What (and how old) is whom?
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Bag snatcher, London 2008

Gait as evidence – first use
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27/200
Bouchrika, Goffredo, Carter, Nixon: J. Forensic Science 2011, 
and Eusipco 2010

Gait as evidence – murder case in Australia 2014
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Tom Cruise loves biometrics!
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Without order:

•Diffusion models

•Privacy protection in biometrics

•Spoofing/ presentation attack detection and Deepfake

•Gait

•Behaviour and Identity Science
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Elsevier Scopus Resurchify
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Electronics and Computer ScienceCurrent state of journal (Jan ‘25)
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Gait = body shape + movement
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History
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What changes?

Many covariates can affect walking 
style

…. + health, drugs, mood, 

…. but walking is a natural part 
of our daily lives



Electronics and Computer ScienceGait biometrics databases
Laboratory

● Southampton 3D and 2D

● CASIA (+ multiview, thermal)

● Osaka OU-ISIR (+ multiview)

‘Real’ World

● HumanID/ Southampton

● FVG

● CASIA

● Sustech (+ Lidar)

+ accelerometer, footfall, medical

M Okumura, Y Makihara, 

Y Yagi, IEEE TIFS 2012

C Shen et al, CVPR 

2023

C Song et al, IEEE 

TPAMI 2022



Electronics and Computer Science

1. Where are we now?
2. How did we get here?
3. Where are we going?

A. Identifying people by their gait



Electronics and Computer ScienceGait Recognition –state of the art

Technique: mainly deep

Data: Frontal-View Gait (FVG) 

CASIA E

SUSTech

GREW

BRIAR

Applications: increasing use in crime

scene analysis



Electronics and Computer ScienceGait Recognition –state of the art

Papers on GS Performance on CASIA B



Existing Gait Datasets

41

Shiqi



Electronics and Computer ScienceGait Recognition – the deep revolution
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ACCV 2020/ IJCB 2021/ IJCB 2022/ IJCB 2023

CASIA E

https://hid.iapr-tc4.org/



Dataset for HID 2023-2024: SUSTech-Competition
• Specifically collected for HID competitions
• Number of subjects: 859
• Samples: 6 sequences / subject (1 for gallery, 5 for probe)
• Challenges: clothing changing, carrying condition changing,

view angle changing, occlusions, etc.
• Cross-domain: No training set is provided
• Data format: Silhouettes

HID 2023-2024: A new and challenging one

44
S. Yu et al., Human Identification at a Distance: Challenges, Methods and Results on the Competition HID 2024, Proc. of IJCB 2024. 

Dataset for HID 2020-2022: CASIA-E
• Number of subjects: 1005

• 500 for training
• 505 for test

Shiqi
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Fan et al, CVPR 2023

“flexible and extensible gait recognition codebase for better practicality rather 
than only a particular model for better performance”
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Expanding accurate person recognition to new altitudes and ranges: The briar dataset

Floorplan of collection setup for BGC2

Cornett et al, WACV 2023

Outdoor walking arena

302 subjects

Max range 1000m

Max elevation 400m

Inc. appearance 

change

Single subjects only

Close range  BGC1 data

Left: elevated surveillance

Right: walking images



Electronics and Computer Science

GaitSTR: Gait Recognition with Sequential

Two-stream Refinement

Zheng et al, TBIOM 2024
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GaitSTR: Gait Recognition with Sequential

Two-stream Refinement

Zheng et al, TBIOM 2024
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Zhang et al, CVPR 2019

See also: Li, Makihara, Xu, Yagi: Gait recognition via semi-

supervised disentangled representation learning to identity and 

covariate features, CVPR 2020

Gait recognition via disentangled representation 

learning
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Gait recognition via disentangled representation 

learning

Generally, big(ger) numbers!!
Zhang et al, CVPR 2019
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Gait Recognition based on Local Graphical Skeleton 
Descriptor with Pairwise Similarity Network

Xu et al, IEEE Trans on Multimedia 

2021

LGSD Local Graphical Skeleton Descriptor

Similarity of gait pair

Probability of gait pair



Electronics and Computer ScienceEnd-to-end model-based gait recognition

Li et al, ACCV 2020
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GaitSet: Cross-view Gait Recognition through 

Utilizing Gait as a Deep Set

Hanqing Chao; Kun Wang; Yiwei He; Junping Zhang; Jianfeng Feng (Shanghai/ Fudan)

Chao et al, IEEE TPAMI 

2022
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Large-Sample Training (LT)

GEINet: View-invariant gait recognition using a convolutional neural network

On input/output architectures for convolutional neural network based cross-

view gait recognition

normal (NM) walking with a bag (BG) 

wearing a coat or jacket (CL)

Chao et al, IEEE TPAMI 2022

GaitSet: Cross-view Gait Recognition through 

Utilizing Gait as a Deep Set
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TransGait: Multimodal-based gait recognition with 

set transformer

Li et al, Applied Intelligence, 

2023
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57

TriGait Network Architecture

Gait:

𝐶3 × (𝑃1+ 𝑃2)

𝑌: 𝐶 × 𝑇 × 𝐾

Silhouette branch

Skeleton branch

Fusion branch

𝑋: 𝑇 × H ×W

FC

Cross-

entropy 

loss

…

…

Triplet 

loss

C
o

n
ca

t

Trigait: Aligning and Fusing Skeleton and Silhouette

Gait Data via a Tri-Branch Network

Sun et al, IEEE 

IJCB, 2023
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58

Trigait: silhouette branch

Sun et al, IEEE IJCB, 

2023, IEEE TBIOM 2024
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Table 1. The rank-1 accuracy (%) on CASIA-B across different views, excluding the identical-

view cases. TriGait stands for the proposed fusion network.

Trigait: NM comparison with SoTA

=
Sun et al, IEEE IJCB, 

2023, IEEE TBIOM 2024



Electronics and Computer ScienceTrigait: CL comparison with SoTA

Table 1. The rank-1 accuracy (%) on CASIA-B across different views, excluding the identical-

view cases. TriGait stands for the proposed fusion network.

=
Sun et al, IEEE IJCB, 

2023, IEEE TBIOM 2024
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61

Rank 1 mean accuracy (%) on CASIA-B 

across different conditions and viewpoints.

Trigait: comparison with SOTA

=
Sun et al, IEEE 

IJCB, 2023
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1. Where are we now?
2. How did we get here?
3. Where are we going?

A. Identifying people by their gait
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As a biometric, gait is available at a distance when other biometrics 

are obscured or at too low resolution

Gait biometrics

ABC News, July 13 

2006 https://www.youtube.com/watch?v=6KuMe5n_jdQ

https://www.youtube.com/watch?v=6KuMe5n_jdQ
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Electronics and Computer ScienceGait and literature

Dictionary: “manner of walking”

Shakespeare observed recognition:

“High’st Queen of state; Great Juno comes;   I know 
her by her gait”  [The Tempest]

“For that John Mortimer….in face, in gait in speech 
he doth resemble” [Henry IV/2]

Other literature: e.g. Band of Brothers: “I noticed this 
figure coming, and I realized it was John Eubanks from 
the way he walked”
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• 6 subjects; 7 sequences

• Sony Hi8 video camera

• Circular track ….exhausted subjects?

• We used a police digital video recorder

Early data
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Inclination of thigh Magnitude of DFT 

Difference between magnitude Difference between phase

Model-based recognition

Other models are possible

D Cunado, MS Nixon, JN 
Carter, Proc. AVBPA, 1997



Electronics and Computer ScienceUsing silhouettes

Some names: average silhouette, GEI

J Han, B Bhanu, IEEE 

TPAMI, 2005

Gait Energy Image Gait Entropy Image
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Many gait representations possible

silhouette flow feature spaceedges symmetry acceleration

Recognising people from the motion of the whole body

MS Nixon, T Tan, R 
Chellappa, Springer, 2005
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DARPA’s Human ID at a Distance

S Sarkar, PJ Phillips, Z Liu, IR Vega, P 

Grother, KW Bowyer, IEEE TPAMI 2005
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Does gait biometrics really work?

BBC1 Bang Goes the 

Theory Episode 1, 2009

https://www.youtube.com/watch?v=PUwlNc0xAgQ

https://www.youtube.com/watch?v=PUwlNc0xAgQ
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Time for a quiz….

Given
1. A laboratory environment; and
2. A silhouette



Electronics and Computer Science
What is unusual about this person’s appearance

From the silhouette:
1. She was wearing Wellington boots
2. She was carrying a bag
3. She was filming for the hunchback of Notre Dame
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And ladies wear…

1. A rubbish bag
2. A dress
3. A coat
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What is unusual this person’s gait

1. The floor
2. Their footwear
3. Their clothing
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Major difficulty 1 - viewpoint

Shiraga, Makihara and 
Muramatsu ICB 2016
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Electronics and Computer ScienceMajor difficulty 3 - time

Matovski and Nixon, Proc. IEEE 

BTAS 2010, IEEE TIFS 2012

Few minutes apart, different clothes

Nine months difference
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Identity science

Science/ technology
Covariates and exploratory 

variables
Soft biometrics
Spoofing 
Deep architectures

Applications

Medicine (dementia, balance, 
falls)

Sports
Security
Marketing
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MD Marsico, A Mecca - ACM 

Computing Surveys (CSUR), 2019
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192×32 binary sensor array

The first intelligent carpet

tS

tH tT

LS

time

distance

Middleton, Buss and Nixon, 

AutoID 2005
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Ariyanto and Nixon, Proc. 

ICB 2013

3D recognition – marionette based

3D is completely viewpoint invariant
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Science

Gait as evidence – first use

Bag snatcher, London 2008

Note controlled trajectory
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Science

Using gait as evidence -database

Use multiview gait data

CASIA B at the time

Wang, Ning, Hu, Tan, Proc. 
ICPR 2002

*

with automated labelling
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Gait as evidence -approach
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Science

Gait as evidence –analysis on database

Distances Confidence

Same

DifferentDifferent
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Bouchrika, Nixon, Carter, J. Forensic 

Science 2011, and Eusipco 2010

Gait as evidence: murder case in Australia 2014

https://www.youtube.com/watch?v=

F1b_apXjjV0&feature=youtu.be

https://www.youtube.com/watch?v=F1b_apXjjV0&feature=youtu.be


Gait for scoliosis detection Shiqi



Scoliosis1K Dataset

• The first gait-based large dataset for scoliosis

8989

Shiqi



Experimental results

90

Shiqi
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Science

Future work

• Deep and explainability

• Other covariates

• Medical issues

• Behaviour analysis

• Performance evaluation with low quality low resolution
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Science

1. What are they?
2. How do they work?

3. Where are we going?

B Soft Biometrics
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93

Soft Biometrics

Nandakumar and Jain 2004 

(augmenting traditional biometrics

Face Soft

Attribute

Kumar, Klare, Zhang, 

Gonzalez-Sosa

Relative Attribute 

[Graumann], Reid, 

Almudhahka, 

Body Soft

Categorical

Samangooei

Comparative 

Reid, Martinho-

Corbishley

Other Soft

Tattoos Lee

Clothing Jaha

Makeup Dantcheva

Eyes & glasses

Mohammed

Hair Proenca

Bertillonage 1890 

(body, face, iris, ear, nose…)

Applications: performance, identification, marketing, fashion …..

Adapted from 

Ross and Nixon

Soft Biometrics 

Tutorial

BTAS 2016
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Soft biometrics – the state of art

Technique: predominantly deep

Data: Maad-face, Annotated pedestrians

Applications: face (esp with masks), privacy, forensics?

Terhörst et al, IEEE 

TIFS 2021

See also Terhörst et al. On Soft-Biometric Information Stored in 

Biometric Face Embeddings, IEEE TBIOM 2021
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Yaman et al, Mult. Med. 

Tools. Apps 2022

Multimodal soft biometrics: combining ear and face 
biometrics for age and gender classification

Convnet based

Age 67%

Gender 98%

Age confusion
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Multi-IVE: Privacy Enhancement of Multiple Soft-
Biometrics in Face Embeddings

Melzi et al, CVPR 

Workshop 2023

Incremental Variable Elimination to secure multiple soft biometric attributes 

simultaneously

Identify and discard multiple soft-biometric attributes contained in face embeddings
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PrivacyProber: Assessment and Detection of
Soft–Biometric Privacy–Enhancing Techniques

Rot, Grm, and Struc, IEEE TDSC, 2023 + 

Osoriao-Roig et al , IEEE TBIOM 2022

Adding privacy enhancement
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PrivacyProber: Assessment and Detection of
Soft–Biometric Privacy–Enhancing Techniques

Detecting privacy enhancement

Rot, Grm, and Struc, IEEE TDSC, 2023 + 

Osorio-Roig et al , IEEE TBIOM 2022
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Multimodal Face Synthesis From Visual Attributes

Di and Patel, IEEE 

TBIOM, 2021
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Multimodal Face Synthesis From Visual Attributes

Di and Patel, IEEE 

TBIOM, 2021

Xing Di and Vishal M. Patel (JHU)
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102

64×97

128×194

256×386

What can you recognise?
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Recognition by fine-grained attributes

Database 

of images

Set of 

labels

Crowd sourced 

comparative 

labels
Ranking 

labels
Learning label 

structure

1. Label the data

2. Turn the data 

into features
3. Learn how 

recognition can 

be achieved

Recognise

4. Generate

new labels
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Global Features

• Features mentioned most often in 

witness statements

• Sex and age quite simple

• Ethnicity

• Notoriously unstable

• There could be anywhere between 

3 and 100 ethnic groups

• 3 “main” subgroups plus 2 extra to 

match UK Police force groupings

• Global

• Sex

• Ethnicity

• Skin Colour

• Age

• Body Shape

• Figure

• Weight

• Muscle Build

• Height

• Proportions

• Shoulder Shape

• Chest Size

• Hip size

• Leg/Arm Length

• Leg/Arm Thickness

• Head

• Hair Colour

• Hair Length

• Facial Hair Colour/Length

• Neck Length/ThicknessSamangooei, Guo  and 

Nixon, IEEE BTAS 2008

Traits and terms

So we thought!!
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Subjective = unreliable; Categorical = lacks detail

Reid and Nixon, IEEE 

IJCB 2011; TPAMI 2015

Problems with absolute descriptors
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• Compare one subject’s attribute 

with another’s

• Infer continuous relative 

measurements

Comparative human descriptions

Reid and Nixon, IEEE 

IJCB 2011; TPAMI 2015
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Height correlation (with time)

Reid and Nixon, IEEE 

IJCB 2011; TPAMI 2015
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Ethnicity

Martinho-Corbishley, Nixon 

and Carter, TPAMI 2019
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• Gender?
Subject 1 2 3

PETA 

image

Martinho-Corbishley, Nixon 

and Carter, Proc. BTAS 2016

Gender Estimation on PETA

A. Male

B. Female

A. Male

B. Female

A. Male

B. Female
A. Male

B. Female

A. Male

B. Female

A. Male

B. Female
PETA label
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Gait tunnel

Guo, Nixon and Carter, 
IEEE TBIOM 2019

Soft biometric fusion – synthesised data 
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Fusion performance

Guo, Nixon and Carter, 
IEEE TBIOM 2019
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Exploiting correlation?

Hassan, Izquierdo et al
MTA 2021
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Biometrics and marketing … 

https://vimeo.com/388480097

https://vimeo.com/388480097
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Yes, gait works, particularly with deep

Yes, we can use it in forensics?

Soft biometrics are newer, particularly human description

The technologies are grounded in science, literature, medicine + ….

Can we use deep in forensics?

We have more to learn, and learning architectures are not complete

Society still needs identification

Privacy/ ethics/ accuracy/ new technology?
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1. Using gait as a biometric, via phase-weighted magnitude spectra, D Cunado, MS Nixon, JN Carter, Proc. AVBPA, 1997

2. The humanid gait challenge problem: Data sets, performance, and analysis, S Sarkar, PJ Phillips, Z Liu, IR Vega…, IEEE

TPAMI, 2005

3. Individual recognition using gait energy image, J Han, B Bhanu, IEEE TPAMI, 2005

4. Human identification based on gait, MS Nixon, T Tan, R Chellappa, Springer, 2005

5. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition, M 

Okumura, Y Makihara, Y Yagi, IEEE TIFS 2012

6. Biometric recognition by gait: A survey of modalities and features, P Connor, A Ross, Computer Vision and Image 

Understanding, 2018

7. Deep gait recognition: A survey, A Sepas-Moghaddam, A Etemad , IEEE TPAMI 2022

8. A comprehensive survey on deep gait recognition: algorithms, datasets and challenges, C Shen, S Yu, J Wang, GQ 

Huang, L Wang, arXiv , 2023

9. TriGait: Aligning and Fusing Skeleton and Silhouette Gait Data via a Tri-Branch Network, Y Sun, X Feng, L Ma, L Hu, M 

Nixon, IJCB 2023

10. GaitSTR: Gait Recognition With Sequential Two-Stream Refinement. Zheng, W., Zhu, H., Zheng, Z. and Nevatia, R., IEEE 

Transactions on Biometrics, Behavior, and Identity Science, 2024

Apologies if your own technique is missing, or your favourite. There are many more.

Selection of further reading on gait

https://link.springer.com/chapter/10.1007/BFb0015984
https://ieeexplore.ieee.org/abstract/document/1374864/?casa_token=fzCmDH_aU9wAAAAA:npzQe_ttNe2weEHUE81im3IFRW0IY0yHbLq6ehTEYUPBHaHqePwtOPWKYkRpWYoHGtUX7V57sw
https://ieeexplore.ieee.org/abstract/document/1561189/?casa_token=Yt1ftuWeVmAAAAAA:gSyoMRt4yiK7hqdA8X_i7A2GppqSeCf3EUNIN8qImkFEs6pR159PYe0rMKN1nTM1SRvPham8CQ
https://ieeexplore.ieee.org/abstract/document/7855777/
https://ieeexplore.ieee.org/abstract/document/6215042/?casa_token=XhNi02j6ovoAAAAA:r3LqQZ1I1L8S21hzFXya9dpI0COrTCXdhLDB30NIsXDe6TQl1dqY0j_oruXkg-amyO13vo7X5Q
https://www.sciencedirect.com/science/article/pii/S1077314218300079?casa_token=mtpt2Sbva48AAAAA:zN2Lj_8-m3zpSwxaIeJVdrj4OKUwTsj0MgtQlkEO0tlDw09l7Ghgs4-TkyGHR5c4E7HLXN-QyQ
https://arxiv.org/abs/2206.13732
https://scholar.google.com/citations?user=jKJt7rsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=rcrtTYEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=oncf_bIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zp9GA7EAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=8kzzUboAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=hlHOU9IAAAAJ&sortby=pubdate&citation_for_view=hlHOU9IAAAAJ:aDl3D7KC1E4C
https://ieeexplore.ieee.org/abstract/document/10504538
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1. On soft biometrics, MS Nixon, PL Correia, K Nasrollahi, TB Moeslund, A Hadid, M Tistarelli, PRL 2015

2. What else does your biometric data reveal? A survey on soft biometrics, A Dantcheva, P Elia, A Ross, IEEE TIFS 2016
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1. The easiest way to avoid being recognised by gait is:

A – change clothes; B – stop walking; C – put a stone in your shoe; D – run, E – hop?

2. People can recognise other people by the way they walk:

A – always; B – only friends; C – only gender; D – never?

3. Gait biometrics requires computers and memory. How much:

A – many GPUs and much storage; B – one GPU; C – lots of memory; D – an abacus?

4. Gait biometrics is based on video data. It should be

A – high quality?; B – regularly sampled?; C – encoded by frame?; D – motion encoded?

5.  Gait biometrics can  be achieved by deploying standard computer vision techniques/ architectures:

A – TRUE; B – FALSE; C – only on a Sunday?

6.  Silhouettes can be used for recognition. Does this use

A – body shape only; B – dynamics only; C – both shape and dynamics?

7. Gait can be modelled for recognition purposes. Does this use

A – body shape only; B – dynamics only; C – both shape and dynamics?

8.  The computational requirements are the least for

A – model-based approaches; B – silhouette-based approaches?

9. The canonical view in gait is

A – side view; B – front view; D – top view; D – 3D?

10 . The factor which most affects gait is

A – clothes; B – shoes; C – mood; D – time, E - alcohol?
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11. Soft biometrics are suitable for recognition?

A – True; B – False

12. What is the ‘soft’ in ‘soft biometrics’?

A – ice cream soft; B – counterpoint to traditional ‘hard’ biometrics; C – complement to traditional?

13. Makeup is a soft biometric?

A – True; B - False

14. Which is the most discriminative: Age, Gender or Race?

A – Age; B – Gender; C – Race

15. The ‘other race effect’ is the same as prosopagnosia?

A – True; B - False

16. Human bias means that all observations derived from humans should be tuple, not single?

A – True; B - False

17. When asking a person to label “is this photograph of a man or of a woman?”, should the answer include “don’t know”?

A – Yes; B – No; C – Don’t know

18. When asking a person to label “age”, is it better to compare images or not?

A – Yes; B – No

19. Manual search of video is the only possible way

A – Yes, B – Yes, but only at the moment

20. The full set of practical biometrics has been explored and no new ones are possible.

A - No
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Thank you, and for more information


