IAPR/IEEE WINTER SCHOOL ON BIOMETRICS 2025*

Electronics and Computer Science

Generative AI & Foundation Models for Biometrics

Introduction to Biometrics and Gait Biometrics

Mark Nixon

University of Southampton UK

Editor in Chief, IEEE Transactions on Biometrics, Behaviour, and Identity Science

Electronics and Computer Science

Objectives of introduction

- •Cover all biometrics!
- Clarify terminology
- •Define scope
- Mention IEEE TBIOM

Assumptions

- •We are unique (!!)
- Identification is central to our lifestyle
- •We want it to be fast and convenient
- •We want it to be secure
- •We want/need to use it everywhere

Electronics and Computer Science

Hair Ear Eyebrow Ear Iris Periocular Sclera Nose Face Knuckle Finger/ vein Fingerprint Plastic. RACON Hand Body **Behaviour** Gait Odour Clothing Soft Footprint

Vou're progressing well. Next week

your phone should recognize you.

TE

The Prism Project Jan 01, 2025, 15:40 ET

University of

Let's find a single person	in Southampto	University of Southampton Electronics and Computer Science
Characteristic – chance	Remaining popul	ation
	300000	pop ⁿ Southampton
>> 21 (!!) – <mark>1/5</mark>	60000	
Male – 1/2	30000	
White (?) – <mark>2/3</mark>	20000	
Northerner – 1/40	500	
(was) 6' – <mark>1/10</mark>	50	
Slim – 1/5	10	
Non-manicured hair – 1/10	1	

Let's visualise it: 7 measurements take us to a single point Southampton Electronics and Computer Science

What do we do?

Early Face Recognition (Taylor, '67)

"The machine consists basically of a 10 x 10 input matrix of 100 photomultipliers, each connected through automatically adapting weighting units to ten output-indicating units"

"The weights, proportional to the angle through which potentiometers are turned by small driving motors,"

After 250 presentations, 100% recognition was achieved.

How do we do it?

Influence of deep learning on face publications

History: Bertillonage

Electronics and Computer Science

A. Bertillon, *Identification of Criminals* 1889

James J.	ice),
Height, im 67 Head.igth 19,1 L. Foot. Stoop, 2. " with 15,2 " Mid F Outs, A. I.m 75 Head.igth 5.6 "	27.6 11) (Oirola,)))) Ass. 28yaars. 11.2 (Periph. Z. sl. bl. 111)
Trunk, 92 talwith, Proces	4.8 Stothe lim y. Born in
Remarks incident Divo phalanges of left I. fingee ampo	to is
to moduluments, (et. t. p. c. 9.	
DES	CRIPHIVE.
Incl. zecedig = Ridge, cave	upper zim Beard, samay Harry Comes
Billing Hight, 111.	Breadth (Cower bruiswight, 160 fbs.
Width. 111. Z Lunger Population	Build, medisen.
Pecul. Pecul. twisted to	left. Chin. pointed.
Mensured at Joliet, March 19th.	188 8, by M. H. Luke.
Remeasured, (
When and Where,	A
und minst (

History: Mark!

Eye spacing measurement for facial recognition

Fig. 3 Original image of face

gradient strength and direction

Fig. 5 Image of subject 3 showing detection of irises

Fig. 6 Image of subject 6 showing detection of perimeter of sclera

Fig. 7 Image of subject 1 showing detection of region below evebrows

SPIE Vol. 575 Applications of Digital Image Processing VIII (1985) / 285

M Nixon, Proc. SPIE 1985

Matching basis - implementation

Electronics and Computer Science

position

Matching basis – result

News: National Geographic 2002

Only by biometrics...

Matching distributions (3D)

Verification terminology

Where is gender in ears?

male

female

Meng, Nixon and Mahmoodi, *IEEE TBIOM*, 2021

What (and how old) is whom?

Electronics and Computer Science

Woman

Man

70 40 20

Biometrics usage

.....

Electronics and Computer Science

Market share (installations)

Research share

Gait as evidence – first use

Electronics and Computer Science

Bag snatcher, London 2008

joints' position difference:1.7563%

joints' position difference:2.6613%

167

Gait as evidence – murder case in Australia 2014

Electronics and Computer Science

Bouchrika, Goffredo, Carter, Nixon: *J. Forensic Science* 2011, and *Eusipco* 2010

Electronics and Computer Science

≡	Google Scholar	forensic biometrics Q	
•	Articles	About 77,500 results (0.08 sec)	
	Any time Since 2024 Since 2023 Since 2020 Custom range	[PDF] Biometrics in forensic identification: applications and challenges <u>M Saini</u> , AK Kapoor - J Forensic Med, 2016 - academia.edu of forensic biometrics covers a wide range of applications for physical and cybercrime detection. Forensic Biometrics limitations of biometric science in the field of forensic identification ☆ Save 𝔊 Cite Cited by 70 Related articles All 2 versions 🃎	[PDF] academia.edu
	Sort by relevance Sort by date	Forensic biometrics: From two communities to one discipline <u>D Meuwly</u> , <u>R Veldhuis</u> International Conference of Biometrics, 2012 - ieeexplore.ieee.org the forensic biometric applications and details the role of biometric technology in each of	[PDF] ieee.org
	Any type Review articles	them. In preamble it has to be stressed that the reliability of any forensic biometric application $rac{1}{2}$ Save $rac{1}{2}$ Cite Cited by 75 Related articles All 11 versions	
	 include patents ✓ include citations 	On using gait in forensic biometrics <u>I Bouchrika, M Goffredo</u> , J Carter Journal of forensic, 2011 - Wiley Online Library Given the continuing advances in gait biometrics, it appears prudent to investigate the translation	[PDF] wiley.com
	Create alert	of these techniques for forensic use. We address the question as to the confidence that $rac{1}{2}$ Save \mathfrak{W} Cite Cited by 298 Related articles All 17 versions	

Media

Tom Cruise loves biometrics!

Electronics and Computer Science

Hot topics

Without order:

- •Diffusion models
- Privacy protection in biometrics
- •Spoofing/ presentation attack detection and Deepfake
- •Gait
- •Behaviour and Identity Science

IEEE TRANSACTIONS ON

BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE

A PUBLICATION OF THE IEEE BIOMETRICS COUNCIL

Year wise Impact Score (IS) of IEEE Transactions on Biometrics, Behavior, and Identity Q Science

Elsevier Scopus

Resurchify

Comparison?

https://www.scopus.com/sourceid/21101070922.

Subject	t Area	Percentile RANK	Ranl	<mark>c Out Of Quar</mark>	rtile
Artificia	al Intelligence	84	56	350	1
Compu	ter Science Applications	89	86	817	1
Compu	ter Vision and Pattern Recognition	88	13	106	1
Instrun	nentation	95	7	141	1
	Source title		Cite	Score 2023	
	IEEE Transactions on Pattern Analysis and Machine 28 Intelligence 14 IEEE Transactions on Information Forensics and Security 14 IEEE Transactions on Biometrics, Behavior, and Identity 10 Science 10			28.4	
				14.4	
<				10.9	>
	IET Biometrics			5.9	
	International Journal of Biometrics 1.			1.5	
Proceedings of SPIE - The International Society for Optical Engineering				0.5	

Current state of journal (Jan '25)

Electronics and Computer Science

Journal Statistics	MTD	Prior 12 Months
Avg. days from submission to first decision	0.0	66.9
Avg. Reviewer turnaround time (days) - Original	0.0	27.5
Avg. Reviewer turnaround time (days) - Resubmission	0.0	0.0
Avg. Reviewer turnaround time (days) - Revision	0.0	21.6
Avg. Time to Assign Reviewer (days) - Original	0.0	15.7
Avg. Time to Assign Reviewer (days) - Resubmission	0.0	0.0
Avg. Time to Assign Reviewer (days) - Revision	1.0	9.7
Avg. days from submission to final decision	0.0	83.1

Other Statistics	
Accept Ratio (prior 12 months)	26 : 82 31.7%
Total Pending Manuscripts	63
Oldest manuscript without a decision	TBIOM-2024-07-0079(166 days)

Gait = body shape + movement

Electronics and Computer Science

covariates: viewpoint luggage clothing shoes health gender speed

History

Electronics and Computer Science

What changes?

Electronics and Computer Science

Many covariates can affect walking style

.... + health, drugs, mood,

.... but walking is a natural part of our daily lives

Gait biometrics databases

C Shen et al, CVPR

2023

- Southampton 3D and 2D
- CASIA (+ multiview, thermal)
- Osaka OU-ISIR (+ multiview)

'Real' World

M Okumura, Y Makihara,

Yagi, IEEE TIFS 2012

- HumanID/ Southampton
- FVG
- CASIA
- Sustech (+ Lidar)
- + accelerometer, footfall, medical

C Song et al, IEEE

TPAMI 2022

University of **Southampton**

A. Identifying people by their gait

Gait Recognition -state of the art

Technique: mainly deep

Data: Frontal-View Gait (FVG) CASIA E SUSTech GREW BRIAR

Applications: increasing use in crime scene analysis

Gait Recognition –state of the art

University of **Southampton**

Electronics and Computer Science

Existing Gait Datasets

Dataset	Year	Subject #	Seq #	View #	Data Type	3D	Multimodal	Outdoor
CASIA-B [50]	2006	124	13,640	11	RGB, Silhouettes	×	×	×
CASIA-C [43]	2006	153	1,530	1	Infrared, Silhouettes	X	×	✓
KY4D [20]	2010	42	168	16	Silhouettes, RGB, 3D Volumetrics	1	×	×
TUM-GAID [17]	2012	305	3,370	1	Audio, Video, Depth	1	1	1
SZTAKI-LGA [3]	2016	28	11	1	3D Point Cloud	1	×	✓
OU-MVLP [42]	2018	10,307	288,596	14	Silhouettes	X	×	×
FVG [52]	2019	226	2,856	3	RGB	X	×	✓
PCG [49]	2020	30	60	1	3D Point Cloud	-	×	×
GREW [58]	2021	26,345	128,671	882	Silhouettes, 2D/3D Skeleton, Flow	X	×	×
Gait3D [56]	2022	4,000	25,309	39	Silhouettes, 2D/3D Skeleton, 3D Mesh	1	×	✓
OUMVLP-Mesh [24]	2022	10,307	288,596	14	3D Mesh	1	×	×
SUSTech1K	2023	1,050	25,239	12	RGB, Silhouettes, 3D Point Cloud	-	1	<

Table 1. Comparison of publicly available datasets for gait recognition.

Gait Recognition – the deep revolution Electronics and Computer Science

 Autoencoder
 Convolutional
 Sequence
 GANs/LSTM
 Model
 Transformer
 Fusion
 Diffusion

 [Hossain +.., 2013]
 [Wu +.., 2016]
 [Chao +.., 2019]
 [Zhang +.., 2019]
 [Li +.., 2020]
 [Li +.., 2023]
 [Sun +.., 2023]
 [2024]

The 5th International Competition on Human Identification at a Distance 2024

Overview

Welcome to the 5th International Competition on Human Identification at a Distance (HID 2024)! The competition will be in conjunction with IJCB 2024.

The competition focuses on human identification at a distance (HID) in videos The dataset proposed for the competition is *SUSTech-Competition*, a new dataset collected in 2022 and has been used in HID 2023. It contains 859 subjects.

Awards

Our sponsor, Watrix Technology, will provide 6 awards (19,000 CNY in total,

https://hid.iapr-tc4.org/

Electronics and Computer Science

CASIA E

ACCV 2020/ IJCB 2021/ IJCB 2022/ IJCB 2023

HID 2023-2024: A new and challenging one

Dataset for HID 2023-2024: SUSTech-Competition

- Specifically collected for HID competitions
- Number of subjects: 859

- Samples: 6 sequences / subject (1 for gallery, 5 for probe)
- **Challenges**: clothing changing, carrying condition changing, view angle changing, occlusions, etc.
- Cross-domain: No training set is provided
- Data format: Silhouettes
- Dataset for HID 2020-2022: CASIA-E
 - Number of subjects: 1005
 - 500 for training
 - 505 for test

Table 1. The technologies used by the top 7 teams and their accuracies in HID 2024.

Team rank	1	2	3	4	5	6	7
Team Name	SCUT-BIPLAB	jchu	SJTU-ICL	GRgroup	BRAVO-FJ	dashengge	HUST-MCLAB
Data cleaning	\checkmark	×	×	\checkmark	×	×	×
Data alignment	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Data augmentation	\checkmark	√	\checkmark	\checkmark	\checkmark	√	\checkmark
Re-ranking	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ensemble	\checkmark	√	\checkmark	×	\checkmark	×	\checkmark
Training data	Gait3D, CASIA-B, CCPG, SUSTech1K, CASIA-E, OUMVLP, CCGR	Gait3D, CASIA-B, CCPG, SUSTech1K	CCPG, Gait3D, GREW, CASIA-B, CASIA-E, OUMVLP, SUSTech-1K	CAISA-E	GREW, HID 2022	HID2022	SUSTech1K, Gait3D
Pseudo-labelling	×	×	×	×	✓ (on HID2022 data)	×	×
Architecture	DeepGaitV2 (P3D&3D) [3]	DeepGaitV2 (3D) [3]	DeepGaitV2 (P3D) [3], SwinGait [3]	GaitGL+Gem [7]	DeepGaitV2 (P3D) [3]	DeepGaitV2 (P3D), SwinGait, GaitBase [4]	DeepGaitV2 (P3D), SwinGait [3]
GPU	RTX 3090 * 2	N/A	A100 * 4	RTX 3090 * 4	A6000*4	N/A	N/A
Accuracy(%)	84.9	84.1	83.5	79.8	75.1	68.2	66.5
							44

S. Yu et al., Human Identification at a Distance: Challenges, Methods and Results on the Competition HID 2024, Proc. of IJCB 2024.

"flexible and extensible gait recognition codebase for better practicality rather than only a particular model for better performance"

Expanding accurate person recognition to new altitudes and ranges: The briar dataset

Floorplan of collection setup for BGC2

Cornett et al, WACV 2023

GaitSTR: Gait Recognition with Sequential Two-stream Refinement

Electronics and Computer Science

Zheng et al, TBIOM 2024

GaitSTR: Gait Recognition with Sequential Two-stream Refinement

Electronics and Computer Science

Zheng et al, TBIOM 2024

Gait recognition via disentangled representation learning

Electronics and Computer Science

See also: Li, Makihara, Xu, Yagi: Gait recognition via semisupervised disentangled representation learning to identity and covariate features, CVPR 2020

Zhang et al, CVPR 2019

Gait recognition via disentangled representation learning

Electronics and Computer Science

Zhang et al, CVPR 2019

Generally, big(ger) numbers!!

Gait Recognition based on Local Graphical Skeleton Descriptor with Pairwise Similarity Network

Electronics and Computer Science

Probability of gait pair

TABLE V PIOL AVERAGED RANK-1 ACCURACIES IN PERCENT ON CASIA-B COMPARISON WITH BOTH APPEARANCE-BASED AND MODEL-BASED METHODS

Туре	Methods	NM	BG	CL
	GaitNet[28]	91.6	85.7	58.9
Appearance-based	GaitSet[29]	95.0	87.2	70.4
	GaitPart[30]	96.2	91.5	78.7
	PoseGait[7]	60.5	39.6	29.8
Model-based	GaitGraph[31]	87.7	74.8	66.3
Widder-based	PSN	69.8	43.5	33.2

LGSD Local Graphical Skeleton Descriptor

(c)

Xu et al, *IEEE Trans on Multimedia* 2021

End-to-end model-based gait recognition

University of **Southampton**

Electronics and Computer Science

human mesh recovery

GaitSet: Cross-view Gait Recognition through Utilizing Gait as a Deep Set

Electronics and Computer Science

Hanqing Chao; Kun Wang; Yiwei He; Junping Zhang; Jianfeng Feng (Shanghai/ Fudan)

Fig. 2. The framework of GaitSet [26]. 'SP' represents set pooling. Trapezoids represent convolution and pooling blocks and those in the same column have the same configurations, as shown by the rectangles with capital letters. Note that although the blocks in MGP have the same configurations as those in the main pipeline, the parameters are shared only across blocks in the main pipeline – not with those in MGP. HPP represents horizontal pyramid pooling [27].

Chao et al, *IEEE TPAMI* 2022

GaitSet: Cross-view Gait Recognition through Utilizing Gait as a Deep Set

Electronics and Computer Science

Transforming gait

Electronics and Computer Science

TransGait: Multimodal-based gait recognition with set transformer

Electronics and Computer Science

 E_s : silhouette feature extractor E_p : pose feature extractor STM: set transformer module

Trigait: Aligning and Fusing Skeleton and Silhouette Gait Data via a Tri-Branch Network

Electronics and Computer Science

TriGait Network Architecture

IJCB, 2023

Trigait: silhouette branch

Electronics and Computer Science

Table 1. The rank-1 accuracy (%) on CASIA-B across different views, excluding the identicalview cases. TriGait stands for the proposed fusion network.

Gallery	$0^{o} - 180^{o}$										Maan	
Method	0^{o}	18^{o}	36°	54^{o}	72^{o}	90^{o}	108^{o}	126^{o}	144°	162°	180^{o}	Weall
GaitGraph [7] (CVPR2022)	78.5	82.9	85.8	85.6	83.1	81.5	84.3	83.2	84.2	81.6	71.8	82.0
GaitMixer [6] (arXiv2022)	94.4	94.9	94.6	96.3	95.3	96.3	95.3	94.7	95.3	94.7	92.2	94.9
GaitSet [1] (AAAI2019)	90.8	97.9	99.4	96.9	93.6	91.7	95.0	97.8	98.9	96.8	85.8	95.0
GaitPart [2] (CVPR2020)	94.1	98.6	99.3	98.5	94.0	92.3	95.9	98.4	99.2	97.8	90.4	96.2
GaitGL [5] (arXiv2022)	96.6	98.8	99.1	98.1	97.0	96.8	97.9	99.2	99.3	98.3	95.6	98.0
GaitMSTP [3] (IJCB2022)	98.2	99.2	99.4	98.5	96.8	96.2	97.8	99.1	99.1	99.5	96.2	98.2
TransGait [4] (APPL INTELL2023)	97.3	99.6	99.7	99.0	97.1	95.4	97.4	99.1	99.6	98.9	95.8	98.1
Combine [8] (ICASSP2023)	97.0	97.9	98.4	98.3	97.2	97.3	98.2	98.4	98.3	98.1	96.0	97.7
TriGait (ours)	97.0	98.6	98.3	98.3	98.4	97.0	98.6	99.0	98.9	98.4	97.4	98.2

Table 1. The rank-1 accuracy (%) on CASIA-B across different views, excluding the identicalview cases. TriGait stands for the proposed fusion network.

GaitGraph [7] (CVPR2022)	57.1	61.1	68.9	66.0	67.8	65.4	68.1	67.2	63.7	63.6	50.4	63.6
GaitMixer [6] (arXiv2022)	81.2	83.6	82.3	83.5	84.5	84.8	86.9	88.9	87.0	85.7	81.6	84.5
GaitSet [1] (AAAI2019)	61.4	75.4	80.7	77.3	72.1	70.1	71.5	73.5	73.5	68.4	50.0	70.4
GaitPart [2] (CVPR2020)	70.7	85.5	86.9	83.3	77.1	72.5	76.9	82.2	83.8	80.2	66.5	78.7
GaitGL [5] (arXiv2022)	82.6	92.6	94.2	91.8	86.1	81.3	87.2	90.2	90.9	88.5	75.4	87.3
GaitMSTP [3] (IJCB2022)	82.3	93.1	94.8	90.9	86.8	84.2	87.7	91.0	91.8	91.2	77.8	88.3
TransGait [4] (APPL INTELL2023)	80.1	89.3	<u>91.0</u>	89.1	84.7	83.3	85.6	87.5	88.2	88.8	76.6	85.8
Combine [8] (ICASSP2023)	87.4	96.0	97.0	94.6	94.0	90.1	91.5	94.1	93.8	92.6	88.5	92.7
TriGait (ours)	91.7	93.2	96.9	97.0	95.2	94.0	94.6	95.3	94.1	94.1	90.8	94.3

Electronics and Computer Science

Rank 1 mean accuracy (%) on CASIA-B across different conditions and viewpoints.

Input	Methods	NM	BG	CL	Mean
Skalaton	GaitGraph [7](CVPR2022)	82.0	73.2	63.6	72.9
Skeleton	GaitMixer [6] (arXiv2022)	94.9	85.6	84.5	88.3
Silhouette	GaitSet [1](AAAI2019)	95.0	87.2	70.4	84.2
	GaitPart [2] (CVPR2020)	96.2	91.5	78.7	88.8
	GaitGL [5] (arXiv2022)	98.0	95.4	87.3	93.6
	GaitMSTP [3] (IJCB2022)	98.2	95.3	88.3	93.9
Multimodal	TransGait [4] (APPL INTELL2023)	98.1	94.9	85.8	92.9
Multimodal	Combine [8] (ICASSP2023)	97.7	93.8	92.7	94.7
	TriGait (ours)	98.2	95.4	94.3	96.0

A. Identifying people by their gait

Where are we now? How did we get here? Where are we going?

As a biometric, gait is available at a distance when other biometrics are obscured or at too low resolution

https://www.youtube.com/watch?v=6KuMe5n_jdQ

2006

Technology in 1994

Share

Dictionary: "manner of walking"

Shakespeare observed recognition:

"High'st Queen of state; Great Juno comes; I know her by her gait" [The Tempest]

"For that John Mortimer....in face, in gait in speech he doth resemble" [Henry IV/2]

Other literature: e.g. Band of Brothers: "I noticed this figure coming, and I realized it was John Eubanks from the way he walked"

Early data

- 6 subjects; 7 sequences
- Sony Hi8 video camera
- Circular track exhausted subjects?
- We used a police digital video recorder

À

Model-based recognition

Electronics and Computer Science

Using silhouettes

Electronics and Computer Science

Gait Energy Image

Gait Entropy Image

J Han, B Bhanu, *IEEE TPAMI*, 2005 Many gait representations possible

Recognising people from the motion of the whole body

silhouette edges

s flow

symmetry

acceleration

feature space

MS Nixon, T Tan, R Chellappa, Springer, 2005

DARPA's Human ID at a Distance

Electronics and Computer Science

S Sarkar, PJ Phillips, Z Liu, IR Vega, P Grother, KW Bowyer, *IEEE TPAMI* 2005

Does gait biometrics really work?

Electronics and Computer Science

https://www.youtube.com/watch?v=PUwINc0xAgQ

BBC1 Bang Goes the Theory Episode 1, 2009

Given

- 1. A laboratory environment; and
- 2. A silhouette

From the silhouette:

- 1. She was wearing Wellington boots
- 2. She was carrying a bag
- 3. She was filming for the hunchback of Notre Dame

- 1. A rubbish bag
- 2. A dress
- 3. A coat

- 1. The floor
- 2. Their footwear
- 3. Their clothing

Major difficulty 1 - viewpoint

Electronics and Computer Science

Figure 1: The structure of GEINet.

Table 1: Layer configurations for GEINet. Act. denotes the	
activation function.	

Layer	#Kernels	Size/stride	Act.	Pooling
conv1	18	$7 \times 7 \times 1/1$	ReLU	
pool1		$2 \times 2/2$		Max pooling
conv2	45	$5 \times 5 \times 18/1$	ReLU	
pool2		$3 \times 3/2$		Max pooling

Shiraga, Makihara and Muramatsu ICB 2016

65 deg 55 deg

85 deg

Figure 2: Examples of gait image sequences with four observation views in the OU-ISIR dataset

Gallery		Probe view				
view	Method	55	65	75	85	
55	GEINet	(94.7)	93.2	89.1	7 9.9	
	w/ FDF	(92.7)	<i>91.4</i>	<i>87.2</i>	80.0	
	TCM+		79.9	70.8	54.5	
	wQVTM		78.3	64.0	48.6	

Major difficulty 2 - covariates

Major difficulty 3 - time

Few minutes apart, different clothes

Identity science

Electronics and Computer Science

Science/ technology

Covariates and exploratory variables Soft biometrics Spoofing Deep architectures

Applications

Medicine (dementia, balance, falls) Sports Security Marketing

The first intelligent carpet

192×32 binary sensor array

Middleton, Buss and Nixon, AutoID 2005

3D recognition – marionette based

hand bar

3D is completely viewpoint invariant

Gait as evidence – first use

joints' position difference:1.7563%

Bag snatcher, London 2008

73

Note controlled trajectory

joints' position difference:2.6613%

167

*

Using gait as evidence -database

Use multiview gait data

CASIA B at the time

with automated labelling

Wang, Ning, Hu, Tan, Proc. ICPR 2002

Gait as evidence -approach

Bouchrika, Nixon, Carter, J. Forensic Science 2011, and Eusipco 2010

Gait as evidence –analysis on database

Gait as evidence: murder case in Australia 2014

Electronics and Computer Science

Bouchrika, Nixon, Carter, J. Forensic
Science 2011, and Eusipco 2010https://www.youtube.com/watch?v=
F1b_apXjjV0&feature=youtu.be

Gait for scoliosis detection

Scoliosis1K Dataset

• The first gait-based large dataset for scoliosis

Attributes	All	Positive	Neutral	Negative
Participants	1050	176	82	792
Sequences	1493	493	200	800
Sex (F/M)	641/409	113/63	49/33	479/313
Age (years)	15.2	14.3	14.0	15.5
Height (cm)	163.2	161.6	161.4	163.7
Weight (kg)	51.9	48.3	46.7	53.3

Experimental results

Method	Accuracy	Sensitivity	Specificity
Adams Test [3]	-	84.4%	$\mathbf{95.2\%}$
Scoliometer $[3]$	-	90.6%	79.8%
ScoNet (Ours)	51.3%	100.0%	33.2%
ScoNet-MT (Ours)	$\mathbf{82.0\%}$	99.0%	76.5%

Future work

- Deep and explainability
- Other covariates
- Medical issues
- Behaviour analysis
- Performance evaluation with low quality low resolution

B Soft Biometrics

What are they? How do they work? Where are we going?

Soft Biometrics

Attribute Kumar, Klare, Zhang, Gonzalez-Sosa *Relative Attribute* [Graumann], Reid, Almudhahka, Body Soft Categorical Samangooei Comparative Reid, Martinho-Corbishley Other Soft Tattoos Lee Clothing Jaha Makeup Dantcheva Eyes & glasses Mohammed Hair Proenca

Applications: performance, identification, marketing, fashion

The evebrow of Person-A relative to that of Person-B is:

O Much Thinner O More Thin O Same O More Thick O Much Thicker

ence

Soft biometrics – the state of art

Technique: predominantly deep

Data: Maad-face, Annotated pedestrians

Applications: face (esp with masks), privacy, forensics?

Male	1	Bangs	-1	Round Face	0	Big Lips	0
Young	-1	Sideburns	1	Double Chin	1	Big Nose	1
Middle Aged	-1	Black Hair	0	High Cheekbones	0	Pointy Nose	-1
Senior	1	Blond Hair	-1	Chubby	1	Heavy Makeup	-1
Asian	-1	Brown Hair	-1	Obstructed Forehead	1	Wearing Hat	1
White	0	Gray Hair	1	Fully Visible Forehead	-1	Wearing Earrings	-1
Black	-1	No Beard	-1	Brown Eyes	0	Wearing Necktie	-1
Rosy Cheeks	0	Mustache	1	Bags Under Eyes	0	Wearing Lipstick	-1
Shiny Skin	1	5 o Clock Shadow	-1	Bushy Eyebrows	1	No Eyewear	1
Bald	-1	Goatee	-1	Arched Eyebrows	-1	Eyeglasses	-1
Wavy Hair	-1	Oval Face	-1	Mouth Closed	0	Attractive	-1
Receding Hairline	0	Square Face	1	Smiling	0		

Terhörst et al, *IEEE TIF*S 2021 See also Terhörst et al. On Soft-Biometric Information Stored in Biometric Face Embeddings, *IEEE TBIOM* 2021

Multimodal soft biometrics: combining ear and face biometrics for age and gender classification

Multi-IVE: Privacy Enhancement of Multiple Soft-Biometrics in Face Embeddings

Incremental Variable Elimination to secure multiple soft biometric attributes simultaneously

Identify and discard multiple soft-biometric attributes contained in face embeddings

Electronics and Computer Science

University of

PrivacyProber: Assessment and Detection of Soft–Biometric Privacy–Enhancing Techniques

Adding privacy enhancement

Rot, Grm, and Struc, *IEEE TDSC*, 2023 + Osoriao-Roig et al , *IEEE TBIOM* 2022

PrivacyProber: Assessment and Detection of Soft–Biometric Privacy–Enhancing Techniques

Detecting privacy enhancement

Multimodal Face Synthesis From Visual Attributes

Electronics and Computer Science

Multimodal Face Synthesis From Visual Attributes

Xing Di and Vishal M. Patel (JHU)

What can you recognise?

64×97

102

256×386

Recognition by fine-grained attributes

Traits and terms

Global Features

 Features mentioned most often in witness statements

Sex and age quite simple

- Ethnicity
 - Notoriously unstable
 - There could be anywhere between 3 and 100 ethnic groups
 - 3 "main" subgroups plus 2 extra to match UK Police force groupings

So we thought!!

Samangooei, Guo and Nixon. IEEE BTAS 2008

Global

- Sex
- Ethnicity
- Skin Colour
- Age
- Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - Facial Hair Colour/Length
 - Neck Length/Thickness

Elect

Problems with absolute descriptors

Subjective = unreliable; Categorical = lacks detail

Reid and Nixon, IEEE *IJCB 2011; TPAMI* 2015

Comparative human descriptions

- Compare one subject's attribute • with another's
- Infer continuous relative • measurements

	Please compare the For example if the	subject in the subject in	e lower video to the subject in the top video. the bottom video is taller than the subjec
have the second s	Attribute	Ann	otation
	Age	Older	
	Bottom subject is	OLDER than	the top
	Hair Colour	Same	
	Subjects have rou	ghly the SAM	/E hair colour
	Hair Length	Longer	
	Bottom subject ha	IS LONGER	hair than the top
L A	Height	Taller	
	Bottom subject is	TALLER that	n the top
	Figure	Same	
	Subjects both hav	e roughly the	SAME figure
	Neck Length	Same	
have a second	Subjects have rou	ghly the SAM	IE length neck
	Neck Thickness	Thinner	
	Bottom subject ha	as a THINNEP	R neck than the top
	Shoulder Shape	Same	
	Subjects have rou	ghly the SAM	tE shoulder shape
	Chest	Same	•
	Subjects have rou	ghly the SAM	tE size chest
	Arm Length	Longer	
	Bottom subject ha	a LONGER	t arms than the top

Reid and Nixon, IEEE IJCB 2011: TPAMI 2015

Ethnicity

Martinho-Corbishley, Nixon and Carter, TPAMI 2019
Gender Estimation on PETA

• Gender?

Subject	1	2	3
PETA image			A CONTRACTOR
PETA label			A. Male B. Female

University of Southampton

Martinho-Corbishley, Nixon and Carter, *Proc. BTAS 2016*

Electronics and Computer Science

Soft biometric fusion – synthesised data

Gait tunnel

Electronics and Computer Science

Guo, Nixon and Carter, IEEE TBIOM 2019

Fusion performance

Exploiting correlation?

Biometrics and marketing ...

https://vimeo.com/388480097

Electronics and Computer Science

Yes, gait works, particularly with deep

Yes, we can use it in forensics?

Soft biometrics are newer, particularly human description

- The technologies are grounded in science, literature, medicine +
- Can we use deep in forensics?
- We have more to learn, and learning architectures are not complete
- Society still needs identification
- Privacy/ ethics/ accuracy/ new technology?

And thanks to

Dr John Carter, Dr Sasan Mahmoodi, Prof Jon Hare

Dr Hani Muammar, Prof Adrian Evans, Prof Xiaoguang Jia, Prof Yan Chen, Prof Steve Gunn, Dr Colin Davies, Dr Mark Jones, Dr Alberto Aguado, Dr David Cunado, Dr Jason Nash, Prof Ping Huang, Dr David Hurley, Dr David Benn, Dr Liang Ng, Dr Mark Toller. Dr John Manslow. Dr Mike Grant. Prof Jamie Shutler. Dr Karl Sharman. Prof Andrew Tatem. Lavla Gordon. Dr Richard French. Dr Vijav Laxmi. Prof James Havfron-Acauah. Dr Chew-Yean Yam. Prof Yalin Zheng. Dr Jeff Foster. Dr Jana Hee Yoo, Dr Nick Spencer, Dr Stuart Prismall, Wan Mohd.-Isa, Dr Peter Myerscough, Dr Richard Evans, Dr Stuart Mowbray, Dr Rob Boston, Dr Ahmad Al-Mazeed, Prof Peter Gething, Dr Dave Waga, Dr Alex Bazin, Dr Mike Jewell, Dr Lee Middleton, Dr Galina Veres, Dr Imed Bouchrika, Dr Xin Liu, Dr Cem Direkoglu, Hidayah Rahmalan, Dr Banafshe Arbab-Zavar, Dr Baofeng Guo, Dr Sina Samangooei, Dr Michaela Goffredo, Dr Daniel Thorpe, Dr Richard Seely, Dr John Bustard, Dr Alastair Cummings, Dr Muayed Al-Huseiny, Dr Mina Ibrahim, Dr Darko Matovski, Dr Gunawan Ariyanto, Dr Sung-Uk Jung, Dr Richard Lowe, Dr Dan Reid, Dr George Cushen, Dr Ben Waller, Dr Nick Udell, Dr Anas Abuzaina, Dr Thamer Alathari, Dr Musab Sahrim, Dr Ah Reum Oh, Dr Tim Matthews, Dr Emad Jaha, Dr Peter Forrest, Dr Jaime Lomeli, Dr Dan Martinho-Corbishley, Dr Bingchen Guo, Dr Jung Sun, Dr Nawaf Almudhahka, Tom Ladyman, Dr Wenshu Zheng, Dr Di Meng, Moneera Alnamnakani

Sponsors: EPSRC, Home Office, MoD (GD), DARPA, ARL, EU

Selection of further reading on gait

- 1. Using gait as a biometric, via phase-weighted magnitude spectra, D Cunado, MS Nixon, JN Carter, Proc. AVBPA, 1997
- 2. <u>The humanid gait challenge problem: Data sets, performance, and analysis</u>, S Sarkar, PJ Phillips, Z Liu, IR Vega..., *IEEE TPAMI*, 2005
- 3. Individual recognition using gait energy image, J Han, B Bhanu, IEEE TPAMI, 2005
- 4. Human identification based on gait, MS Nixon, T Tan, R Chellappa, Springer, 2005
- 5. <u>The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition</u>, M Okumura, Y Makihara, Y Yagi, *IEEE TIFS* 2012
- 6. <u>Biometric recognition by gait: A survey of modalities and features</u>, P Connor, A Ross, *Computer Vision and Image Understanding*, 2018
- 7. Deep gait recognition: A survey, A Sepas-Moghaddam, A Etemad , IEEE TPAMI 2022
- 8. <u>A comprehensive survey on deep gait recognition: algorithms, datasets and challenges, C Shen, S Yu, J Wang, GQ</u> <u>Huang, L Wang</u>, *arXiv*, 2023
- 9. <u>TriGait: Aligning and Fusing Skeleton and Silhouette Gait Data via a Tri-Branch Network</u>, Y Sun, X Feng, L Ma, L Hu, M Nixon, *IJCB 2023*
- 10. <u>GaitSTR: Gait Recognition With Sequential Two-Stream Refinement</u>. Zheng, W., Zhu, H., Zheng, Z. and Nevatia, R., *IEEE Transactions on Biometrics, Behavior, and Identity Science*, 2024

Apologies if your own technique is missing, or your favourite. There are many more.

- 1. On soft biometrics, MS Nixon, PL Correia, K Nasrollahi, TB Moeslund, A Hadid, M Tistarelli, PRL 2015
- 2. What else does your biometric data reveal? A survey on soft biometrics, A Dantcheva, P Elia, A Ross, IEEE TIFS 2016
- 3. <u>Soft biometric traits for personal recognition systems</u>, AK Jain, SC Dass, K Nandakumar, *ICBA* 2004
- 4. <u>Demographic analysis from biometric data: Achievements, challenges, and new frontiers</u> Y Sun, M Zhang, Z Sun, T Tan, *IEEE TPAMI* 2018
- 5. The use of semantic human description as a soft biometric, S Samangooei, B Guo, MS Nixon, IEEE BTAS 2008
- 6. Soft biometrics; human identification using comparative descriptions, D Reid, MS Nixon, S Stevenage, IEEE TPAMI 2014
- 7. <u>Soft biometrics and their application in person recognition at a distance</u>, P Tome, J Fierrez, R Vera-Rodriguez, MS Nixon, *IEEE TIFS* 2014
- 8. Super-fine attributes with crowd prototyping, D Martinho-Corbishley, MS Nixon, JN Carter, IEEE TPAMI, 2019
- 9. Multimodal face synthesis from visual attributes, Di, X. and Patel, V.M., IEEE TBIOM, 2021
- 10. <u>PrivacyProber: Assessment and Detection of Soft–Biometric Privacy–Enhancing Techniques</u>, Rot P, Grm K, Peer P, Štruc V. *IEEE TDSC*, 2023

Post Hoc Questions on Gait Biometrics Electronics and Computer Science

1. The easiest way to avoid being recognised by gait is: A – change clothes; B – stop walking; C – put a stone in your shoe; D – run, E – hop? 2. People can recognise other people by the way they walk: A – always; B – only friends; C – only gender; D – never? 3. Gait biometrics requires computers and memory. How much: A – many GPUs and much storage; B – one GPU; C – lots of memory; D – an abacus? 4. Gait biometrics is based on video data. It should be A – high quality?; B – regularly sampled?; C – encoded by frame?; D – motion encoded? 5. Gait biometrics can be achieved by deploying standard computer vision techniques/ architectures: A – TRUE; B – FALSE; C – only on a Sunday? 6. Silhouettes can be used for recognition. Does this use A - body shape only; B - dynamics only; C - both shape and dynamics? 7. Gait can be modelled for recognition purposes. Does this use A - body shape only; B - dynamics only; C - both shape and dynamics? 8. The computational requirements are the least for A – model-based approaches; B – silhouette-based approaches? 9. The canonical view in gait is A – side view; B – front view; D – top view; D – 3D?

10. The factor which most affects gait is

A – clothes; B – shoes; C – mood; D – time, E - alcohol?

Post Hoc Questions on Soft Biometrics

- 11. Soft biometrics are suitable for recognition?
 - A True; B False
- 12. What is the 'soft' in 'soft biometrics'?
 - A ice cream soft; B counterpoint to traditional 'hard' biometrics; C complement to traditional?
- 13. Makeup is a soft biometric?
 - A True; B False
- 14. Which is the most discriminative: Age, Gender or Race?
 - A Age; B Gender; C Race
- 15. The 'other race effect' is the same as prosopagnosia?
 - A True; B False
- 16. Human bias means that all observations derived from humans should be tuple, not single?
 - A True; B False
- 17. When asking a person to label "is this photograph of a man or of a woman?", should the answer include "don't know"?
 - A Yes; B No; C Don't know
- 18. When asking a person to label "age", is it better to compare images or not?

A – Yes; B – No

- 19. Manual search of video is the only possible way
 - A Yes, B Yes, but only at the moment
- 20. The full set of practical biometrics has been explored and no new ones are possible.
 - A No

Electronics and Computer Science

Thank you, and for more information

