Face Presentation Attack Detection aka Face Anti-Spoofing

Prof Sébastien Marcel (www.idiap.ch/~marcel)

January 12, 2025

Idiap Research Institute

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

Presentation Attacks

In this talk we will focus:

- on direct attacks to the sensor (1), referred to as Presentation Attacks (PA),
- on biometric systems using face (aka face recognition),
- on methods to detect face PAs i.e. face Presentation Attack Detection (PAD).

Definitions

Presentation Attack (PA)

- An attempt to **fool** the biometric recognition system by presenting **fake** biometric data to the sensor, e.g.,
 - A **replica** of an enrolled user's biometric features (if the goal is to **impersonate** that user), or
 - Generic biometric features (if the goal is to avoid recognition)

PAs are also commonly called spoofing attacks, and the fake biometric data is referred to as a spoof

Presentation Attack Detection (PAD)

- The determination of a PA (i.e., "the presented biometric data is/is not a spoof")
- Also commonly referred to as anti-spoofing

Definitions

Presentation Attack Instrument (PAI)

- The biometric characteristic or object used to launch a PA
- Examples: Face mask, gummy fingerprint, dead body parts, etc.

Bona Fide Presentation

- Normal (intended) interaction of the subject with the biometric system's sensor
- Basically, anything which is **not** a PA

Note: See *Biometric presentation attack detection – part 1*, ISO/IEC 30107-1:2016 (2016) for formal (standardised) definitions.

Importance

PAs pose a major threat to biometric recognition systems:

- because the attack is external to the system (i.e., at the sensor), so the attacker does not need to have any knowledge about the internal workings of the system,
- PAs can be launched by basically anyone, often using very basic tools.
- Growing field of research¹:
 - novel methods for innovative PAIs and PAs,
 - novel techniques and algorithms for PAD (e.g. sensors, signal processing, machine learning, generalisation to unseen attacks),
 - not only for face biometrics but also fingerprint, iris, voice, vein, ...

¹S. Marcel *et al.*, "Handbook of Biometric Anti-Spoofing", Third Edition, *Springer*, 2023 (10.1007/978-981-19-5288-3)

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

Locker unlock (2019)

A group of primary school children in China showed that lockers secured by face recognition technology could be spoofed using a photograph of the locker owner's face²

//www.sixthtone.com/news/1004698/facial-recognition-smart-lockers-hacked-by-fourth-graders

² http:

Robbery (2010)

Conrad Zdzierak used a silicone face mask to pass himself off as a black character "SPFX The Player" during bank robberies³

³ http://www.telegraph.co.uk/news/worldnews/northamerica/usa/8193185/ US-criminals-using-film-quality-masks-during-bank-robberies.html

Immigration (2011)

A young Asian man disguised himself as an old Caucasian man using a silicone face mask, boarded a plane in Hong Kong, then removed the disguise mid-flight and asked for refugee status upon arriving in Canada⁴

^{*}http://www.dailymail.co.uk/news/article-1326885/ Man-boards-plane-disguised-old-man-arrested-arrival-Canada.html

Smartphone unlock (2011)

The Face Unlock feature on Galaxy Nexus, running Android 4.0, was spoofed by a face photograph 5

⁵http://www.geek.com/android/android-face-lock-feature-spoofed-by-photograph-1440953

Smartphone unlock (2017)

iPhone X's Face ID was spoofed by a specially crafted face mask⁶, despite claims that it is robust to mask attacks

6 https://www.youtube.com/watch?v=i4YQRLQVixM

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

Printed face image

- 1. Print an image of the target's face
- 2. Present the face image to the face recognition system

 $^{^{7}}$ A. Anjos and S. Marcel, "Counter-Measures to Photo Attacks in Face Recognition: a public database and a baseline", *IEEE IJCB* 2011 (10.1109/IJCB.2011.6117503)

Digital face image or video

- 1. Capture a digital image or record a video of the target's face (e.g., using a smartphone or tablet)
- 2. Present the image or video (e.g. deepfake) to the face recognition system

⁸ I. Chingovska, A. Anjos and S. Marcel, "Biometrics Evaluation Under Spoofing Attacks", IEEE TIFS 2014 (10.1109/TIFS.2014.2349158)

Video projection of an image or a video on any surface

 9 N. Ramoly and al., "A Novel and Responsible Dataset for Face Presentation Attack Detection on Mobile Devices", *IEEE IJCB* 2024

Printed face on a t-shirt¹

¹⁰ M. Ibsen and al., "Attacking Face Recognition with T-shirts: Database, Vulnerability Assessment and Detection", *IEEE Access* 2024 (10.1109/ACCESS.2023.0322000)

Quizz time !

Which images are Bona Fide and which are PA?

Quizz time !

Which images are Bona Fide and which are PA?

All are PAs!

- Left: Printed images
- Middle: iPhone (digital) images
- Right: iPad (digital) images

Hard (resin composite) face mask¹

- 1. 3D print a model of the target's face (plain or eye holes)
- 2. Present the corresponding hard face mask (made of a resin composite) to the face recognition system

 $^{^{11}}$ N. Erdogmus and S. Marcel, "Spoofing Face Recognition with 3D Masks", IEEE TIFS, 9(7), pp. 1084–1097, 2014 (10.1109/TIFS.2014.2322255)

Hyper-realistic face masks ¹

Same as previous example but hyper-realistic plastic masks from HiRes pictures

 $^{^{12}}$ K. Kotwal *et al.*, "Domain-Specific Adaptation of CNN for Detecting Face Presentation Attacks in NIR", *TBIOM* 2022 (10.1109/TBIOM.2022.3143569)

Silicone face mask - generic

A generic silicone face mask could be used to obfuscate an attacker's identity, but it does not correspond to any specific target face

Silicone face mask – customised¹

- 1. Manufacturer a custom 3D silicone mask,
- 2. Present the mask to the face recognition system

¹³K. Kotwal *et al.* "Multispectral Deep Embeddings As a Countermeasure To Custom Silicone Mask Presentation Attacks", *IEEE TBIOM*, 4(1), pp. 238–251, 2019 (10.1109/TBIOM.2019.2939421)

Silicone face mask - customised

The method

1. Acquire a 3D scan, measurements, and multiple 2D colour images of the target's face

25/64

Silicone face mask - customised

2. Send the information to a manufacturer (e.g., Nimba Creations¹⁴), who will generate a customised 3D silicone mask, including manual application of facial features (e.g., skin colour, eyebrows, etc.), for \approx 4,000 USD

Raw mask

Intermediate mask

Final mask

3. Present the mask to the face recognition system

```
14
https://www.nimbacreations.com/
```

Silicone face mask – customised

- The customised silicone face masks are quite life-like and they allow for some flexibility in facial movement
- Effective for launching PAs against face recognition systems¹⁵

¹⁵ Ramachandra, R. *et al.* "Custom silicone Face Masks: Vulnerability of Commercial Face Recognition Systems & Presentation Attack Detection", *IEEE IWBF*, pp. 1–6 (2019)

More methods under investigation

make-up: apply make-up to the attacker's face to impersonate an enrolled user of a face recognition system or to obfuscate by simulating aging¹⁶:

¹⁶ K. Kotwal *et al.*, "Detection of Age-Induced Makeup Attacks on Face Recognition Systems Using Multi-Layer Deep Features", *IEEE TBIOM*, 2019 (10.1109/TBIOM.2019.2946175)

More methods under investigation

 digital morphing¹⁷, deepfake face-swaps¹⁸, biometric template inversion¹⁹, ...

¹⁷ E. Sarkar et al., "Are GAN-based morphs threatening face recognition?", IEEE ICASSP, 2022 (10.1109/ICASSP43922.2022.9746477)

¹⁸P. Korshunov and S. Marcel, "Subjective and Objective Evaluation of Deepfake Videos", *IEEE ICASSP* 2021 (10.1109/ICASSP39728.2021.9414258)

¹⁹ H. Otroshi Shahreza, V. Krivokuca Hahn and S. Marcel, "Face Reconstruction from Deep Facial Embeddings using a Convolutional Neural Network", *IEEE ICIP* 2021 (10.1109/ICIP46576.2022.9897535)

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

Biometric sub-system: a binary classifier

We measure the recognition accuracy :

- False Match Rate (FMR) or False Accept Rate (FAR): Proportion of bona fide zero-effort impostors that are accepted (i.e., classified as bona fide genuine presentations)
- False Non-Match Rate (FNMR) or False Reject Rate (FRR): Proportion of bona fide genuine presentations that are rejected (i.e., classified as either bona fide zero-effort impostors or PAs)

Biometric sub-system: a binary classifier

We can also measure the vulnerability as:

Impostor Attack Presentation Accept Rate (IAPAR) or Impostor Attack Presentation Match Rate (IAPMR) or Spoofing False Accept Rate (SFAR): Proportion of PAs that are accepted (i.e., classified as bona fide genuine presentations)

Vulnerability of Deep Face Recognition²

FR systems using CNN are very vulnerable (up to 99% IAPMR)

Improved FR accuracy translates into improved vulnerability

²⁰A. Mohammadi et al., "Deeply vulnerable: a study of the robustness of face recognition to presentation attacks", IET Biometrics, 2017 (10.1049/iet-bmt.2017.0079)

PAD sub-system: a binary classifier

We measure 2 errors:

- Attack Presentation Classification Error Rate (APCER): Proportion of PAs *incorrectly* classified as bona fide presentations
- Bona fide Presentation Classification Error Rate (BPCER): Proportion of bona fide presentations *incorrectly* classified as PAs

PAD methods

- software-based (SW): biometric data from the sensor is analysed to discriminate bona fide vs PA (eg. motion, texture)
- hardware-based (HW): an additional sensor (eg. multi-spectra) is used and its data analysed to discriminate bona fide vs PA (eg. temperature, pulse)
- challenge-response: the user interacts with the system (eg. prompted text in face/speaker recognition)

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

RGB only

Glasses

Replay Fake head

Replay

Print Replay-Attack, Mobile, MSU-MFSD

Rigid masks

Flexible mask Paper mask

WMCA

Waxface

From handcrafted classifiers to deep learning

- Motion analysis: Optical flow correlation and MLP to detect static PAIs ²¹
- Texture analysis: Local Binary Patterns (LBP) and LDA/SVM to detect static/dynamic PAIs ²²
- Image quality: general image quality measures (IQM) and LDA to detect static/dynamic PAIs ²³

²¹ A. Anjos and S. Marcel, "Motion-Based Counter-Measures to Photo Attacks in Face Recognition", IET Biometrics, 3(3), pp. 147–158, 2013 (10.1049/iet-bmt.2012.0071)

 $^{^{22}}$ l. Chingovska et al., "On the Effectiveness of Local Binary Patterns in Face Anti-spoofing", IEEE BIOSIG, 2012

²³ J. Galbally, S. Marcel and J. Fierrez, "Image Quality Assessment for Fake Biometric Detection: Application to Iris, Fingerprint, and Face Recognition", *IEEE Transactions on Image Processing*, 2013 (10.1109/TIP.2013.2292332)

From handcrafted classifiers to deep learning

Convolutional Neural Networks: DenseNet-based pixel-wise binary supervision ²⁴ outperformed LBP and IQM

 Vision Transformers (ViTran): Fine-tuned ViTran²⁵ outperformed CNNs on unseen attacks

 $^{^{\}rm 24}$ A. George and S. Marcel, "Deep pixel-wise binary supervision for face presentation attack detection" IEEE ICB 2019 (10.1109/ICB45273.2019.8987370)

²⁵ A. George and S. Marcel, "On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing" *IEEE IJCB* 2021 (10.1109/IJCB52358.2021.9484333)

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

RGB, Depth, NIR, SWIR and Thermal²⁰

Home-made multi-spectra sensing station to capture:

- HQ VIS, HQ stereo NIR (660,735,850,940 nm)
- Depth from Intel SR435 (stereo) and HQ Thermal
- HQ SWIR (1050,1200,1300,1450,1550,1650 nm)

²⁶https://www.idiap.ch/en/dataset/hq-wmca

PAD across spectrum

different channels provide complementary information from different sources and hence more robust PAD

- NIR offers several advantages for face PAD, especially for 2D attacks
- Prints and masks colored with non-metallic inks should be barely visible in NIR spectrum
- Wavelengths around 850–950 nm should provide better discrimination between human skin and other materials

PAD across spectrum

different channels provide complementary information from different sources and hence more robust PAD

- Thermal images²⁷ should make it easier to detect 2D and 3D mask attacks using the temperature distribution
- More precise information about the distribution of temperature should be needed to identify more sophisticated attacks such as make-up ²⁸
- SWIR channel should make it easy to identify skin easily due to the specific nature of reflectance spectra²⁹

²⁷Bhattacharjee, S. and Marcel, S. 'What you can't see can help you – extended-range imaging for 3D-mask presentation attack detection'', *IEEE BIOSIG* (2017)

²⁸Kotwal, K. et al. "Detection of Age-Induced Makeup Attacks on Face Recognition Systems Using Multi-Layer Deep Features", *IEEE T-BIOM*, 2(1), pp. 15–25 (2020) 29

²⁹ Kotwal, K. et al. "Multispectral Deep Embeddings As a Countermeasure To Custom Silicone Mask Presentation Attacks", IEEE T-BIOM, 4(1), pp. 238–251 (2019)

Deep Learning (DL) PAD across spectrum

DL-based methods can be explored to detect a large range of PAIs:

multi-channel (RGB+NIR+SWIR) CNN-based approaches ³⁰ ³¹

 30 G. Heusch *et al.*, "Deep Models and Shortwave Infrared Information to Detect Face Presentation Attacks", *IEEE TBIOM*, 2020 (10.1109/TBIOM.2020.3010312) 31

³¹A. George et al., "Biometric face presentation attack detection with multi-channel convolutional neural network", *IEEE TIFS*, 2019 (10.1109/TIFS.2019.2916652)

Deep Learning (DL) PAD across spectrum

DL-based methods can be explored to detect a large range of PAIs:

 a one class classifier framework: CNN embedding + One Class Constrastive Loss + GMMs ³²

³²A. George and S. Marcel, "Learning one class representations for face presentation attack detection using multi-channel convolutional neural networks", *IEEE TIFS*, 2020 (10.1109/TIFS.2020.3013214)

Deep Learning (DL) PAD across spectrum

DL-based methods can be explored to detect a large range of PAIs:

■ a cross-modal (RGB+Depth) loss ³³

³³ A. George and S. Marcel, "Cross Modal Focal Loss for RGBD Face Anti-Spoofing", IEEE CVPR 2021 (10.1109/CVPR46437.2021.00779)

PAD across spectrum: some conclusions

- Even simple average temperature of face regions is effective against simpler 2D/3D attacks
- Majority of impersonation/obfuscation attacks can be identified using SWIR or RGB+NIR
- Wavelengths around 1450 nm provide good separation between skin and other objects
- Even low resolution SWIR sensors improves the PAD performance greatly

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

To conclude

Is PAD a solved problem?

- biometrics is more prevalent hence incentives for launching PAs are multiplying
- active PAD research but generalisation (to unseen attacks) is challenging – arms race
- PAD is not a solved problem, it continues to be an important field of research

References

- S. Marcel *et al.*, "Handbook of Biometric Anti-Spoofing", Third Edition, *Springer*, 2023 (10.1007/978-981-19-5288-3)
 N. Evans, S. Marcel, A. Ross and A. Teoh, "Biometrics
- Security and Privacy Protection", *IEEE Signal Processing Magazine*, 2015 (10.1109/MSP.2015.2443271)
- Z. Yu et al., "Deep Learning for Face Anti-Spoofing: A Survey", IEEE TPAMI, 2022 (10.1109/TPAMI.2022.3215850)

Outline

Presentation Attacks

Face PAs in reality

Face PAIs

Presentation Attack Detection (PAD)

SW-based Face PAD

HW-based Face PAD

Conclusion

EPSC ³⁴

Two separate components

 $^{^{34}\}textit{Biometrics}$ Evaluation under Spoofing Attacks, I. Chingovska and al., IEEE TIFS, 2014.

Fusion scheme

One unique threshold to be determined

Biometric systems without PAD (no fusion)

54/64

Biometric systems + PAD (fusion)

Measuring the performance

We still measure 3 errors:

- False Rejection Rate (FRR): % of genuine users falsely rejected
- False Acceptance Rate (FRR): % of zero-effort impostors falsely accepted
- Spoof False Acceptance Rate (SFAR): % of presentation attacks falsely accepted

FAR_{ω} (development set)

Weighted error rate for the two negative classes (zero-effort impostors and presentation attacks):

$$FAR_{\omega} = (1 - \omega) \cdot FAR + \omega \cdot SFAR$$

Determine τ^*_ω to minimize the difference between ${\sf FAR}_\omega$ and ${\sf FRR}$ on the development set:

$$\tau_{\omega}^* = \arg\min_{\tau} |FAR_{\omega}(\tau, \mathcal{D}_{dev}) - FRR(\tau, \mathcal{D}_{dev})|$$

$HTER_{\omega}$ (test set)

Measuring both the verification performance and the spoofability of the system

$$HTER_{\omega}(\tau_{\omega}^{*}, \mathcal{D}_{test}) = \frac{FAR_{\omega}(\tau_{\omega}^{*}, \mathcal{D}_{test}) + FRR(\tau_{\omega}^{*}, \mathcal{D}_{test})}{2}$$

Ploting HTER $_{\omega}$ or SFAR

EPSC in action

EPSC: HTER $_{\omega}$ and **SFAR**

EPSC Examples

EPSC to compare biometric systems only

4 biometric systems (no PAD): using the orange subsequently

EPSC Examples

EPSC to compare PAD

1 biometric system (blue), same system + 3 PADs (red, orange,green), same system + all PADs (purple)

EPSC Examples

EPSC to compare biometric systems fused with ALL PADs

4 biometric system + all PADs

Thank you for your attention! Prof Sébastien Marcel (www.idiap.ch/~marcel) Idiap Research Institute, Martigny, Switzerland

Idiap Research Institute

