

Biometric Recognition in the Era of Foundation Models

Dr. Xiaoming Liu

Anil K. and Nandita Jain Endowed Professor of Engineering MSU Foundation Professor **Department of Computer Science and Engineering Michigan State University**

Joint work with Anil Jain, Shiqi Yu, Feng Liu, Chao Fan

This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2022-21102100004. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Successful Applications

Apple

Boarding in Airports

Fingerprint

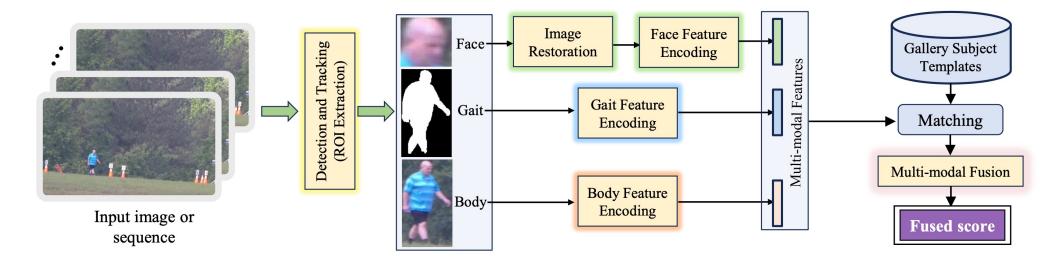
Amazon One Palmprint

Identification at a Distance

BRIAR: The subject in the figure consented to publication.

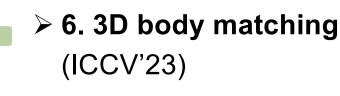
- One of the largest Biometrics projects in US
- Sponsored by IARPA
- 7 full teams and 2 partial teams in phase 1
- 5 teams in phase 2
- 2 teams in phase 3
- Advancing the SOTA in face, body, gait recognition, multi-modality fusion, AIGC, and image restoration

MSU BRIAR System



System Components

- > 1. Generic matcher: AdaFace (CVPR'22)
- > 2. Domain adaption: CFSM (ECCV'22)
- > 3. Video-based reco: CAFace (NeurIPS'22)
- 4. Landmark assisted reco KP-RPE (CVPR'24)
- > 5. Synthetic training dataset (CVPR'23)



- > 7. Large vision models Find Representation (CVPR'24)
- > 8. CLIP 3D Re-ID (CVPR'24)

VS

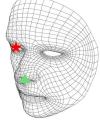
> 9. Unified human recognition (under review)

13 January 2025

Highlights

- 7. Large vision models Find Representation (CVPR'24)
- 8. CLIP 3D Re-ID (CVPR'24)

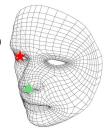
4. Landmark assisted reco KP-RPE (CVPR'24)



9. Unified human recognition (under review)

Highlights

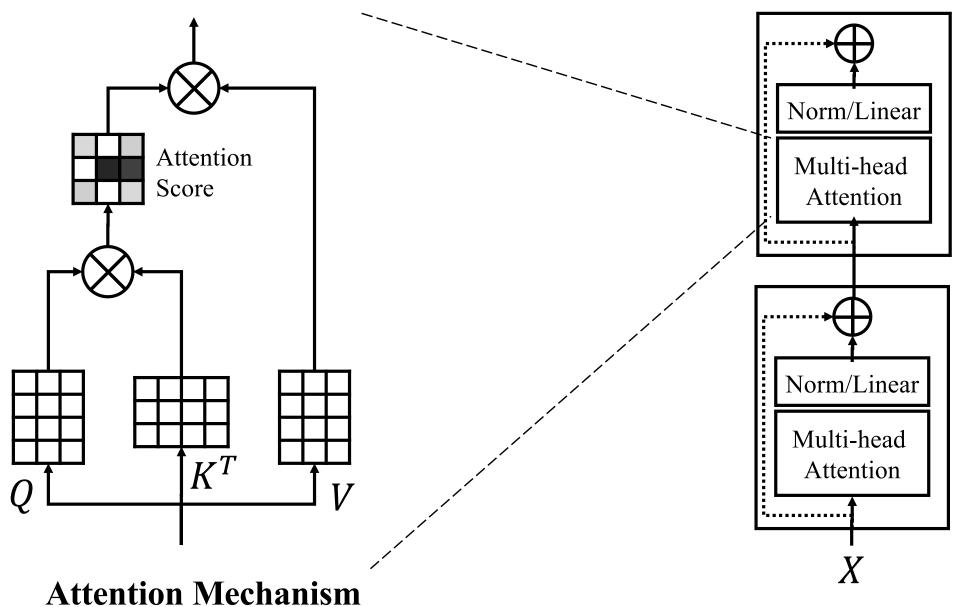
4. Landmark assisted reco KP-RPE (CVPR'24)



Minchul Kim, Feng Liu, Yiyang Su, Anil K. Jain, Xiaoming Liu, "KeyPoint Relative Position Encoding for Face Recognition," in CVPR 2024

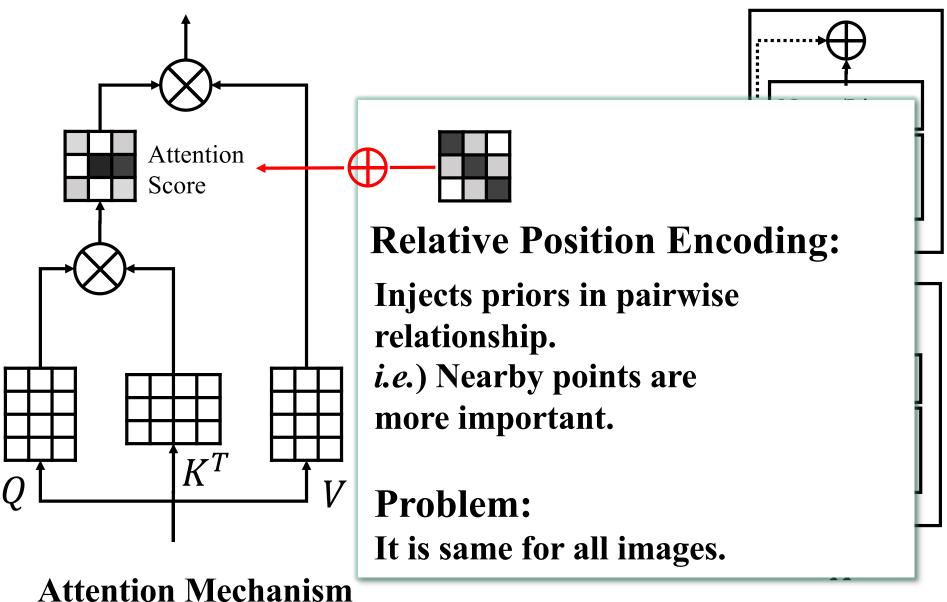
Problem Definition

Vision Transformer



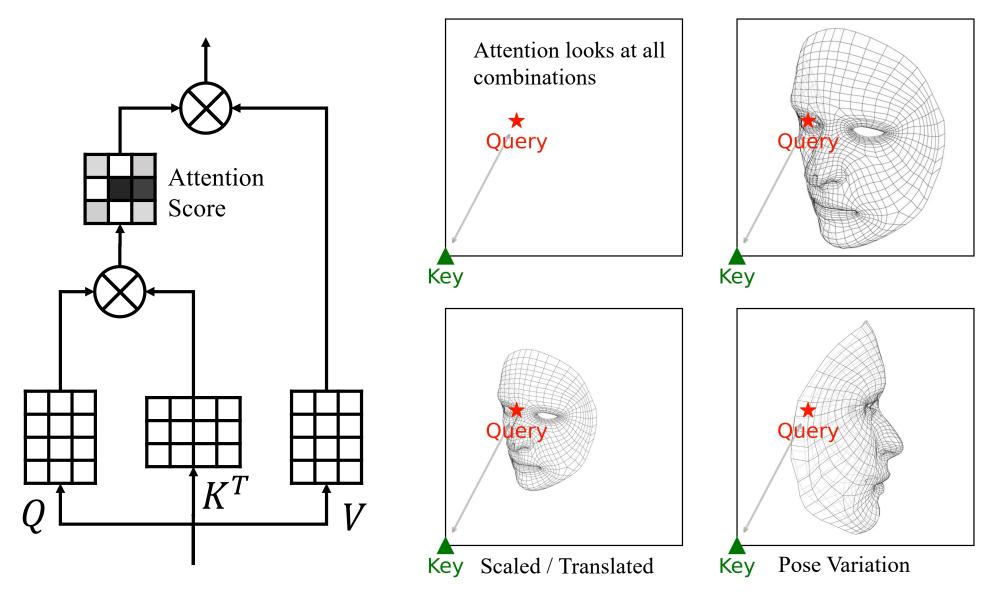
13 January 2025

Problem Definition

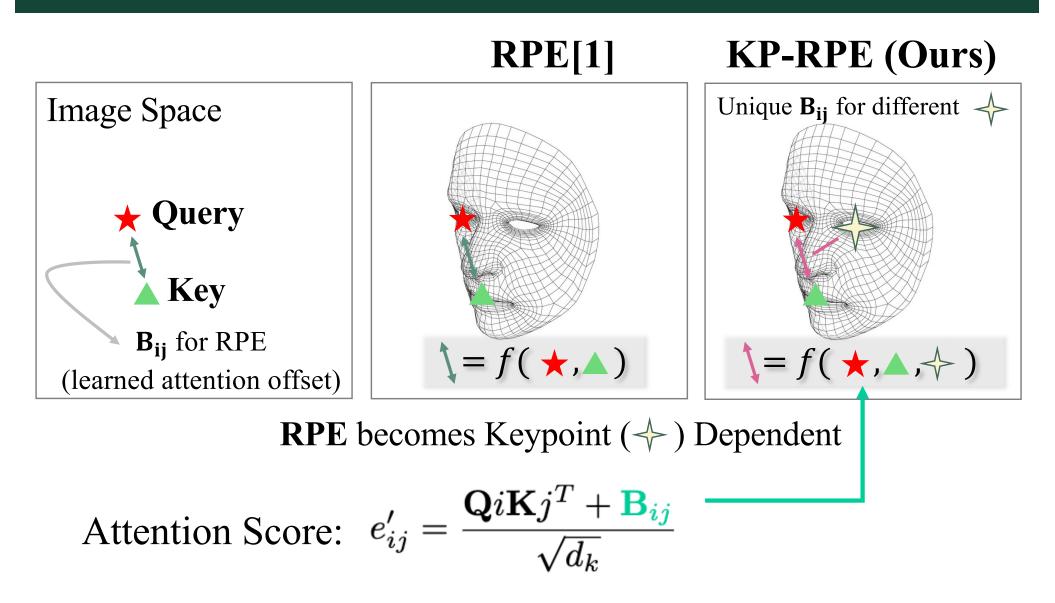


13 January 2025

Problem Definition

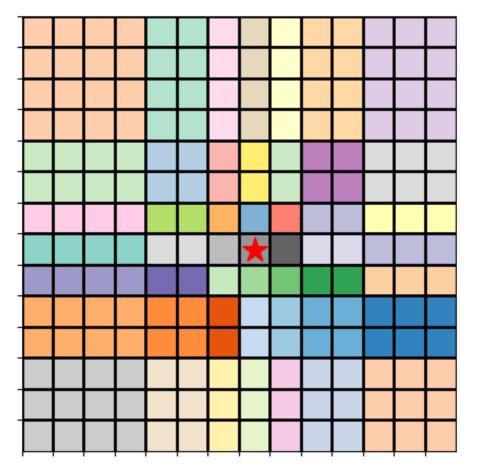


Same Query-Key Locations does not represent same semantics



[1] Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani. "Self-attention with relative position representations." arXiv preprint arXiv:1803.02155 (2018).

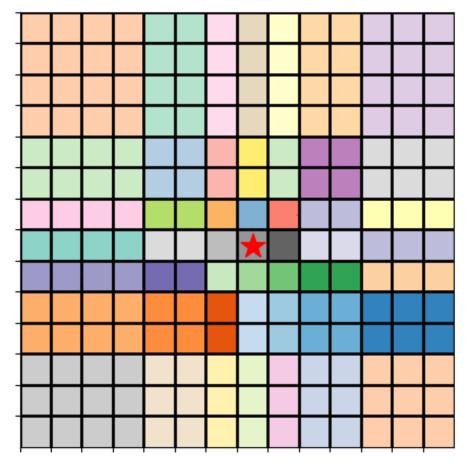
KP-RPE for one query at **★**



Compute distance to query.
 (We use quantized distance)

* Same color implies same distance

KP-RPE for one query at **★**



* Same color implies same distance

Compute distance to query.
 (We use quantized distance)

2. Learn optimal values for each distance as a function of facial landmarks *L*

$$= W_1(L - (q_x, q_y))$$

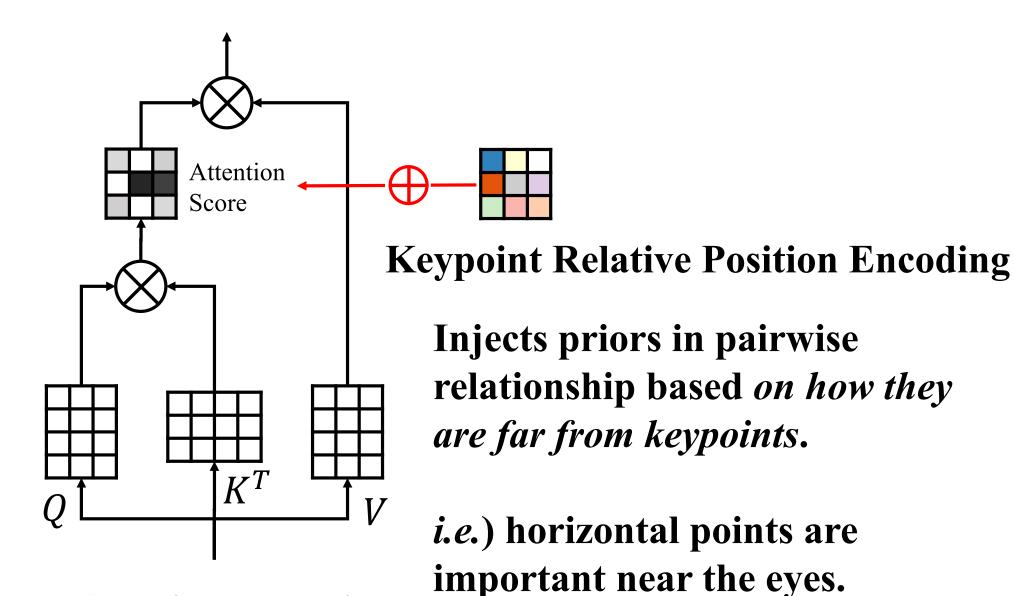
$$= W_2(L - (q_x, q_y))$$

$$:$$

$$= W_1(L - (q_x, q_y))$$

$$= W_2(L - (q_x, q_y))$$

Summary



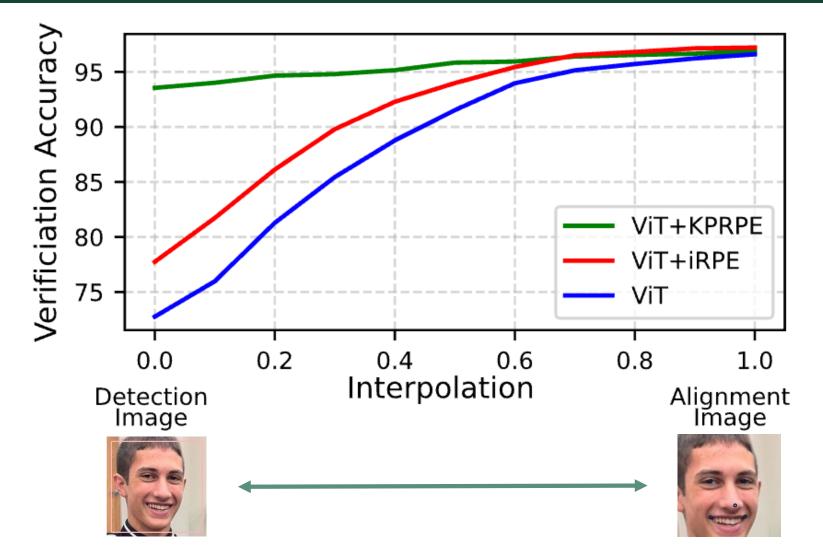
Attention Mechanism

Experiments

	Backbone	Train Data	Low Quality Dataset			
Method			TinyFace [7]		IJB-S [29]	
			Rank-1	Rank-5	Rank-1	Rank-5
PFE [61]	CNN64	MS1MV2 [11]	-	-	50.16	58.33
ArcFace [11]	ResNet101	MS1MV2 [11]	-	-	57.35	64.42
URL [62]	ResNet101	MS1MV2 [11]	63.89	68.67	59.79	65.78
CurricularFace [27]	ResNet101	MS1MV2 [11]	63.68	67.65	62.43	68.68
AdaFace [11]	ResNet101	MS1MV2 [11]	68.21	71.54	65.26	70.53
AdaFace [11]	ResNet101	MS1MV3 [13]	67.81	70.98	67.12	72.67
AdaFace [30]	ViT	MS1MV3 [13]	72.05	74.84	65.95	71.64
AdaFace [30]	ViT+KP-RPE	MS1MV3 [13]	73.50	76.39	67.62	73.25
ArcFace [11]	ResNet101	WebFace4M [91]	71.11	74.38	69.26	74.31
AdaFace [30]	ResNet101	WebFace4M [91]	72.02	74.52	70.42	75.29
AdaFace [30]	ViT	WebFace4M [91]	74.81	77.58	71.90	77.09
AdaFace [30]	ViT+iRPE	WebFace4M [91]	74.92	77.98	71.93	77.14
AdaFace [30]	ViT+KP-RPE	WebFace4M [91]	75.80	78.49	72.78	78.20
AdaFace [30]	ResNet101	WebFace12M [91]	72.42	74.81	71.46	77.04
AdaFace [30]	ViT+KP-RPE	WebFace12M [91]	76.18	78.97	72.94	77.46

Large performance improvements in Hard / Low quality Imagery Datasets.

Experiments



KP-RPE even shows robust to image transformations unseen during training

Highlights

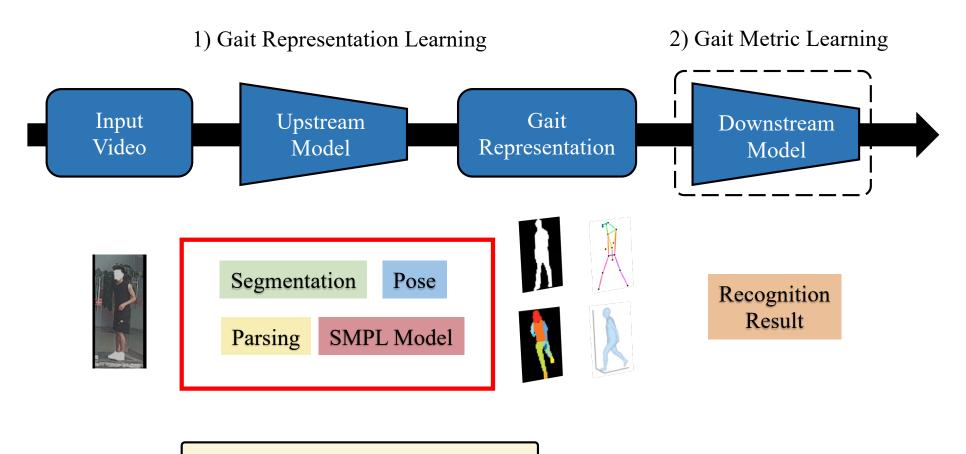
▶ 7. Large vision models Find Representation

(CVPR'24)

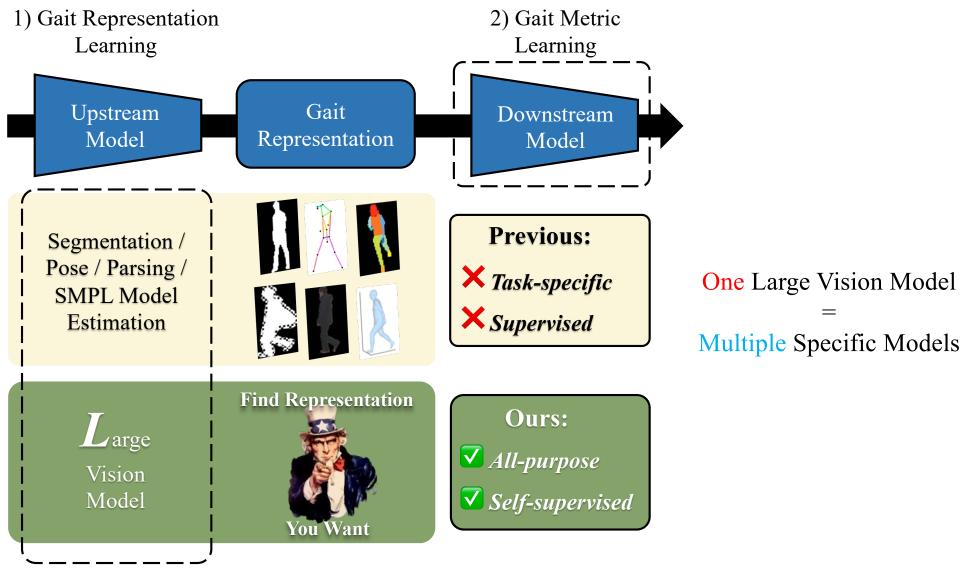
Dingqiang Ye, Chao Fan, Jingzhe Ma, Xiaoming Liu, Shiqi Yu, "BigGait: Learning Gait Representation You Want by Large Vision Models," in CVPR 2024

Problem of Previous Methods

Gait Recognition Pipeline

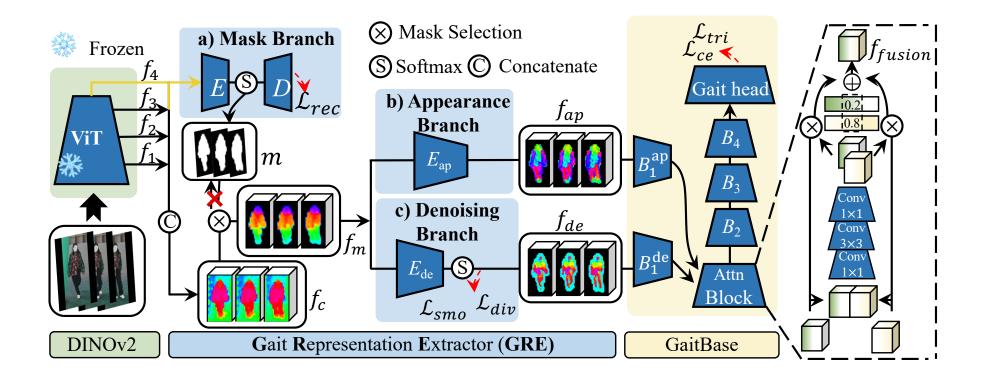


X Too Many Upstream Models



The idea of BigGait

Architecture

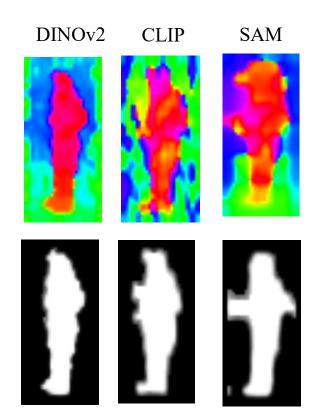


The architecture of BigGait

Ye et.al., BigGait: Learning Gait Representation You Want by Large Vision Models, CVPR, 2024.

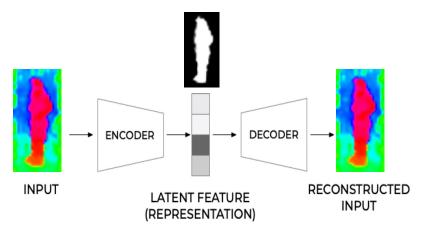
Architecture (Mask Branch)

Input

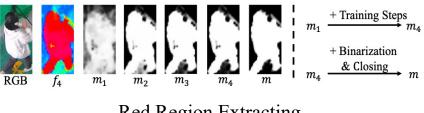


PCA/Mask Visualization of feature from multi-LVMs

Oquab, Maxime, et al. Dinov2: Learning robust visual features without supervision. Arxiv, 2023. Radford, Alec, et al. Learning transferable visual models from natural language supervision. ICML, 2021. Kirillov, Alexander, et al. Segment anything. ICCV, 2023.



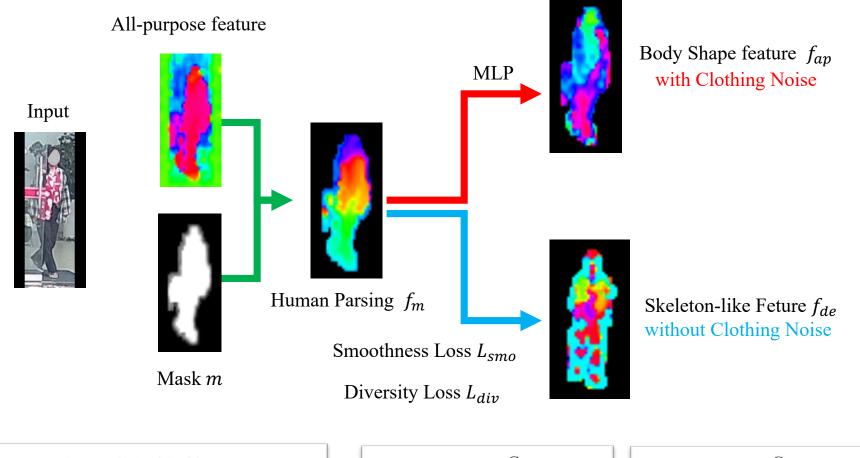
Mask Branch is An Unsupervised Auto-Encoder



Red Region Extracting

7 January 2025

Architecture (Appearance/ Denoising Branch)



$$f_{de} = \operatorname{softmax}(E_{de}(f_m))$$

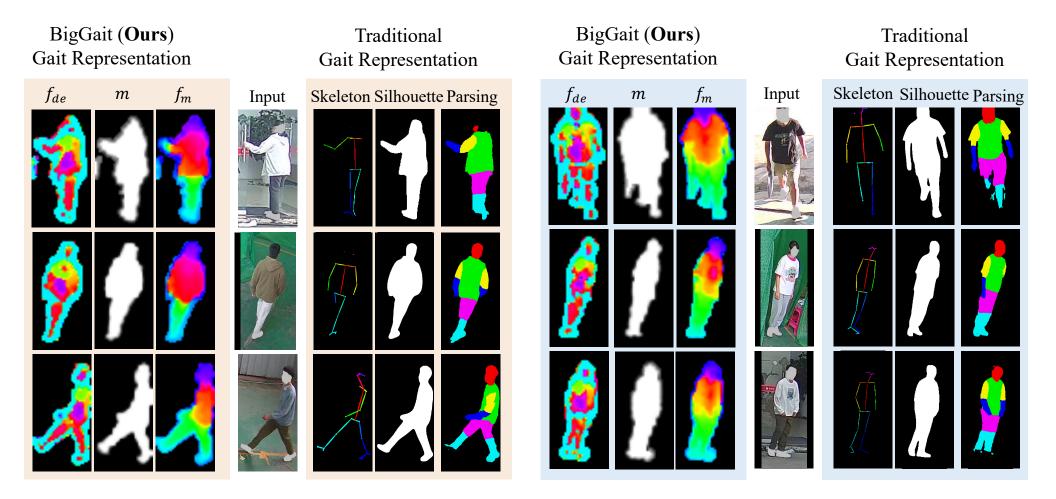
$$p_i = \operatorname{sum}(f_{de}^i) / \sum_{i=1}^C \operatorname{sum}(f_{de}^i)$$

$$L_{div} = \log C + \sum_{i=1}^C p_i \log p_i,$$

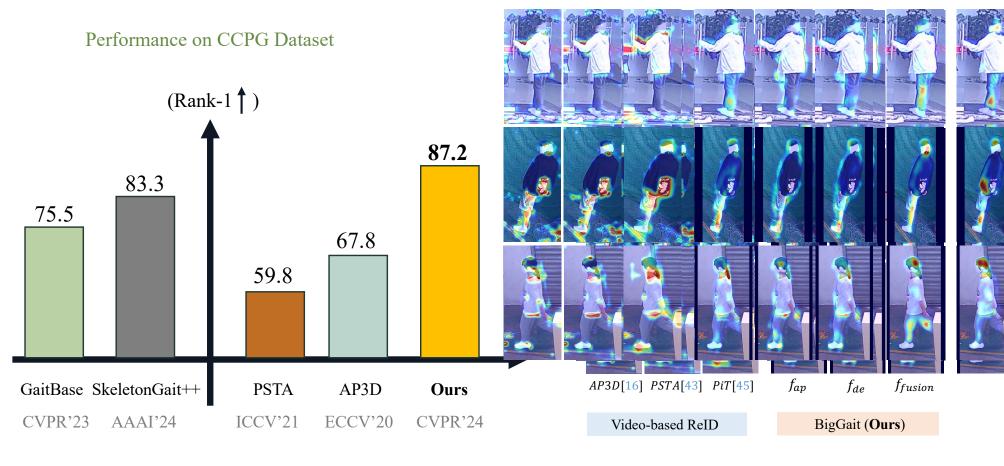
 $L_{s'}$

.

Visualization



One Large Vision Model \approx **Multiple** Traditional Gait Extraction Models



Traditional Gait Methods

RGB-based Methods

Activation Map Visualization

Highlights

9. CLIP 3D Re-ID (CVPR'24)

Feng Liu, Minchul Kim, Zhiyuan Ren, Xiaoming Liu, "Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation," in CVPR 2024

Whole-Body Matching

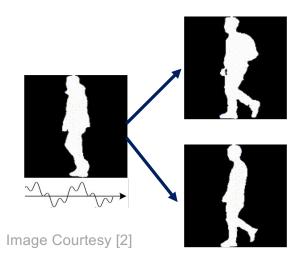
Person re-identification (static, body characteristics)

Gait recognition (dynamic, walking patterns)

Matching who? Ma

Person Re-ID

ichigan State Univers



[Long-Term Cloth-Changing Person Re-identification. ACCV 2020. [2] https://github.com/ShiqiYu/OpenGait

Gait Recognition

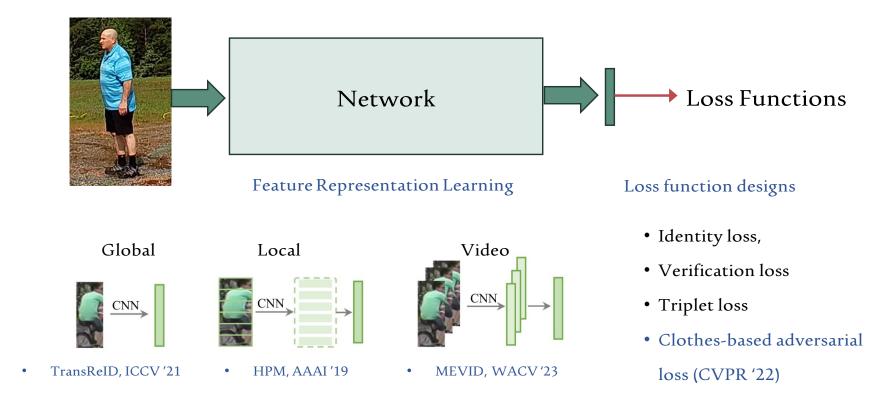
Person ReID Challenges

Person ReID challenges lie in learning a discriminative, robust visual representation against diverse variations (view/pose and appearance)

All people love yellow shirt and short pants?

Zheng et al, Deep learning for person re-identification. https://www.zdzheng.xyz/seminar/

Standard Person Re-ID System



Deep Learning for Person Re-Identification: A Survey and Outlook. TPAMI 2022 ²⁹ Michigan State University

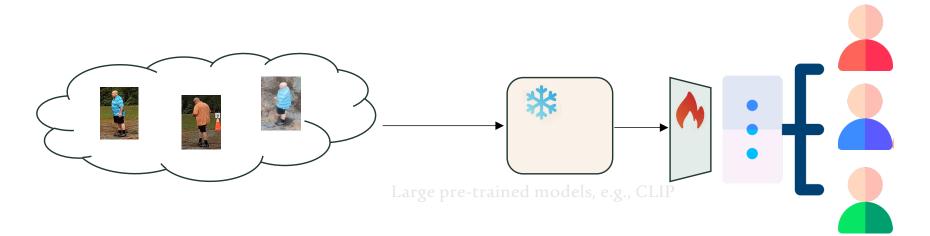
Bottleneck

Existing datasets have limited identities and variations

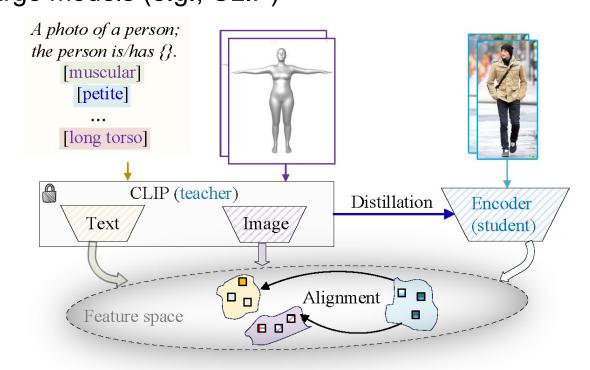
Dataset	Year	# ID	# Sample
Celeb-reID	2019	1,052	34,186
PRCC	2019	221	33,698
LTCC	2020	152	17,138
COCAS	2020	5,266	62,832
VC-Clothes	2020	512	19,060
DeepChange*	2021	1,082	171,352
LaST*	2022	10,860	224,721
CCVID	2022	226	347,833
WebFace260M	2018	4M	260M

30 Michigan State University

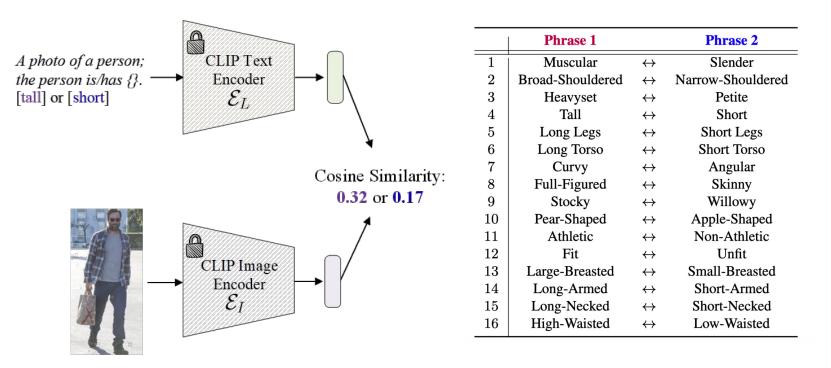
Enhancing feature robustness and generalization by distilling knowledge from pre-trained large models



Enhancing feature robustness and generalization by distilling knowledge from pre-trained large models (e.g., CLIP)



Distilling discriminative body shape representation from the CLIP model



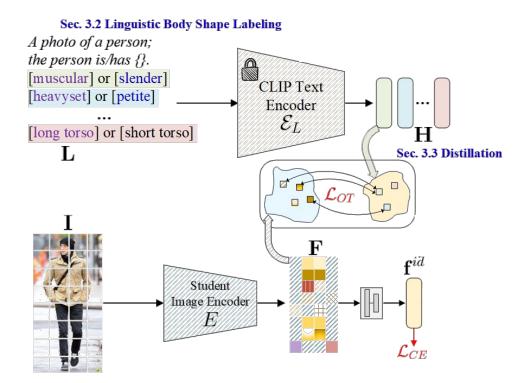
Labeling linguistic body description

Low-waisted Short-necked **Big-handed** Small-breasted Unfit Non-althletic Pear-shaped Willowy Skinny Angular Short torso Short legs Short Petite Narrow-shouldered Slender

Low-waisted Long-necked Small-handed Small-breasted Unfit Non-althletic Pear-shaped Willowy Skinny Curvy Short torso Short legs Short Petite Narrow-shouldered Slender

Our Method

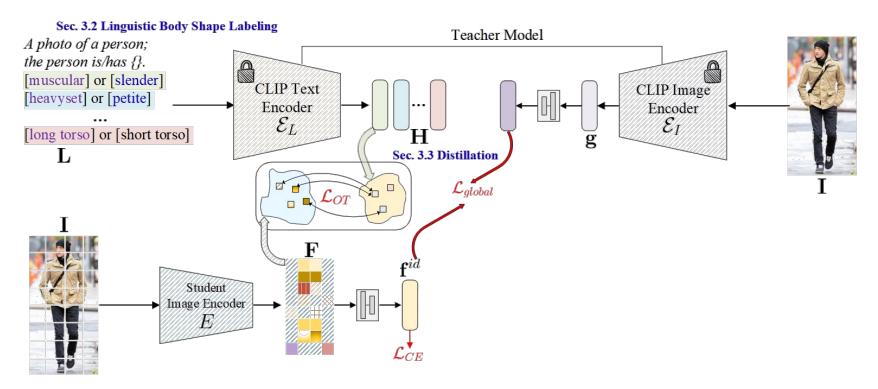
Distilling discriminative body shape representation from the CLIP model



Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

Our Method

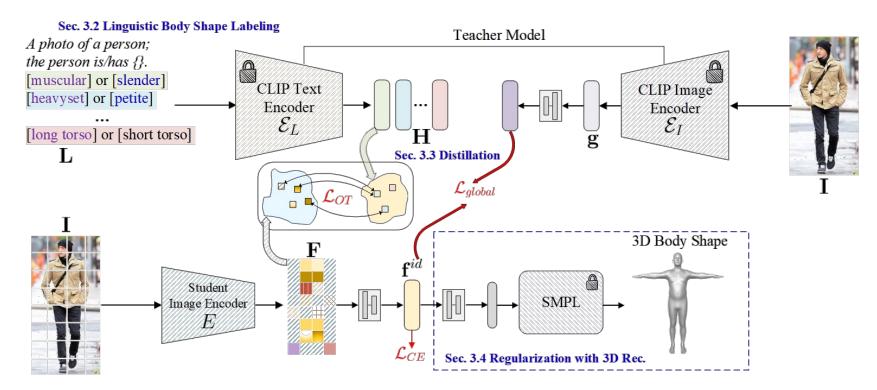
Distilling discriminative body shape representation from the CLIP model



Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

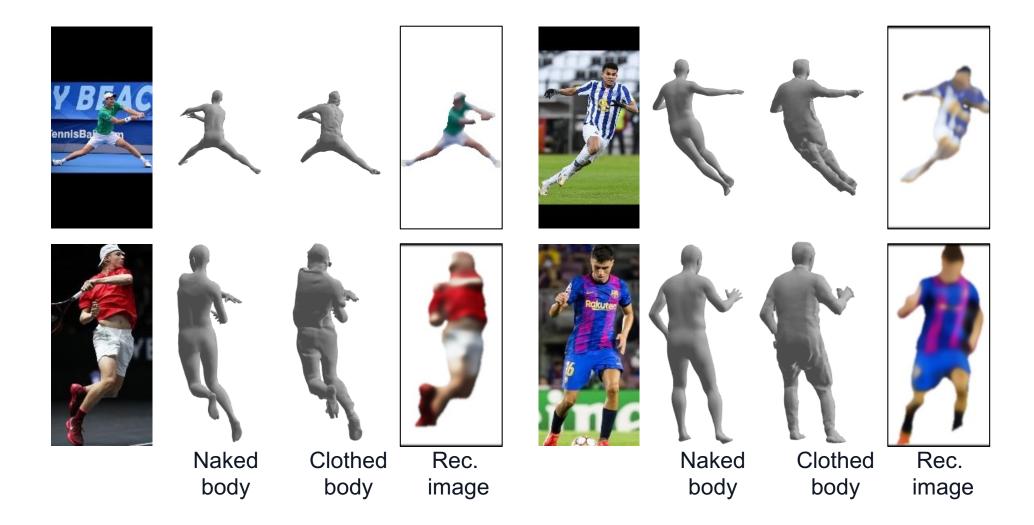
Our Method

Distilling discriminative body shape representation from the CLIP model



Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

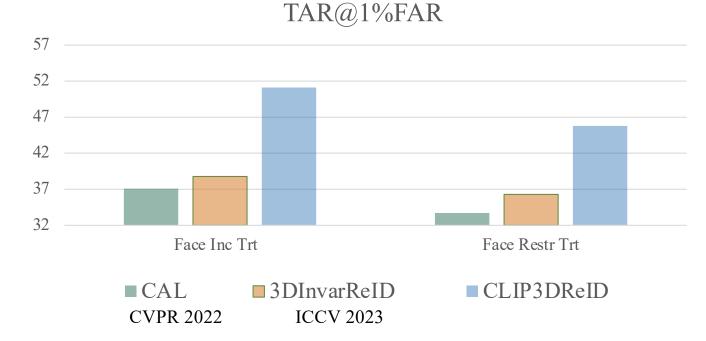
3D Body Reconstruction



Feng Liu, Minchul Kim, ZiAng Gu, Anil Jain, Xiaoming Liu, "Learning Clothing and Pose Invariant 3D Shape Representation for Long-Term Person Re-Identification," in ICCV 2023

Results

➢ Verification performance on BRIAR dataset



Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

Highlights

> 9. Unified human recognition

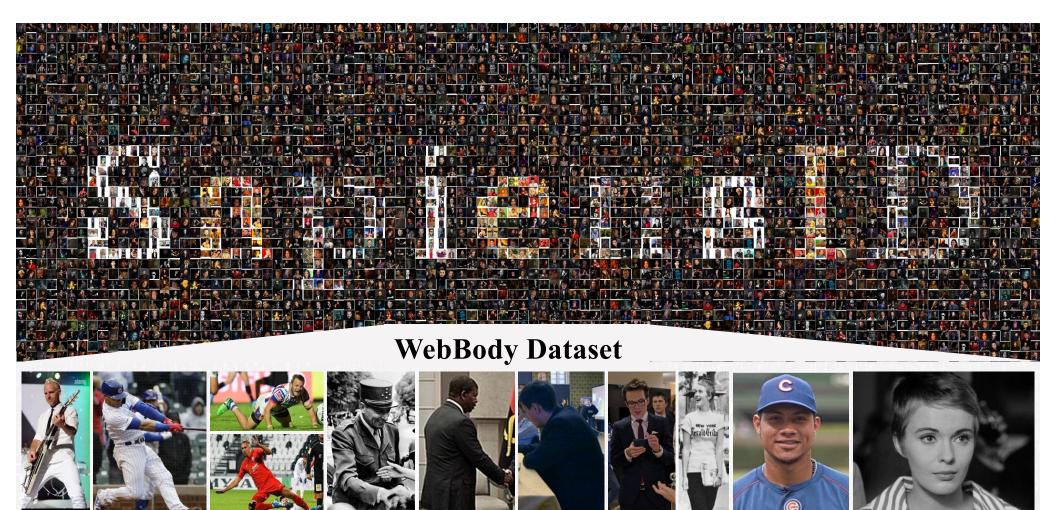
(under review)

Minchul Kim, Dingqiang Ye, Yiyang Su, Feng Liu, Xiaoming Liu, "SapiensID: Foundation for Human Recognition," under review in CVPR 2025.

Motivation

Can one model perform comparison across different body pose and visual area?

Minchul Kim, Dingqiang Ye, Yiyang Su, Feng Liu, Xiaoming Liu, SapiensID: Foundation for Human Recognition, under review in CVPR 2025

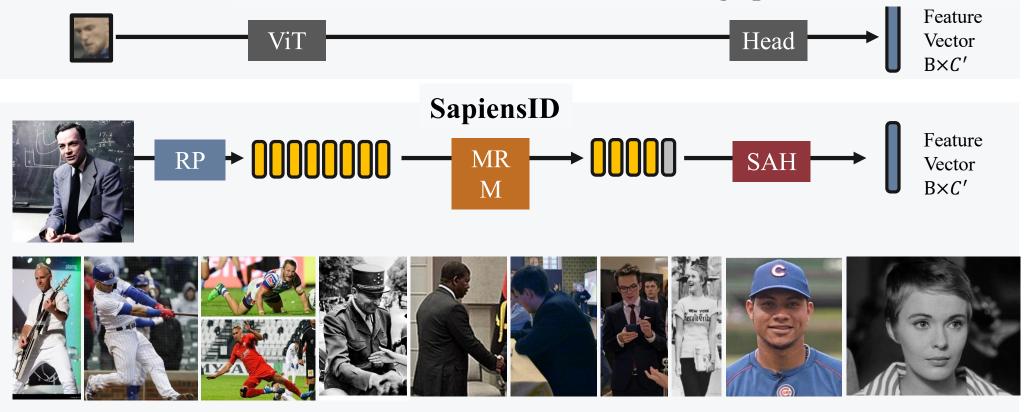


4 Million Labeled Images

263,920 Subjects

Large Pose–Scale Variation

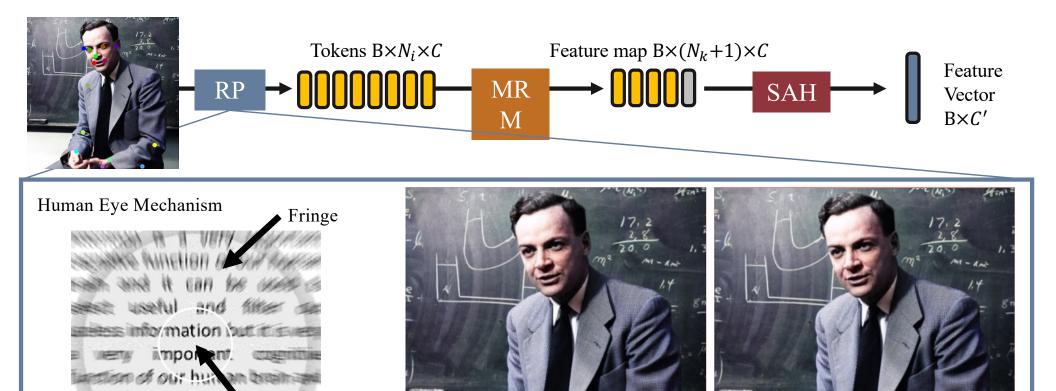
Previous Methods: Cannot handle large pose-scale variation



SapiensID proposes 3 things to handle large pose and scale variation.RP: Retina PatchMRM: Masked Recognition ModelSAH: Semantic Attention Pooling

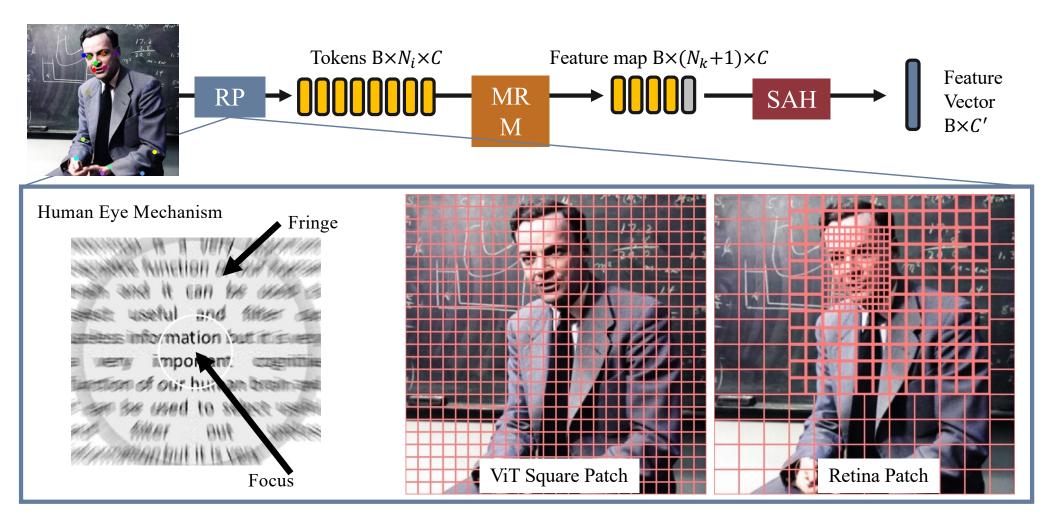
r out but it is xaa

Focus

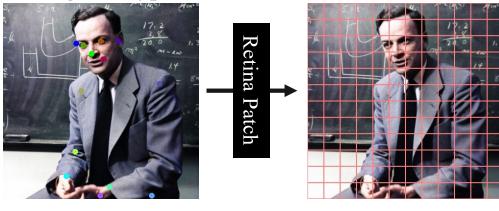


ViT Square Patch

Retina Patch

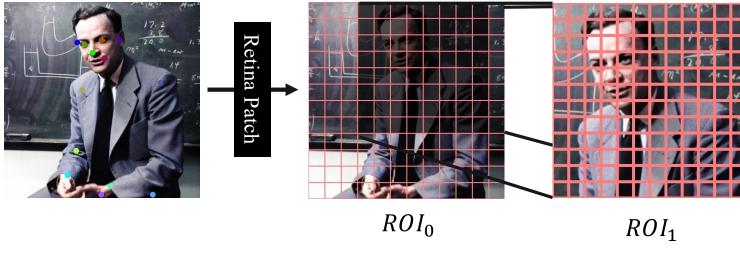


Image+Keypoints



*ROI*₀ Detected Person's Image

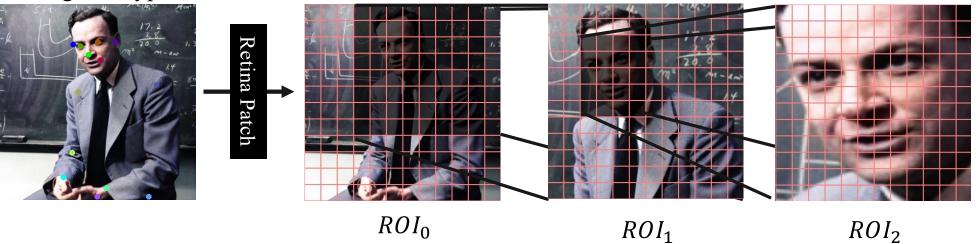
Image+Keypoints



Detected Person's Image

Upper Torso

Image+Keypoints

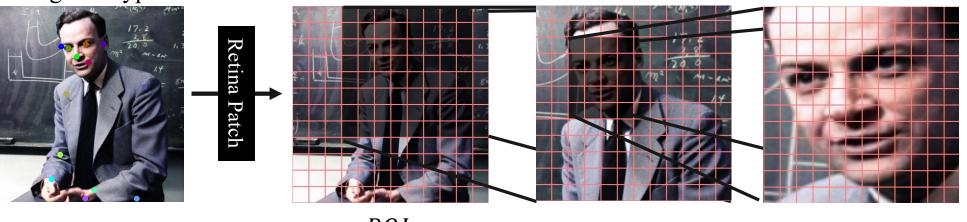


Detected Person's Image

Upper Torso

Face Area

Image+Keypoints

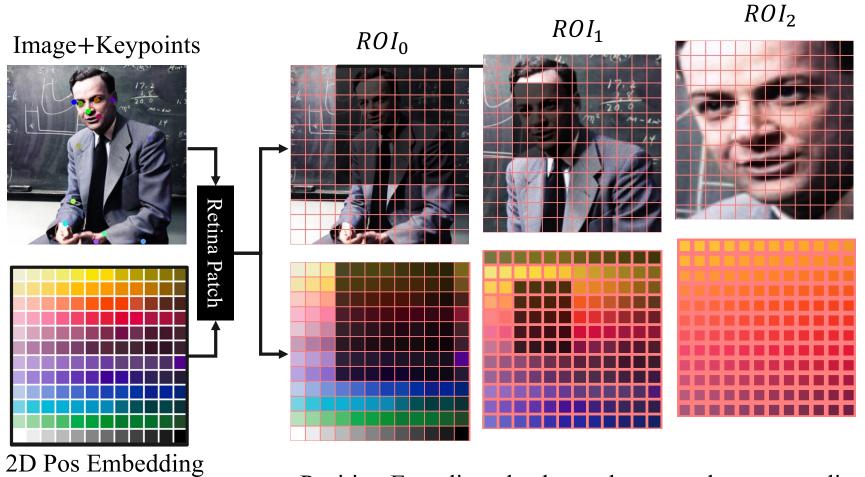


ROI₀

Detected Person's Image

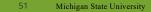
*ROI*₁ Upper Torso *ROI*₂ Face Area

Non-Overlapping Patches



Position Encoding also has to be created correspondingly.

 $(H \times W \times C)$

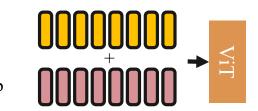


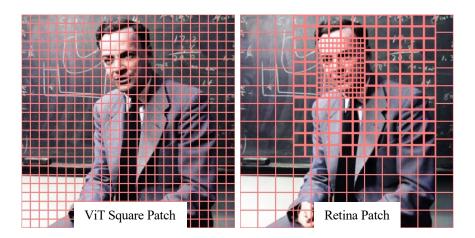
Retina Patch

Different sizes of patches are resized to a same sized and projected to tokens.

Tokens

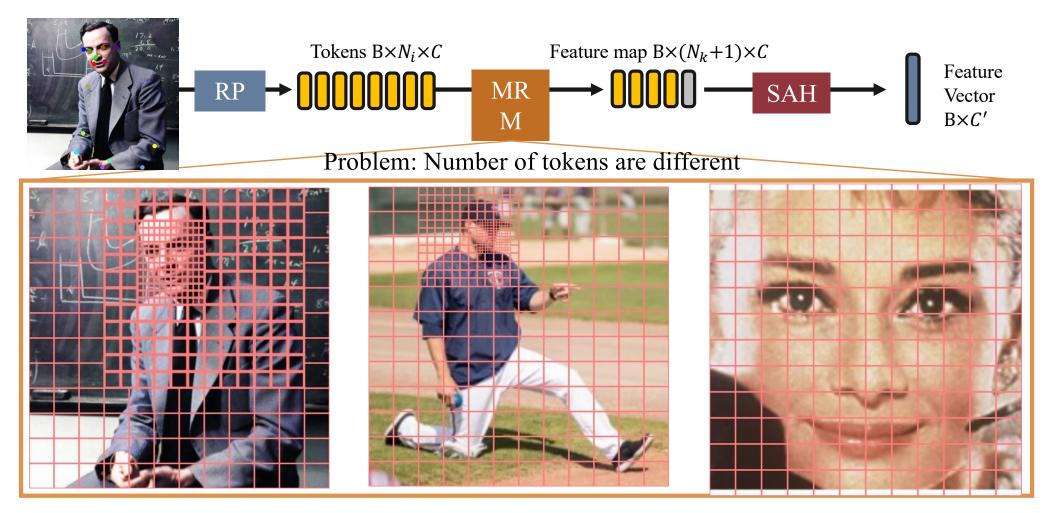
Pos Emb



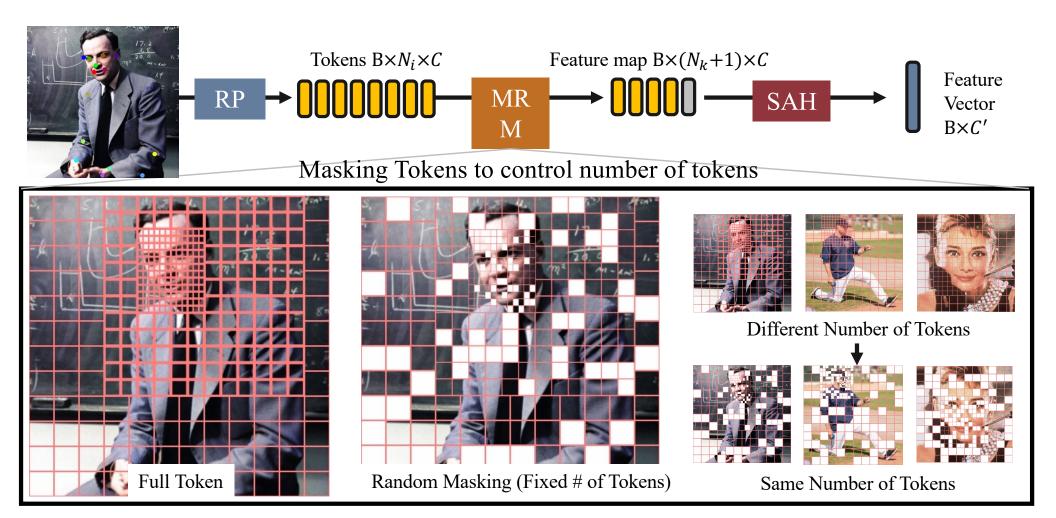


	All	Face	Whole Body ReID	
			Short	Long
SoTA Face and Body Models	67.97	97.63	61.49	44.90
(1) ViT	59.54	90.63	56.17	31.81
(2) ViT+RP	66.35	92.93	59.16	46.95
	71.67	95.84		

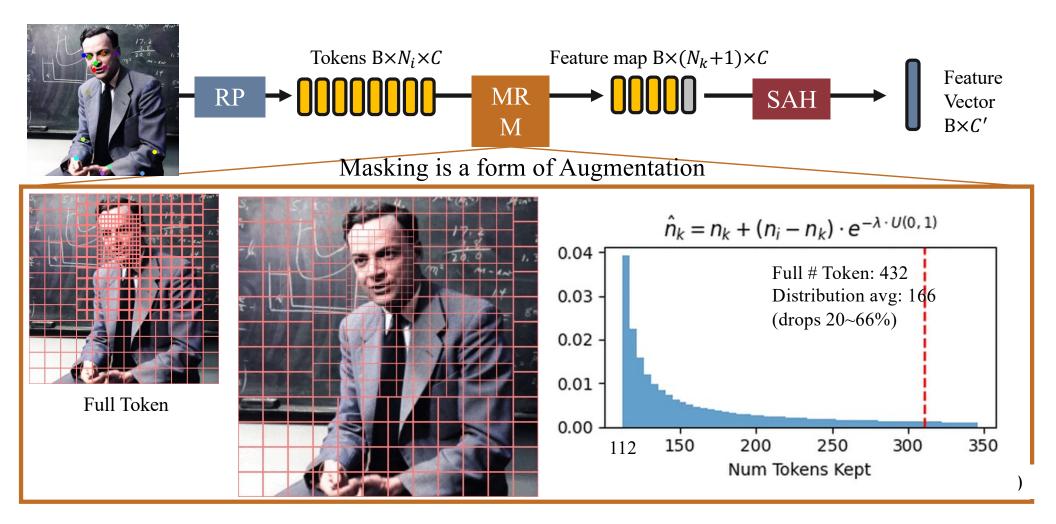
Performance Impact of using Retina Patch vs Square Patching



2. Masked Recognition Model



2. Masked Recognition Model

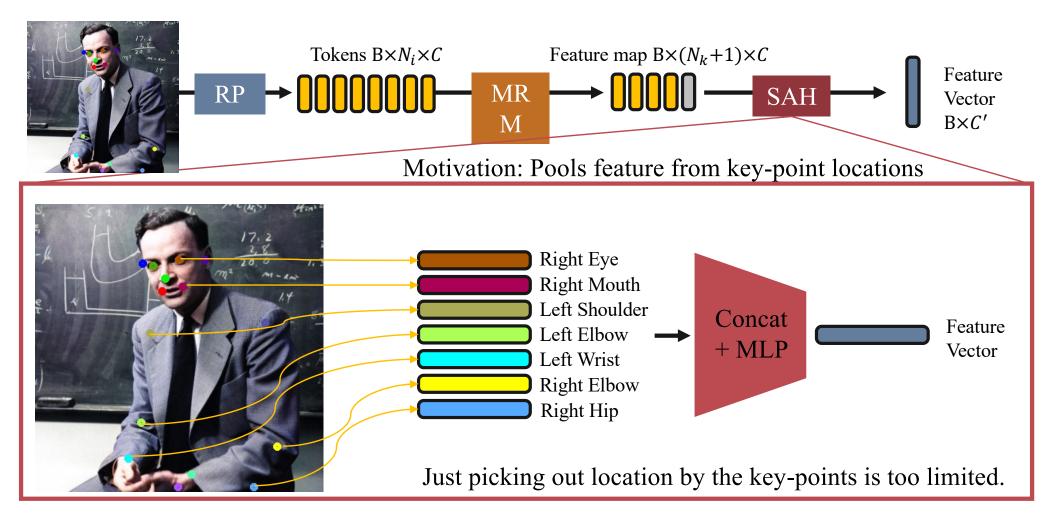


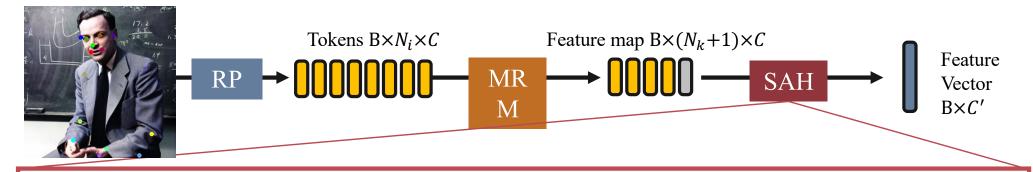
2. Masked Recognition Model

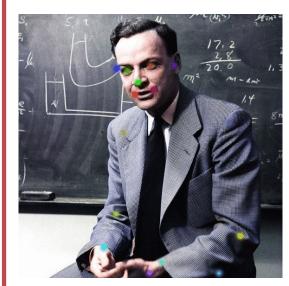


	All Face	Face	Whole Body ReID	
		Гасе	Short	Long
SoTA Face and Body Models	67.97	97.63	61.49	44.90
(1) ViT				
(4) ViT+RP+SAH (SapiensID)	78.67	97.31	73.05	66.30
(4) without Random Mask Ratio	74.39	95.95	69.58	57.64

Performance Impact of not using Random Masking Ratio







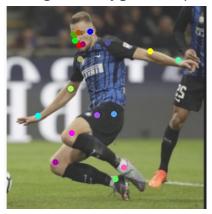
Learns Attention Size

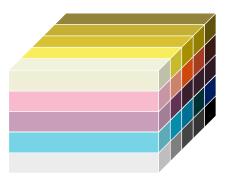


Learns Attention Offset Location

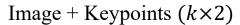
Attention for learning the appropriate size and offset locations from **keypoints**.

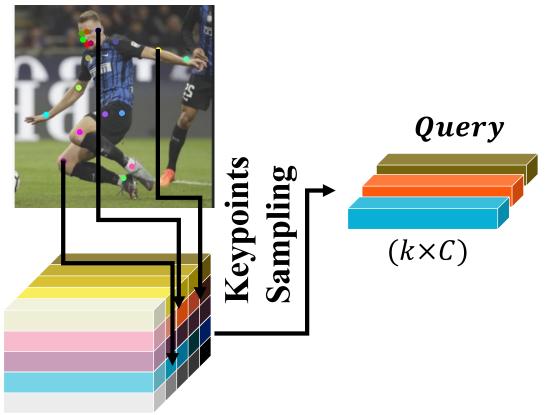
Image + Keypoints ($k \times 2$)





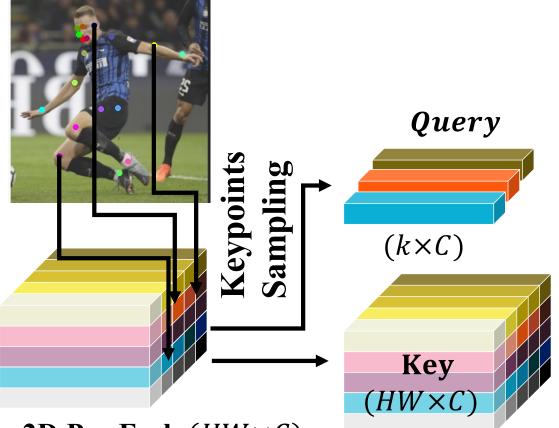
2D Pos Emb $(HW \times C)$





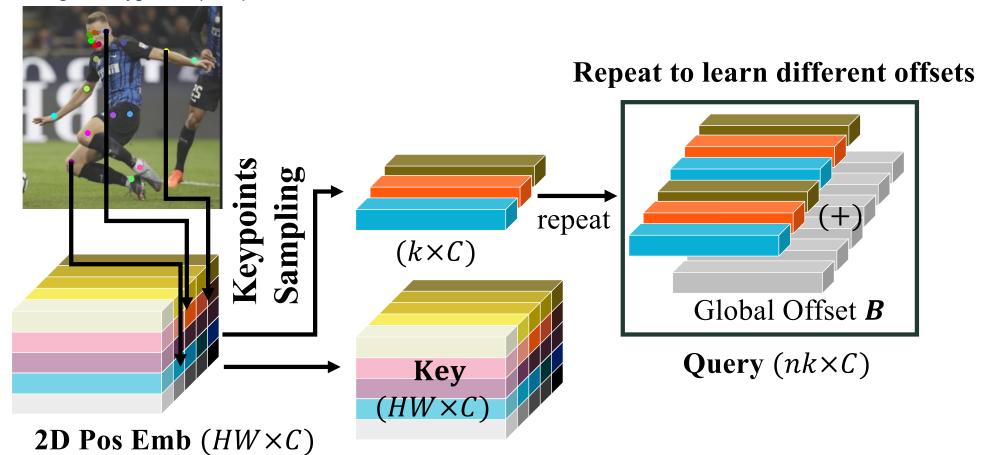
2D Pos Emb $(HW \times C)$

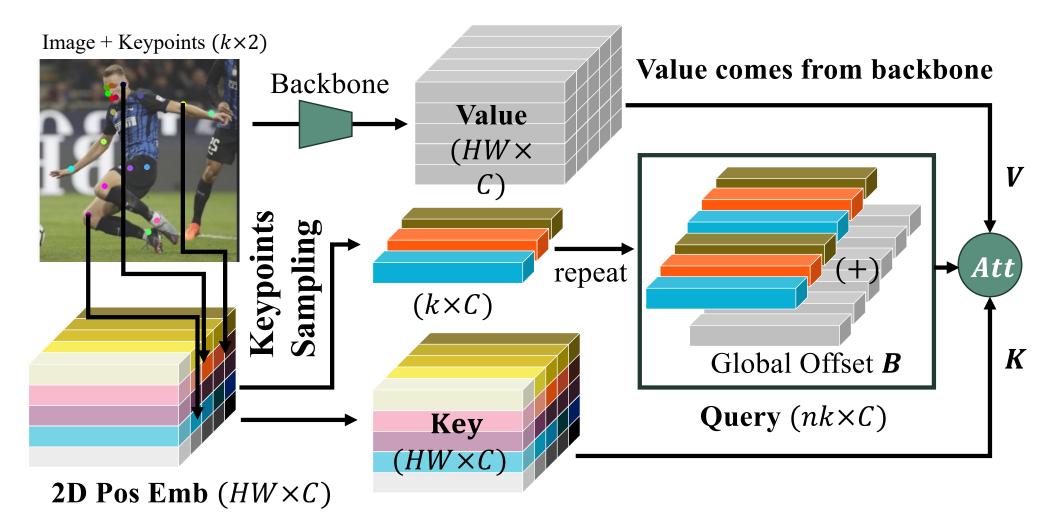
Image + Keypoints ($k \times 2$)



2D Pos Emb $(HW \times C)$

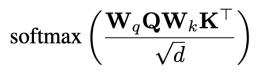
Image + Keypoints ($k \times 2$)

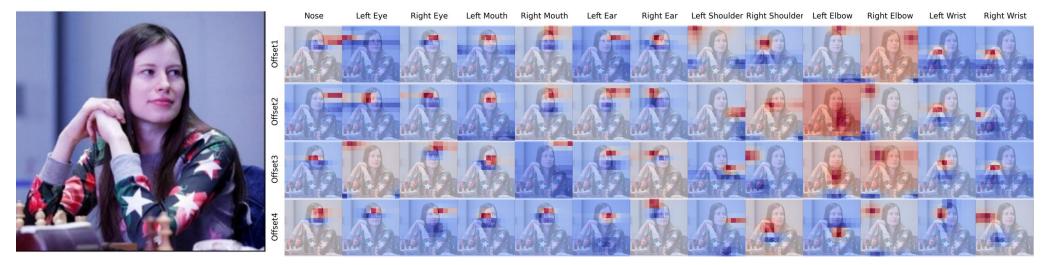




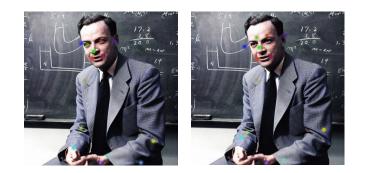
Query: Q = GridSample(PosEnc, keypoints) + BKey: K = PosEnc

Visualizing





Actual Learned Attention's Visualization It learns different scales and offsets as intended.



	All	Face	Whole Body ReID	
			Short	Long
SoTA Face and Body Models	67.97	97.63	61.49	44.90
(1) ViT	59.54	90.63	56.17	31.81
(2) ViT+RP	66.35	92.93	59.16	46.95
(3) ViT+SAH	71.67	95.84	72.63	46.55
(4) ViT+RP+SAH (SapiensID)	78.67	97.31	73.05	66.30
(4) without Random Mask Ratio	74.39	95.95	69.58	57.64

Performance Impact of Using Semantic Attention Pooling

Performance

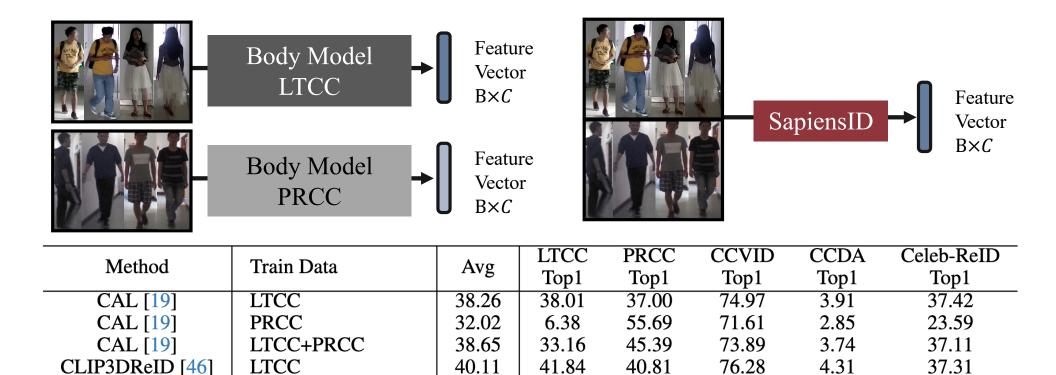
PRCC

LU4M+LTCC

LU4M+PRCC

WebBody4M (Ours)

WebBody4M (Ours)



6.63

25.00

29.08

22.70

42.35

62.40

26.14

38.05

54.93

78.75

69.32

41.64

45.73

88.34

88.72

33.06

33.07

31.16

52.11

72.89

CLIP3DReID [46]

HAP [74]

HAP [74]

HAP [74]

SapiensID (Ours)

3.17

4.56

5.13

28.80

61.84

23.82

30.28

37.79

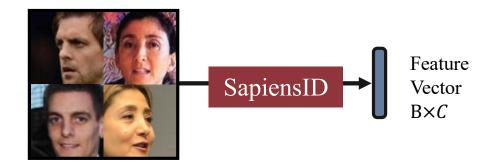
65.78

92.80

Performance

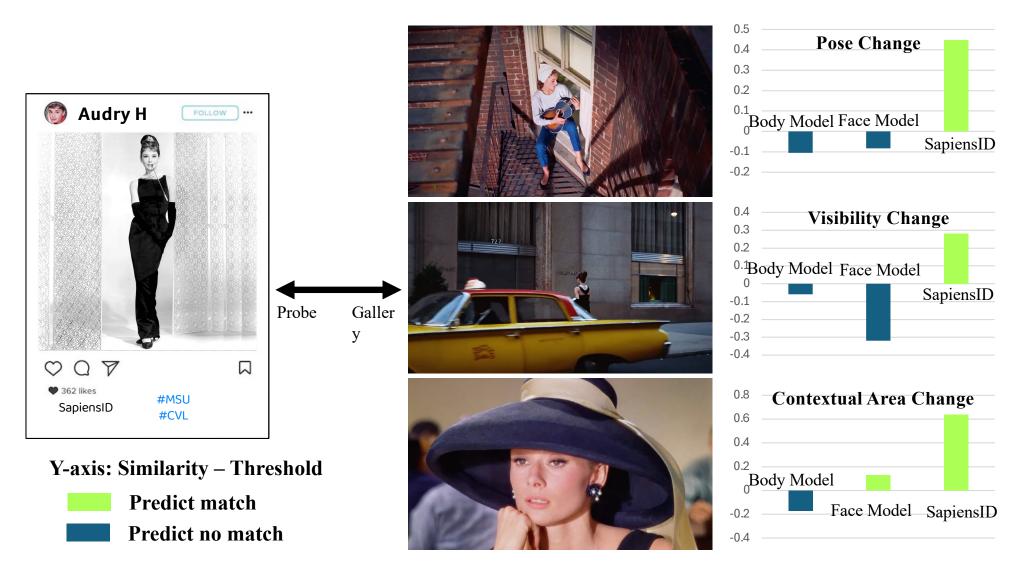
Face Model →

Feature Vector B×C



Method	AdaFace-ViT [32]	SapiensID (Ours)
Train Data	WebBody4M-FaceCrop	WebBody4M
LFW [24]	99.82	99.82
CPLFW [79]	95.12	94.85
CFPFP [54]	99.19	98.74
CALFW [80]	96.07	95.78
AGEDB [52]	97.97	97.33
Face Avg	97.63	97.31
LTCC [55]	21.70	72.01
Market1501 [77]	7.81	88.18
Body Avg	14.76	80.10
Combined Avg	56.19	89.80

Analysis

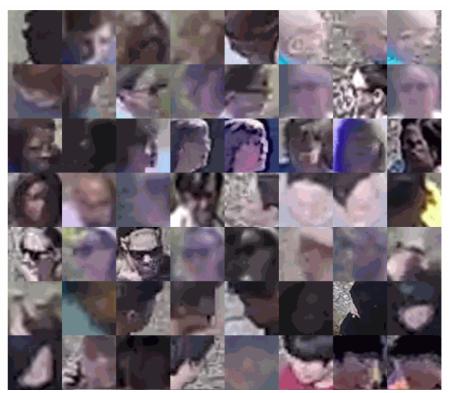


Success and Failure Cases

Case Analysis

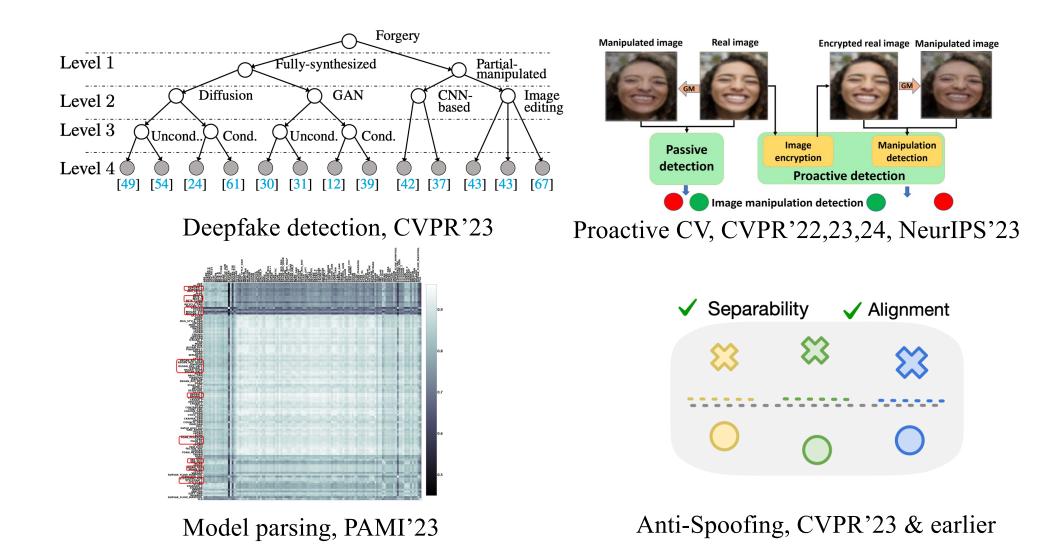
[08/5/24] FR2.2 (Rank20: 82.64)

wrong → correct



wrong \mapsto wrong

Trustworthy Biometrics



Future Directions

- Move from close-set to open-set
- Fusion of face, body, and gait
- Advance AIGC to push "gap to real" to zero
- Explainable recognition systems
- Build foundation models for biometrics

Conclusions

- There are many new research opportunities in person identification.
- Pre-trained foundation models could be enhanced for biometrics.
- Building a unified model for periocular/face/ body/gait leads to a foundation model for biometrics.

Thanks

Dr. Joseph Roth

Dr. Jamal Afridi Dr. Morteza Safdarnejad

Dr. Yousef Atoum

Dr. Amin Jourabloo

Dr. Luan Tran

Dr. Yaojie Liu Dr. Garrick Brazil

Minchul Kim

Abhinav Kumar

Shengjie Zhu

Dr. Feng Liu Andrew Hou Vishal Asnani

Yiyang Su

Xiao Guo

Questions?

http://cvlab.cse.msu.edu