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Successful Applications

Boarding in Airports Amazon One Palmprint



ldentification at a Distance

BRIAR: The subject in the figure consented to publication.




BRIAR

* One of the largest Biometrics projects in US
» Sponsored by IARPA

« 7 full teams and 2 partial teams in phase 1

* 5teams in phase 2

« 2teams in phase 3

» Advancing the SOTA in face, body, gait
recognition, multi-modality fusion, AIGC, and
Image restoration
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System Components

> 1. Generic matcher: > 6. 3D body matching¢
AdaFace (CVPR’22) (ICCV’23)

> 7 Large VISlon mOdels Fdeewsentatlon
(CVPR'24)

» 2. Domain adaption:
CFSM (ECCV’22) w VS

» 3. Video-based reco: > 8. CLIP 3D Re-ID
CAFace (NeurlPS’22) (CVPR24)

» 4. Landmark assisted reco
KP-RPE (CVPR’24) "

> 5. Synthetic tralnlng dataset ‘
(CVPR’23) [(CATAFY NN




Highlights

» 7. Large vision models [FEE =0
(CVPR'24)

» 8. CLIP 3D Re-ID
(CVPR’24)

> 4. Landmark assisted reco
KP-RPE (CVPR’24)




Highlights

> 4. Landmark assisted reco
KP-RPE (CVPR'24)

Minchul Kim, Feng Liu, Yiyang Su, Anil K. Jain, Xiaoming Liu, “KeyPoint Relative
Position Encoding for Face Recognition,” in CVPR 2024



Problem Definition

Vision Transformer

Attention
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Problem Definition

Vision Transformer

Attention
Score @ ﬁ

Relative Position Encoding:

Injects priors in pairwise
relationship.

i.e.) Nearby points are
more important.

A

ol K Ty

Problem:
It is same for all images.

Attention Mechanism




Problem Definition

Attention looks at all
combinations
*
Query
Attention
Score
A
Key
I K™ 7
A —
Key Scaled / Translated Key Pose Variation

Same Query-Key Locations does not represent same semantics




RPE[1] KP-RPE (Ours)
Image Space o Unique By; for different 4
* Query i
e
Bii for RPE X 2z
= f( 4 4)

(learned attention offset)

RPE becomes Keypoint (<) Dependent

. QiKj;1 + B,
Attention Score: €.; =
J /dk

[1] Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani. "Self-attention with relative position representations." arXiv
preprint arXiv:1803.02155 (2018).



KP-RPE for one query at *

1. Compute distance to query.
(We use quantized distance)

-i_

* Same color implies same distance




KP-RPE for one query at *

1. Compute distance to query.
(We use quantized distance)

2. Learn optimal values for
each distance as a function of
facial landmarks L

= Wi (L — (qx CIy))
= W, (L — (qx CIy))

-i_

Wi (L — (40 0,))

* Same color implies same distance B =W, — (g, dy))
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Attention
Score

.__@_H

Keypoint Relative Position Encoding

Injects priors in pairwise

relationship based on how they

are far from keypoints.

A

Q! KTy

i.e.) horizontal points are
important near the eyes.

Attention Mechanism




Low Quality Dataset

Method Backbone Train Data TinyFace [7] JB-S [29]
Rank-1 Rank-5 Rank-1 Rank-5
PFE [61] CNN64 MS1IMV2 [11] - - 50.16 58.33
ArcFace [11] ResNet101 MS1IMV2 [11] - - 57.35 64.42
URL [62] ResNet101 MSIMV2 [11] 63.89 68.67 59.79 65.78
CurricularFace [27] ResNet101 MSIMV2 [11] 63.68 67.65 62.43 68.68
AdaFace [11] ResNet101 MSIMV2 [11] 68.21 71.54 65.26 70.53
AdaFace [11] ResNet101 MS1IMV3 [13] 67.81 70.98 67.12 72.67
AdaFace O] SR MSIMV3 T3] i o S G GE .
AdaFace [30] ViT+KP-RPE MSIMV3 [13] 73.50 76.39 67.62 73.25
ArcFace [11] ResNet101 WebFace4M [91] 71.11 74.38 69.26 74.31
AdaFace [30] ResNet101 WebFace4M [91] 72.02 74.52 70.42 75.29
AdaFace [30] 1% WebFace4M [91]  74.81  77.58  71.90  77.09
AdaFace [30] ViT+iRPE WebFacedM [91] 74.92 77.98 71.93 77.14
AdaFace [30] ViT+KP-RPE  WebFacedM [91] 75.80 7849 7278 78.20
AdaFace [30] ResNet101 WebFace12M [91] 72.42 74.81 71.46 77.04
~ AdaFace [30] ViT+KP-RPE  WebFacel2M [91] 76.18 78.97 72.94 77.46

Large performance improvements in
Hard / Low quality Imagery Datasets.
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KP-RPE even shows robust to
image transformations unseen during training




Highlights

> 7. Large vision models =2

(CVPR’24) ‘;% ,'

You Want

Dinggiang Ye, Chao Fan, Jingzhe Ma, Xiaoming Liu, Shiqgi Yu, “BigGait: Learning
Gait Representation You Want by Large Vision Models,” in CVPR 2024



Problem of Previous Methods

Gait Recognition Pipeline

1) Gait Representation Learning 2) Gait Metric Learning

Upstream Gait Downstream
Model Representation Model

Segmentation  Pose ”»
& Recognition

Parsing | SMPL Model Result

X Too Many Upstream Models




1) Gait Representation 2) Gait Metric
Learning Learning

Upstream Gait Downstream

Model Representation Model

| | . - s

| Segmentation/ | Previous:

| Pose/Parsing/ | % _ ..

: SMPL Model : \ Task-specific One Large \ilSlOIl Model
| Estimation | X Supervised B

| |

Multiple Specific Models

Find Re%sentation

l €T
arge -

Ours:

v All-purpose
% Self-supervised

Vision
Model

You Want

The idea of BigGait



Architecture

a) Mask Branch @ Mask Selection
@ Softmax © Concatenate

= Frozen

b) Appearance

¢) Denoising
Branch

[ DINOv2 ] [ Gait Representation Extractor (GRE) ] [

The architecture of BigGait

Ye et.al., BigGait: Learning Gait Representation You Want by Large Vision Models, CVPR, 2024.




Architecture (Mask Branch)

DINOvV2 CLIP SAM

d
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% — | ENCODER
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+ |
- \ S
INPUT LATENT FEATURE RECONSTRUCTED
(REPRESENTATION) INFESE

Mask Branch is An Unsupervised Auto-Encoder

: + Training Steps
T
4 ! % ] 1 : + Binarization
! y 9 & Closing
P -‘ M, My merm m

4

10 o

PCA/Mask Visualization of feature from
multi-LVMs Red Region Extracting

Oquab, Maxime, et al. Dinov2: Learning robust visual features without supervision. Arxiv, 2023.
Radford, Alec, et al. Learning transferable visual models from natural language supervision. ICML, 2021.
Kirillov, Alexander, et al. Segment anything. ICCV, 2023.




Architecture (Appearance/ Denoising Branch)

All-purpose feature

Body Shape feature f,
with Clothing Noise

Skeleton-like Feture f;,
without Clothing Noise

Human Parsing f;, |

Smoothness Loss Lgy,p
Mask m

Diversity Loss L,

\
fae = softmax(Ege(fm)) : - ' . ‘
pi = sum( fj, sum(f, Lg;i», = logC + E pilogp;,
| Lsmo —_— |SObelx * fde| . |SObely - fde’: ( a )/; ( d ) a d —
.




Visualization

BigGait (Ours) Traditional BigGait (Ours) Traditional
Gait Representation Gait Representation Gait Representation Gait Representation
fae Input  Skeleton Silhouette Parsing fae m fm Skeleton Silhouette Parsing

fﬁ*“

L
L]
4]

One Large Vision Model = Multiple Traditional Gait Extraction Models

m fm




Experiment

Performance on CCPG Dataset

(Rank-11)

GaitBase SkeletonGait++ PSTA AP3D Ours AP3D[16] PSTA[43] PiT[45] fap fae  [rusion
CVPR'23  AAAI'24 ICCV21  ECCV'20 CVPR24 E———— BigGait (Ours)

Activation Map Visualization



Highlights

> 9. CLIP 3D Re-ID
(CVPR’24)

Feng Liu, Minchul Kim, Zhiyuan Ren, Xiaoming Liu, “Distilling CLIP with Dual
Guidance for Learning Discriminative Human Body Shape Representation,” in
CVPR 2024



Whole-Body Matching

» Person re-identification (static, body characteristics)

> Gait recognition (dynamic, walking patterns)

Person Re-ID Gait Recognition

v

[Long-Term Cloth-Changing Person Re-identification. ACCV 2020. [2] https://github.com/ShigiYu/OpenGait

ﬁ CVL Computer Vision Lab


https://github.com/ShiqiYu/OpenGait

Person RelD Challenges

> Person RelD challenges lie in learning a discriminative, robust visual

representation against diverse variations (view/pose and appearance)

All people love yellow shirt
and short pants?

Zheng et al, Deep learning for person re-identification. https://www.zdzheng.xyz/seminar/

G CVL Computer Vision Lab



Standard Person Re-ID System

Network ‘ I—> Loss Functions

Feature Representation Learning Loss function designs
_ * Identity loss,
Global Local Video
* Verification loss
fal
CNN ['j CNN i * Triplet loss
_ e Ly P
-y .
S * Clothes-based adversarial
*  TransRelD, ICCV 21 «  HPM, AAAI'19 «  MEVID, WACV 23 loss (CVPR '22)

Deep Learning for Person Re-ldentification: A Survey and Outlook. TPAMI 2022

29 Michigan State University

G CVL Computer Vision Lab



Bottleneck

>Existing datasets have limited identities and variations

Dataset Year #1D # Sample
S 01 | 105 YRTT: lywﬁxwwgmm
PRCC 2019 221 33,698 g
LTCC 2020 152 17,138 i : : ! ;
COCAS 2020 5,266 62,832
VC-Clothes 2020 512 19,060
DeepChange* 2021 1,082 171,352
LaST* 2022 10,860 224,721
CCVID 2022 226 347,833
WebFace260M 2018 4M 260M

30 Michigan State University

ﬁ CVL Computer Vision Lab



Motivation

>Enhancing feature robustness and generalization by distilling knowledge from

pre-trained large models




Motivation

>Enhancing feature robustness and generalization by distilling knowledge from

pre-trained large models (e.g., CLIP)

A photo of a person; ,
the person is/has {}.
[muscular]
[petite]

[long torso]

v

CLIP (teacher)

Distillation

(student)

G CVL Computer Vision Lab



Motivation

» Distilling discriminative body shape representation from the CLIP model

A photo of a person;
the person is/has {}. —
[tall] or [short]

CLIP Image

CLIP Text

Encoder

Er

Cosine Similarity:

0.32 or 0.17

Phrase 1 Phrase 2
1 Muscular e Slender
2 | Broad-Shouldered <> Narrow-Shouldered
3 Heavyset > Petite
4 Tall - Short
5 Long Legs > Short Legs
6 Long Torso & Short Torso
7 Curvy & Angular
8 Full-Figured &~ Skinny
9 Stocky > Willowy
10 Pear-Shaped > Apple-Shaped
11 Athletic > Non-Athletic
12 Fit & Unfit
13 Large-Breasted & Small-Breasted
14 Long-Armed ~ Short-Armed
15 Long-Necked & Short-Necked
16 High-Waisted & Low-Waisted

G CVL Computer Vision Lab




Motivation

» Labeling linguistic body description

Low-waisted
Long-necked
Small-handed
Small-breasted
Unfit
Non-althletic
Pear-shaped
Willowy
,,}!.,—Skinny

Curvy

Short torso
Short legs
Short

Petite
Narrow-shouldered
Slender

m Low-waisted
: Short-necked
Big-handed
—Small-breasted

Non-althletic
|Pear-shaped
Willowy
Skinny
Angular
Short torso
Short legs
Short

Petite
Narrow-shouldered
Slender

G CVL Computer Vision Lab



Our Method

>Disti|ling discriminative body shape representation from the CLIP model

Sec. 3.2 Linguistic Body Shape Labeling
A photo of a person;
the person is/has {}.
[muscular] or [slender]
[heavyset] or [petite]

CLIP Text

—> Encoder

[long torso] or [short torso]

L

!

| %
P

=
—

—— R PE
<mwl) T
d & :

I el =

Image Encoder

¥ Lhd

Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

G CVL Computer Vision Lab




Our Method

» Distilling discriminative body shape representation from the CLIP model

Sec. 3.2 Linguistic Body Shape Labeling Teacher Model
A photo of a person;
the person is/has {}. |
[muscular] or [slender]
[heavyset] or [petite]

CLIP Text
Encoder

&L

l / Sec 3.3 Distillation s
g \

CLIP Image
Encoder

Er

—"

[long torso] or [short torso]

L
. (//r;/)u[
1
CARARA K
TN f”’
! \ft‘ -\%i!%“ Student .i"{?
3 :
=L Image Encoder f
| | § E 52
T Lcr
| e

Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

G CVL Computer Vision Lab



Our Method

» Distilling discriminative body shape representation from the CLIP model

Sec. 3.2 Linguistic Body Shape Labeling
A photo of a person;
the person is/has {}.
[muscular] or [slender]
[heavyset] or [petite]

Teacher Model

CLIP Text
—> Encoder

Sec 3.3 Distillation s
\ '

(//r;/)u[

CLIP Image
Encoder

Er

[long torso] or [short torso]

L

!

3D Body Shape

2

% -4

Sec. 3.4 Regularization with 3D Rec.

g k|
RSP

<l VT
i I

F
&

Image Encoder

E

11-+¢ e s

¥ Lhd

Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

G CVL Computer Vision Lab




3D Body Reconstruction

Naked Clothed Rec. | Naked Clothed Rec.
body body image body body image

Feng Liu, Minchul Kim, ZiAng Gu, Anil Jain, Xiaoming Liu, “Learning Clothing and Pose Invariant 3D Shape Representation for Long-
Term Person Re-ldentification,” in ICCV 2023

G CVL Computer Vision Lab



Results

» Verification performance on BRIAR dataset

TAR@1%FAR
57
52
47
42
37 p—
32
Face Inc Trt Face Restr Trt
CAL @ 3DInvarRelD CLIP3DReID
CVPR 2022 ICCV 2023

Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation, CVPR 2024

G CVL Computer Vision Lab




Highlights

> 9. Unified human recognltlon
(under review) L

Minchul Kim, Dinggiang Ye, Yiyang Su, Feng Liu, Xiaoming Liu, “SapiensID:
Foundation for Human Recognition,” under review in CVPR 2025.



Motivation

©oQvV N

@ 362 likes #MSU
iensl
SapiensID #CVL

Can one model perform comparison across different body pose and visual area?

Minchul Kim, Dingqiang Ye, Yiyang Su, Feng Liu, Xiaoming Liu, SapiensID: Foundation for Human Recognition, under review in CVPR 2025

G CVL Computer Vision Lab



v

RS yebBody Dataset e

4 Million Labeled Images 263,920 Subjects Large Pose—Scale Variation




Overview

Previous Methods: Cannot handle large pose-scale variation
Feature

- 00000000 —JEg— 00000 —gmmn— | 55

ViT m_’ l Vector

BxC'’

SapiensID

BxC'

SapiensID proposes 3 things to handle large pose and scale variation.

RP: Retina Patch

MRM: Masked Recognition Model SAH: Semantic Attention Pooling

G CVL Computer Vision Lab




1. Retina Patch

Tokens BXN; XC Feature map BX(N,+1)XC

00000 —EE—

Feature
Vector
BxC'

Human Eye Mechanism

Fringe
SN | %/HM/ e
S R WY I L

. W R AN e e o
aast @'l and e =
= piyymation 't © o
E mE=y AMPONRIY.  CIETwDEE
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1. Retina Patch

Tokens BXN; XC
Feature
Vector

Feature map BX(Ny+1)XC
| BxC’

Human Eye Mechanism

Fringe
USRI B | !/W‘f/f,/,
SR WA e B
k. W N N e e s
st el and e e
= iy mation It T o

E =y AMPONRINY. CIETDEE

© g e el 0 %

wds . AR Ak T TEN B
s RN | RN b

A Retina Patch

ﬁ CVL Computer Vision Lab



1. Retina Patch

Image+Keyp01nts

)
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ROI,

Detected Person’s Image




1. Retina Patch

Image+Keypoints

P~ AEEREEE
7 AEEMean
SRS
BZA Lo AEGEEEE
TR TR
mmi - EENE AN

)
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(Y
)
o
ﬁ
o
=

B ENT IEZFAE
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EHi. HI /EpEZC8

RO, ROIL,

Detected Person’s Image Upper Torso




1. Retina Patch

Image+Keypoints

q &
‘N
' B =
S | ol | Yy N
3 & SN
s el .l" | F B \Il !!"""llll
BE| . BT LeEEEE
| ‘ - N
ROl RO, ROI,
Detected Person’s Image Upper Torso Face Area

G CVL Computer Vision Lab




1. Retina Patch

Image+Keypoints

Al [ [
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ROI, ROIL, ROI,

Face Area
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1. Retina Patch

Image+Keypoints

2D Pos Embedding
(HXWXC)

=
(@]
=
=
o
g
o
&
(@)
=

—p

ROI,

1!2011

s | | .
R e ~+a

Position Encoding also has to be created correspondingly.

G CVL Computer Vision Lab




1. Retina Patch
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Different sizes of patches are resized to a same sized and projected to tokens.

Tokens
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e 00000000




1. Retina Patch

Whole Body RelD
All Face Short }Ii,ong
SoTA Face and Body Models 67.97 97.63 61.49 44.90
(1) viT 59.54 | 90.63  56.17 31.81
(2) ViT+RP 66.35 92.93  59.16 46.95

Performance Impact of using Retina Patch vs Square Patching




1. Retina Patch

Tokens BXN;xC Feature map BX(Ny+1)XC Featt
eature
8- 000000007 — 00000 —— || =5

Problem: Number of tokens are differer

L2

:

XY




2. Masked Recognition Model

Tokens BXN;xC Feature map BX(Ny+1)XC Feat
cature
- 000000007 — 00000 —fsm— | =

Maskmg Tokens to control number of tokens

I l

Random Masking (leed # of Tokens)

™
!l H!:ﬂl==l I 7
Different Number of Tokens

) I T
iy Jﬂi YHE ~E
~ |
Iﬁ ﬁ ﬁgl‘ﬁ ﬂ

Same Number of Tokens




2. Masked Recognition Model

Tokens BXN;XC Feature map BX(N,+1)XC
Feature
00000 —Em— || o
BxC’

N = ng + (n; — ny) - e~2V0D)

0.04 -

Full # Token: 432
0.03 A

(drops 20~66%)
0.02 A

L
|
|
Distribution avg: 1(16
|
1
|
1
|
1
I
1

Full Token

112 150 200 250 300 350
Num Tokens Kept




2. Masked Recognition Model

\n

1‘1" 24!
554" ||

;l!l'!ll

‘ [ | Sl ] |
‘][EEZ*IIII
Whole Body RelD
All Face Short Long
SoTA Face and Body Models 67.97 97.63 61.49 44.90

(4) ViT+RP+SAH (SapiensID)
(4) without Random Mask Ratio

78.67 | 97.31  73.05 66.30
7439 | 9595  69.58 57.64

Performance Impact of not using Random Masking Ratio




3. Semantic Attention Pooling

Tokens BXN; XC Feature map BX(N,+1)XC

s~ (000000C 00000

Motivation: Pools feature from key-point locations

Feature
Vector
BxC'

@D Right Eye
@D Right Mouth
— Left Shoulder

) Left Elbow =i
{ ) Left Wrist
{ ) Right Elbow

™ Right Hip

s R

Vector

Just picking out location by the key-points is too limited.

G CVL Computer Vision Lab



3. Semantic Attention Pooling

Tokens BXN; XC

s~ (000000C

Feature map BX(Ny+1)XC

Feature
Vector
BxC'

Attention for learning the
appropriate size and offset locations
from keypoints.

Learns Attention Size Learns Attention Offset Location

G CVL Computer Vision Lab



3. Semantic Attention Pooling

Image + Keypoints (kX2)

2D Pos Emb (HW XC)




3. Semantic Attention Pooling

Image + Keypoints (kX2)

Query

“

A

->='!

(kxC)

= )}
e
= |
(B
=
S
0 p

Keypoihts

2D Pos Emb (HW XC)




3. Semantic Attention Pooling

Image + Keypoints (kX2)

Keypoihts
Sampling

ARV

2D Pos Emb (HW XC)




3. Semantic Attention Pooling

Image + Keypoints (kX2)

Keypoihts
Sampling

Repeat to learn different offsets

2D Pos Emb (HW XC)

=|_'!

e —.
—
— (+)

D ',
Global Offset B

'!

/

Query (nkxC)




3. Semantic Attention Pooling

Image + Keypoints (kX2)

| Backbone Value comes from backbone

e %
2 e =_'i 7

| & —_—

= = —' (+ '

B E— /

i Global Offset B K

Query (nkxC)

2D Pos Emb (HW XC)




3. Semantic Attention Pooling

Visualizing

W, QWK )

Query: Q = GridSample(PosEnc, keypoints) + B
Key: K = Posknc softmax( 7

hig=s Left Eye Right Eye  Left Mouth  Right Mouth  Left Ear Right Ear  Left Shoulder nght Shoulder Left Elboow  Right Elbow  Left Wrist  Right Wrist
‘__'} . ; G e ' ",i g P p
N\ - i S E IA % T .’zi :
¥ m‘f‘*y b“__ r‘# u‘i*; !5’*; hi*g", -

Offset3 Offset2 Offsetl

Offset4

Actual Learned Attention’s Visualization
It learns different scales and offsets as intended.

G CVL Computer Vision Lab



3. Semantic Attention Pooling

Whole Body RelD

All Face Short }I:ong
SoTA Face and Body Models 67.97 97.63 61.49 44.90
(1) viT 59.54 | 90.63  56.17 31.81
(2) ViT+RP 66.35 92.93  59.16 46.95
(3) ViT+SAH 71.67 95.84  72.63 46.55
(4) ViT+RP+SAH (SapiensID) 78.67 | 9731  73.05 66.30
(4) without Random Mask Ratio 74.39 95.95 69.58 57.64

Performance Impact of Using Semantic Attention Pooling




Performance

Body Model f}:‘;‘ie
LTCC BxC

Feature
SapiensID Vector

BxC
Body Model ] Feature
Vector
PRCC BxC
. LTCC PRCC CCVID CCDA  Celeb-RelD
Method Train Data Avg Topl Topl Topl Topl Topl
CAL [19] LTCC 38.26 38.01 37.00 74.97 3.91 37.42
CAL [19] PRCC 32.02 6.38 55.69 71.61 2.85 23.59
CAL [19] LTCC+PRCC 38.65 33.16 45.39 73.89 3.74 37.11
CLIP3DRelID [46] | LTCC 40.11 41.84 40.81 76.28 4.31 37.31
CLIP3DRelID [46] | PRCC 33.06 6.63 62.40 69.32 3.17 23.82
"""""" HAP[74] | LUAM+LTCC | 33.07 | 25.00 26.14  41.64 456 3028
HAP [74] LU4M+PRCC 31.16 29.08 38.05 45.73 5.13 37.79
HAP [74] WebBody4M (Ours) | 52.11 22.70 54.93 88.34 28.80 65.78
""" SapiensID (Ours) | WebBody4M (Ours) | 72.89 | 4235 78.75 8872  61.84 9280

G CVL Computer Vision Lab



Performance

Feature Feature
-> Vector SapiensID Vector
BxC BxC

Method AdaFace-ViT [32] SapiensID (Ours)
Train Data WebBody4M-FaceCrop WebBody4M

LFW [24] 99.82 99.82
CPLFW [79] 95.12 94.85
CFPFP [54] 99.19 98.74
CALFW [80] 96.07 95.78
AGEDRB [52] 97.97 97.33

.......... Face Avg | eggs gy g
LTCC [55] 21.70 72.01
Market1501 [77] 7.81 88.18

......... Body Ava | G g0
Combined Avg 56.19 89.80




Analysis

Probe
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Success and Failure Cases

Case Analysis
[08/5/24] FR2.2 (Rank20: 82.64)

wrong — correct wrong — wrong




Trustworthy Biometrics

Forgery

Manipulated image Real image Encrypted real image Manipulated image

Level 1 ully-synthesized
T s SN S
Level 2 Image |'
Level 3
____________________________________________________________________________________________________ Passive Image Manipulation
. encryption detection
Level 4 detection

[49] [54] [24] [611 [30] [31] [12] [39] [42] [37] [43] [43] [67] Ekoactelictection

"‘ Image manipulation detectiOn. 4 .
Deepfake detection, CYPR 23 Proactive CV, CVPR’22,23,24, NeurlPS’23

v/ Separability  / Alignment

g ey — . -

e rmem e o b

!
|
"'1
,. |.|t

el am [
S e - e

Model parsing, PAMI’23 Anti-Spoofing, CVPR’23 & earlier




Future Directions

« Move from close-set to open-set

* Fusion of face, body, and gait

» Advance AIGC to push “gap to real” to zero
 Explainable recognition systems

* Build foundation models for biometrics




Conclusions

* There are many new research opportunities in
person identification.

e Pre-trained foundation models could be
enhanced for biometrics.

* Building a unified model for periocular/tace/
body/gait leads to a foundation model for
biometrics.
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Questions?

http://cviab.cse.msu.edu




