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Abstract—Researchers have recently discovered several interesting, self-organized regularities from the World Wide Web, ranging

from the structure and growth of the Web to the access patterns in Web surfing. What remains to be a great challenge in Web log

mining is how to explain user behavior underlying observed Web usage regularities. In this paper, we will address the issue of how to

characterize the strong regularities in Web surfing in terms of user navigation strategies, and present an information foraging agent-

based approach to describing user behavior. By experimenting with the agent-based decision models of Web surfing, we aim to explain

how some Web design factors as well as user cognitive factors may affect the overall behavioral patterns in Web usage.

Index Terms—Web log, Web mining, power law, regularities, user behavior, decision models, information foraging, autonomous

agents, agent-based simulation.
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1 INTRODUCTION

THEcontents and services on the World Wide Web (or the
Web) have been growing at a very rapid rate. Until

now, there may have existed over one billion Websites on
the Web at anytime, if projected based on the studies
reported in [1], [2]. Viewing the Web as a large directed
graph of nodes (i.e., Web pages) connected with links (i.e.,
hyperlinks), Huberman et al. [3] proposed a random-walk
model to simulate certain regularities in user navigation
behavior and suggested that the probability distribution of
surfing depth (step) follows a two-parameter inverse
Gaussian distribution. They conjectured that the probability
of finding a group surfing at a given level scales inversely in
proportion to its depth, i.e., P ðLÞ � L�3=2.

In order to further characterize user navigation regula-

rities as well as to understand the effects of user interests,

motivation, and content organization on the user behavior,

in this paper we will present an information foraging agent-

based model that takes into account the interest profiles,

motivation aggregation, and content selection strategies of

users and, thereafter, predicts the emerged regularities in

user navigation behavior.

1.1 Organization of the Paper

The remainder of this paper is organized as follows: In

Section 2, we will provide a survey of the existing work in

Web mining with a special focus on studies that deal with

the regularities on the Web. This is followed by Section 3

which states the problems as well as important issues to be

dealt with in our present study. Section 4 presents the
detailed formulation of our proposed information foraging
agent model. Section 5 shows several experimental results
on characterizing Web usage regularities. Section 6 dis-
cusses the effects on the emergent regularities under
different conditions in our model. Finally, Section 7
concludes the paper by summarizing the key contributions
and findings of this study.

2 RELATED WORK

This section provides an overview of research work related
to Web mining. Generally speaking, Web mining is aimed
to study the issues of 1) where and how information can be
efficiently found on the Web and 2) how and why users
behave in various situations when dynamically accessing
and using the information on the Web.

2.1 Web Mining for Pattern Oriented Adaptation

The first major task in Web mining may be called Web
mining for pattern-oriented adaptation; that is, to identify
the interrelationships among different Websites, either
based on the analysis of the contents in Web pages or
based on the discovery of the access patterns from Web log
files. By understanding such interrelationships, we aim to
develop adaptive Web search tools that help facilitate or
personalize Web surfing operations.

This task is certainly justified as studies have shown that
85 percent of users use search engines to locate information
[4]. Even though good search engines normally index only
about 16 percent of the entire Web [2], an adaptive utility
can still be useful to filter or rank thousands of Web pages
that are often returned by search engines. For instance,
some researchers have developed efficient search techni-
ques that detect authorities, i.e., pages that offer the best
resource of the information on a certain topic and hubs, i.e.,
pages that are collections of links to authorities [5], [6].
When it is difficult to directly find relevant information
from search engines, navigating from from one page to
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another by following a hyperlink has become a natural way

of information search. In this respect, it will be even more

important to adaptively organize Web information in such a

way that relevant information can be conveniently accessed.

2.1.1 Web Data Mining

As classified by Mobasher [7], Web data mining has

traditionally been dealing with three problems: Computing

association rules, detecting sequential patterns, and dis-

covering classification rules and data clusters. This classi-

fication of Web mining work has its counterparts in the field

of data mining. Pitkow [8] summarized the previous work in

Web mining with respect to different data sources, such as

client, proxy, gateways, server, and Web. Cooley [9]

presented a taxonomy of Web mining that distinguishes

Web content mining from Web usage mining.

2.1.2 User Behavior Studies

Web usage mining deals with the analysis of Web usage

patterns, such as user access statistical properties [10], [11],

association rules and sequential patterns in user sessions

[12], [13], [14], [15], [16], user classification, and Web page

clusters based on user behavior [17], [18], [19]. The results of

Web usage mining can be used to understand user habits in

browsing information as well as to improve the accessibility

of Websites.

2.1.3 Adaptation

The primarily objective of Web mining for pattern-oriented

adaptation is to help users to efficiently surf and retrieve

information from the Web. One way to make information

search efficient is to reduce the latency in information

search by means of optimizing cache algorithms based on

user browsing behavior characteristics on proxies or gate-

ways [20], [21], [22], or by means of prefetching Web

contents. Padmanabhan [23] proposed a method of pre-

dictive prefetching based on the analysis of user navigation

patterns. However, this method is only useful if the relevant

information contents at the next-level can be correctly

predicted [24]. Some studies have examined the issue of

Website workload [25], [26] and network traffic [27] in order

to find ways to improve the efficiency of information

response and propagation.
Other examples of Web mining for pattern-oriented

adaptation include the studies on finding efficient search or

personalization algorithms that directly work with the

contents on the Web as well as the structure of the Web

[14], [28].

2.2 Web Mining for Model-Based Explanation

The second important task in Web mining can be referred to

as Web mining for model-based explanation, that is to

characterize user navigation strategies during Web surfing

operations based on empirical regularities observed from

Web log data. By experimenting with the decision models

of Web surfing, we attempt to explain how various Web

design factors as well as user cognitive factors may affect

the overall behavioral patterns in Web usage.

2.2.1 Empirical Regularities on the Web

Recently, researchers have identified several interesting,

self-organized regularities related to the Web, ranging from

the growth and evolution of the Web to the usage patterns

in Web surfing. Many regularities are best represented by

characteristic distributions following either a Zipf-like law

[29] or a power law; that is, if probability P of a variant

taking value k is proportional to k�� where � is from 0 to 2.

A distribution presents a heavy tail if its upper tail declines

like a power law [30].
What follows lists some of the empirical regularities that

have been found on the Web:

1. The popularity of requested and transferred pages
across servers and proxy caches follows a Zipf-like
distribution [11], [20], [21], [22].

2. The popularity of Websites or requests to servers,
ranging from Web user groups to fixed user
communities (such as within a proxy or a server)
follows a power law [21], [31], [32].

3. The request inter-arrivals and Web latencies follow a
heavy-tail distribution [19], [26], [33].

4. The distribution of document size either across the
Web or limited to pages requested in a proxy or a
certain user community exhibits a heavy tail [11],
[20], [25], [26].

5. The number of pages either across all Websites or
within a certain domain of the Web follows a power
law [34].

6. The trace length of users within a proxy or a
Website, or across the Web follows a power law
[3], [35], [36], [37].

7. The dynamical response of the Web to a Dirac-like
perturbation follows a power law [38].

8. The distribution of links (both incoming and out-
going) among Websites or pages follows a power
law [1], [39], [40], [41], [42].

2.2.2 Regularity Characterization

Although researchers have empirically observed strong

regularities on the Web, few of them have dealt with the

issue of how such regularities emerge. Some black-box

models of regularities consider only the input and output

data correspondence for a “system,” without explicitly

addressing the rationale of underlying mechanisms. In [40],

a random-network model with growth and preferential

attachment factors is proposed that produces a power

distribution of link number over Websites or pages.

Huberman [43] showed that the power-law distribution of

page number over various Websites can be characterized

based on a stochastic multiplicative growth model coupled

by the fact that Websites appear at different times and/or

grow at different rates. He also presented a random-walk

model to simulate user navigation behavior that leads to a

power distribution of user navigation steps [3], [37]. Levene

[36], [44] developed an absorbing Markov-chain model to

simulate the power-law distribution of user navigation

depth on the Web.
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3 PROBLEM STATEMENTS

The random-walk model [3], [37] and the Markov-chain
model [36], [44] have been used to simulate statistical
regularities as empirically observed from the Web. How-
ever, these models do not relate the emergent regularities to
the dynamic interactions between users and the Web, nor
do they reflect the interrelationships between user behavior
and the contents or structure of the Web. For instance, the
random-walk model does not take into account the
structure of the Web or the motivation of users to surf.
Similarly, the absorbing Markov-chain model does not
consider user interest profiles or information distribution
on the Web. They are, by and large, black-box approaches
that do not explicitly address the details of interacting
entities.

The issues of user interest and motivation to navigate on
the Web are among the most important factors that directly
determine the navigation behaviors of users [45]. In our
present study, we aim to take one step further by proposing
a new computational model of Web surfing that takes into
account the characteristics of users, such as interest profiles,
motivations, and navigation strategies. By doing so, we
attempt to answer the following questions:

1. Is it possible to experimentally observe regularities
similar to empirical Web regularities if we formulate
the aggregation of user motivation? In other words,
is it possible to account for empirical regularities
from the point of view of motivation aggregation?

2. Are there any navigation strategies or decision-
making processes involved that determine the
emergence of Web regularities, such as the distribu-
tions of user navigation depth?

3. If the above is validated, will different navigation
strategies or decision-making processes lead to
different emergent regularities? In other words,
when we observe different power-law distributions,
can we tell what are dominant underlying naviga-
tion strategies or decision-making processes that
have been used by users?

4. What is the distribution of user interest profiles
underlying emergent regularities?

5. Will the distribution of Web contents as well as page
structure affect emergent regularities?

6. If we separately record users who can successfully
find relevant information and those who fail to do
so, will we observe different regularities?

In order to answer the above questions, we will develop
a white-box model. This model should, first of all,
incorporate the behavioral characteristics of Web users
with measurable and adjustable attributes. Second, it
should exhibit the empirical regularities as found in Web
log data. Third, the operations in the model should
correspond to those in the real-world Web surfing.

In the next section, we will present our white-box,
information foraging agent-based model, for characterizing
emergent Web regularities. Foraging agents are information
seeking entities that are motivated to find certain informa-
tion of their special interest from the pages of an artificial
Web server.

4 INFORMATION FORAGING AGENT-BASED WEB

REGULARITY CHARACTERIZATION

In our work, we are interested in finding the interrelation-

ship between the statistical observations on Web navigation

regularities and the foraging behavior patterns of indivi-

dual agents. In what follows, we will introduce the notions

and formulations necessary for the modeling and charac-

terization of Web regularities with information foraging

agents.

4.1 Artificial Web Server

In the agent-based Web regularity characterization, we view

users as information foraging agents inhabiting in the Web

server. The Web server is a collection of Websites connected

by hyperlinks. Each Website contains certain information

contents, and each hyperlink between two Websites

signifies certain content similarity between them. The

contents contained in a Website can be characterized using

a multidimensional Content Vector, where each component

corresponds to the relative information weight on a certain

topic. In order to build an artificial Web server that

characterizes the topologies as well as connectivities of the

real-world Web, we introduce the notion of an artificial

Website that may cover contents related to several topics

and each topic may include a certain number of Web pages.

Such a Website may also be linked to other Websites of

similar or different topics through URLs.

4.1.1 Web Server and Content Vector Representations

We consider a Web server as a graph consisting of nodes

and links, as suggested in [42]. The nodes correspond to

Websites and/or pages, whereas the links correspond to

hyperlinks between them. The information contents in a

certain node are represented using the weights of a Content

Vector as follows:

Cn ¼ ½cw1
n; cw

2
n . . . cw

i
n . . . cw

M
n �; ð1Þ

where

. Cn: Content Vector for node n (i.e., Website or page),

. cwi
n: relative content information weight on topic i,

. M: number of topics.

To determine the content similarity between two nodes,

we will make use of the following distance function:

DðCi; CjÞ ¼
XM
k¼1

ðcwk
i � cwk

j Þ
2

 !1=2

; ð2Þ

where DðCi; CjÞ denotes the Euclidean distance between the

Content Vectors of nodes i and j.
Thus, based on the preceding definition, we are able to

specify the relationship between the contents of two nodes.

For instance, when two nodes are linked through a

hyperlink, it is reasonable to assume that the contents

contained in the two nodes is somewhat related, that is to

say, their Content Vector distance is below a certain positive

threshold.
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4.1.2 Content Distribution Models

Now that we have defined a means of representing node
contents, our next question is how to describe the
distribution of node contents with respect to various topics.
In our present study, we will investigate the behavior of
information foraging agents interacting with Web pages.
The contents of those Web pages are distributed following a
certain statistical law. Specifically, we will implement and
contrast two models of Content Distribution: normal
distribution and power-law distribution.

1. Normal distribution: The content weight cwi
n with

respect to topic j in node n is initialized as follows:

cwi
n ¼ Tþ j Xc j; if i ¼ j;

j Xc j; otherwise;

�
ð3Þ

fXc
� normalð0; �pÞ; ð4Þ

T � normalð�t; �tÞ; ð5Þ

where

. fXc
: probability distribution of weight Xc,

. normalð0; �pÞ: normal distribution with mean 0
and variance �p,

. T : content (increment) offset on a topic,

. �t: mean of normally distributed offset T ,

. �t: variance of normally distributed offset T .

In the above model, we assume that all content
weights on the topic are nonnegative. We can adjust
�t and �t to get various topic distributions in Web
pages; the smaller �t is or the larger �t is, the more
focused the node will be on the topic.

2. Power-law distribution: In this model, the content
weight of node n on topic j, cwi

n, will follow a power
law:

cwi
n ¼ Tþ j Xc j; if i ¼ j;

j Xc j; otherwise;

�
ð6Þ

fXc
� �pðXc þ 1Þ�ð�pþ1Þ; Xc > 0; �p > 0; ð7Þ

where

. fXc
: probability distribution of weight Xc,

. �p: shape parameter of a power-law distribution
(also called a Pareto distribution),

. T : content (increment) offset on a topic.

Similar to the model of a normal distribution, here
we can adjust �p to generate different forms of a
power-law distribution.

4.1.3 Constructing an Artificial Web Server

Having introduced the notions of Content-Vector represen-
tation and Content Distribution models, in what follows we
will discuss how to add links to an artificial Web server.

There are two major steps involved. First, we create
several groups of nodes, where each group focuses on a
certain topic. The distribution of the contents in the nodes
follows a specific model as given above. We assume that an

information agent starts its foraging from a Web homepage
that contains links to the nodes of several topics. In our

study, we assign this homepage equal distance to indivi-

dual topics as follows:

cwi
p ¼ Tc; i ¼ 1 . . .M; ð8Þ

where cwi
p denotes the contentweighting of the homepage on

topic i. Tc denotes the content (increment) offset on the topic.
After initializing the Content Vectors, the next step is to

build links between the nodes. As mentioned above, we

assume that when there is a link between two nodes, the

information contents of the two nodes should be related.
Therefore, we will build a link between nodes only if the

Content-Vector distance between them is below a positive

distance threshold, r. r can be adjusted in order to generate

Web clusters of different degrees of connectivity. In this
respect, we refer to r as the degree-of-coupling (doc) of

Websites. Increasing r leads to increasing the number of

links in a Website (that is, the similarity between the
contents of two linked nodes will decrease).

Now, let us summarize the key steps in constructing an

artificial Web server as follows:

1. For each topic i

2. Create node Content Vectors

End

3. For each node i

4. Initialize the link list of node i

5. For each node j

6. If DðCi; CjÞ < r

7. Add node j to the link list of node i

8. Add DðCi; CjÞ to the link list of node i

End

End

End

4.1.4 Remarks on the Artificial Web Server

In the construction of our artificial Web server, we have
assumed that two pages are similar if they are linked. This

assumption has been found to be generally valid with

respect to the real-world Web by several researchers [46],
[47], [48]. For instance, in the studies reported in [46],

Menczer has examined the relationship between content,

linkage, and semantic similarity measures across a large

number of real-world Web page pairs and has found that
the Pearson’s correlation coefficients between content and

linkage similarity measures significantly positive. For

instance, the content similarity measure can reach up to
0:4 � 0:6 when the linkage similarity measure (a neighbor-

hood function) is around 0:6. Both measures will have

peaks around 0:9. Such a correlation is found to be
significantly positive in the Web pages that deal with

News, Home, Science, Sports, Reference, and Games among

others. In [47], Menczer further formalizes and quantita-

tively validate two conjectures that are often taken for
granted; they are:

1. the link-content conjecture that “a page is similar to
the pages that link to it” and
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2. the link-cluster conjecture that “pages about the
same topic are clustered together.”

Having said so, it should be pointed out that given the

variety of kinds of links that are created in the real-world

Websites, “distance” may not always be a good indication

of “relevance” among Web pages. In some cases, two Web

pages may be linked simply because one adds a special

feature or service to another.

4.1.5 Dynamically Generated Web Pages

In the real-world Web, some portion of pages may be

“hidden” in databases; they are generated on the fly. In the

artificial Web pages constructed in this study, we have not

considered the dynamic generation of Web pages, but used

only existing and continuing pages. Although our virtual

Web pages may, to a certain extent, model the character-

istics of the dynamically generated Web pages, there are

still differences between them that deserve further experi-

mental examinations taking both facets into consideration.

4.2 Foraging Agents

4.2.1 Interest Profiles

Each agent forages in the Web server with different interests

in mind, e.g., accessing a specific Website for an update on

some contents, searching for information related to some

topics, or simply wandering in the Web server to browse

various topics. The Interest Profile of an agent will

determine its behavior in Web surfing. In this section, we

will describe how to model the Interest Profile of an agent

using a multidimensional Preference Vector that specifies the

interests of the agent in various topics. In addition, we will

also introduce the measure of Interest Entropy to character-

ize whether or not an agent has a balanced Interest Profile.
Specifically, we define the Preference Vector of an agent

as follows:

Pm ¼ ½pw1
m; pw

2
m . . . pwi

m . . . pwM
m �; ð9Þ

pmi ¼
pwi

mPM
j¼1 pw

j
m

; ð10Þ

Hm ¼ �
XM
i¼1

pmilogðpmiÞ; ð11Þ

where

. Pm: Preference Vector of agent m,

. pwi
m: & weight of preference on topic i,

. Hm: Interest Entropy of user m.

In (11), we define Hm in a similar way as we define the

measure of entropy in information theory. Here, Hm

indicates the breadth and balance of an agent’s interests

in different topics. The larger Hm is, the more evenly

distributed the agent’s interests will be. As a result, the

agent is more likely to have multiple objectives and jump

from one topic to another in its surfing. When the agent has

equal interests in all topics, the value of Hm will be the

largest, i.e.,

Hmax ¼ �
XM
i¼1

1

M
log

1

M

� �
¼ logðMÞ: ð12Þ

As to be discussed in the next section, the quantity of
Interest Entropy will affect the decision of an agent on
which Web page to be selected among several others.

4.2.2 Interest Distribution Models

In order to investigate how different Interest Distributions
may influence the behavior patterns of an agent’s foraging,
in our study we will specifically implement and observe
two Interest Distribution models: normal distribution and
power-law distribution. Thus, the Preference Vector of a
foraging agent will be initialized as follows:

1. Normal distribution: The weight of a Preference
Vector, pwi

m, for agent m on topic i is defined as
follows:

pwi
m ¼ Xp; ð13Þ

fXp
� normalð0; �uÞ; ð14Þ

where normalð0; �uÞ denotes the normal distribution
with mean 0 and variance �u.

2. Power-law distribution: The probability distribu-
tion of agent m’s preference weight on topic i, pwi

m,
is given as follows:

pwi
m ¼ Xp; ð15Þ

fXp
� �uðXp þ 1Þ��uþ1; Xp > 0; �u > 0; ð16Þ

where �u denotes the shape parameter of a power-
law distribution.

We can get various Interest Profiles of foraging agents by
adjusting parameters �u and �u.

4.2.3 Motivational Support Aggregation

When an information searching agent finds certain Web-
sites in which the content is close to its interested topic(s), it
will become more ready to forage to the Websites at the next
level; that is, it gets more motivated to surf deeper. On the
other hand, when the agent does not find any interesting
information after some foraging steps or it has found
enough contents satisfying its interests, it will stop foraging
and leave the Web server. In order to model such a
motivation-driven foraging behavior, here we introduce a
support function, St, which serves as the driving force for
an agent to forage further. When the agent has found some
useful information, it will get rewarded and, thus, the
support value will be increased. As the support value
exceeds a certain threshold, which implies that the agent
has obtained a sufficient amount of useful information, the
agent will stop further foraging. In other words, the agent is
satisfied with what it has found. On the contrary, if the
support value is too low, the agent will lose its motivation
to forage further and thus leave the Web server.

Specifically, the support function is defined as follows:

Stþ1 ¼ St þ � ��Mt þ � ��Rt; ð17Þ
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where

. St: support value at time step t,

. �Mt: motivational loss at time step t,

. �Rt: reward received at time step t,

. �; �: weights of motivation and reward, respectively.

The initial support value, maximum and minimum

support thresholds will be set, respectively, as follows:

init supportm ¼ 1

2

XM
i¼1

pwi
m; ð18Þ

max supportm ¼
XM
i¼1

pwi
m; ð19Þ

min supportm ¼ 0; ð20Þ

where pwi
m denotes the preference weight of agent m with

respect to topic i.

4.3 Foraging in an Artificial Web Server

Generally speaking, the hyperlinks inside a Web page are

connected to other pages covering the same or similar

topics. The words or phrases that are used in the hyperlinks

usually indicate the topics of the linked pages. In the

process of information foraging, an agent will examine the

hyperlinks and then predict which of the linked next-level

pages may contain more interesting contents. In so doing,

the predictability of different agents may be different,

depending on their navigation strategies used.
Earlier research on closed hypertext systems, databases,

and library information systems have suggested that there

are possibly three browsing strategies: search browsing

(directed search where the goal is known), general-purpose

browsing (consulting sources that have a high likelihood of

items of interest), and serendipitous browsing (purely

random) [49]. In this section, we will provide the computa-

tional models of three navigation strategies to be used by

information agents, and describe how the agents will

update their Interest Profiles, motivation, and reward

functions during information foraging.

4.3.1 Navigation Strategies

Suppose that agent m is currently in page n that belongs

to topic j (also referred to as domain here). There are

h hyperlinks inside page n, among which h1 hyperlinks

belong to the same topic as page n and h2 hyperlinks

belong to other topics. We can describe the strategies of

foraging agents in selecting the next-level Web page, i.e.,

selecting hyperlink k out of h hyperlinks, in terms of

different selection probabilities, as follows:

1. Random agents: Random agents have no strong
interests in any specific topics. They wander from
one page to another. In so doing, their decisions in
selecting the next-level pages are random. The
probability of reaching node k, pk, at the next step
can be written as follows:

pk ¼
1

h
k ¼ 1 . . .h: ð21Þ

2. Rational agents: Most foraging agents behave
rationally. Rational agents have specific interested
topics in mind and they forage in order to locate the
pages that contain information on those topics.
When they reach a new Website, they will try to
decide whether or not the content sufficiently
matches their Interest Profiles and, if not, predict
which page at the next level will be likely to become
a more interesting one. In predicting the next-level
contents, they will examine the titles of various
hyperlinks inside the current page. Thus, the
probability, pk, of reaching the next-level node k
given the Interest Entropy of agent m, Hm, can be
computed as follows:

D�ðPm; CkÞ ¼
DðPm; CkÞ; if k 2 h1;

Hm

Hmax
DðPm; CkÞ; if k 2 h2:

�
ð22Þ

pk ¼
D�ðPm; CkÞ�1PM
j¼1 D

�ðPi; CjÞ�1
k ¼ 1 . . .h; ð23Þ

where D�ðPm; CkÞ denotes the weighted distance
between the preferences of agent m and the contents
of node k given the agent’s Interest Entropy Hm.

We note that Web pages can contain many
outgoing links. In such a case, it will not be effective
if rational agents select the next-level pages directly
applying the above calculation of pk. In order to
maintain the predictability of agents, we modify the
above probability definition as follows:

Qj ¼ D�ðPm; CjÞ � mean8l2hðD�ðPm; ClÞÞ; j ¼ 1 . . .h

Remove j from set h; if Qj � 0;

ð24Þ

pk ¼
QkPh
j¼1 Qj

: ð25Þ

3. Recurrent agents: Recurrent agents are those who
are familiar with the Web structure and know the
whereabouts of interesting contents. They may have
frequently visited such Websites. Each time when
they decide to forage further, they know exactly the
whereabouts of the pages that closely match their
Interest Profiles. In this case, the probability of
selecting a Web page at the next step can be defined
as follows:

pk ¼
1; if D�ðPm; CkÞ ¼ minðD�ðPm; CjÞÞ; j ¼ 1 . . .h

0; otherwise:

�
ð26Þ

4.3.2 Preference Updating

The preference of an agent changes over time, depending

on how much information on interesting topics the agent
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has found and how much the agent has absorbed such

information. Generally speaking, the update of the pre-

ference weights in the agent’s Interest Profile reflects the

change of the agent’s continued interest in certain topics.
When agent m reaches and finishes reading page n, its

interest will change according to page’s Content Vector. The

specific updating mechanism is defined as follows:

Pmð�Þ ¼ Pmð� � 1Þ � � � Cn;
pwi

mð�Þ ¼ 0; for pwi
mð�Þ < 0; i ¼ 1 . . .M;

ð27Þ

where � denotes an absorbing factor in [0,1] that implies how

much information is accepted by agents on average. Pmð�Þ
and Pmð� � 1Þ denote an agent’s Preference Vector after and

before accessing information in page n, respectively.

4.3.3 Motivation and Reward Functions

As mentioned in Section 4.2.3, the motivational support for

an agent plays an important role in information foraging.

Depending on the support value, the agent will decide

whether or not to forage further to the next-level Web

pages. In what follows, we will elaborate on how the

motivational support is aggregated based on the associated

motivation and reward functions.
Recall that there are three terms in (17). The first term St

denotes the influence of initial and previously aggregated

foraging support. The second term �Mt denotes the

motivational (or patience) loss in information foraging. It

changes along with the latency, i.e., the time to find

information. The third term �Rt denotes the reward

received after finding relevant information.
There are many ways to compute �Mt, which can be

generally characterized as follows:

�Mt ¼ �ð�Mc
t þ�Mv

t Þ; ð28Þ

where �Mc
t denotes the constant decrement in �Mt at each

time step, and �Mv
t the variable factor that dynamically

changes at each time step. In our study, we adopt the

following model of �Mv
t :

1. As earlier studies have shown that the empirical
distribution of waiting time to access Web pages
follows a log-normal distribution [4], [33], it is
reasonable to believe that the distribution of motiva-
tional loss will also be a log-normal function:

f logð�Mv
t Þ � normalð�m; �mÞ; ð29Þ

where �m and �m denote the mean and variance of

the log-normal distribution of �Mv
t , respectively.

2. The patience or interest of an agent in carrying on
information foraging decreases as the number of
required foraging steps increases. Thus, we adopt
the following mechanism for dynamically updating
the motivation function:

�Mv
t ¼ �me

�mstep; ð30Þ

where �m and �m denote the coefficient and rate of

an exponential function. step denotes the number of

pages/nodes that an agent has continuously visited.

Next, let us define the reward function in (17). In our
study, we model the reward received by an agent at each
time step as a function proportional to the relevant
information that the agent has absorbed. In our model,
since the change of the agent’s preference weights reflects
the information that the agent has gained, we can write the
reward function as follows:

�Rt ¼
XM
i¼1

ðpwi
mð� � 1Þ � pwi

mð�ÞÞ: ð31Þ

Note that the reward, �Rt, for an agent is always greater

or equal to zero. It provides the agent with the energy to

forage on the Web. On the other hand, the motivational loss,

�Mt, of the agent is always negative, which prevents the

agent to forage further. Therefore, the total support for an

agent at the current time step can be aggregated based on

the support received at the previous time steps and the

changes in the above-mentioned motivational loss and

reward functions.

4.3.4 Remarks on Motivational Loss

In our present work, the experimental results will be
obtained based on the assumption that the motivational loss
in Web surfing follows a log-normal distribution. This
assumption was in part inspired by the EPIC (Executive-
Process/Interactive-Control) model of verbal working
memory. Readers who are interested in EPIC are referred
to [50] for details.

4.3.5 Foraging

Having defined the artificial Web server, the Interest
Profile, and the support function of an agent, in what
follows we will provide an outline of steps for simulating
information agents foraging in the artificial Web server. We
assume that the agents will start to forage from a homepage
that contains links to other Web pages of various topics.
When the support for an agent is either below a lower
bound or above an upper bound, the agent will stop
information foraging; otherwise, it will select and move to
the next-level page. The specific steps are summarized as
follows:

1. Initialize the nodes and links in an artificial Web server

2. Initialize information foraging agents and their Interest

Profiles

3. For each agent m
4. While the support for the agent S < max supportm

and S > min supportm
5. Find the hyperlinks inside node n that the agent is

presently in

6. Select, based on pk, the hyperlink that connects to

the next-level page

7. Forage to the selected page

8. Update the preference weights in the agent’s
Interest Profile based on (27)

9. Update the support function of the agent based

on (17)

End

10. If the support for the agent S > max supportm
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11. Agent m is satisfied with the contents and leaves
the Web server

Else

12. Agent m is dissatisfied and leaves the Web

server

End

End

In the next section, we will present simulated foraging
results and compare them with some real-world observed
empirical data sets for validation.

5 EXPERIMENTATION AND VALIDATION

In this section, we will describe several experiments in
which the preceding given model of information foraging
agents are implemented and simulated in an artificial Web
server. The objective of these experiments is to validate the
agent model using some empirically obtained real-world
Web log data sets. Specifically, we want to examine whether
or not the strong regularities that emerged from empirical
Web log data sets can be generated in the simulations using
the information foraging agents. If so, we can claim that the
computational model proposed based on the idea of
information foraging characterizes the behavior of human
Web surfing that generates empirical Web regularities.

5.1 Experiment

In our experiment, we apply the steps as outlined in the
preceding section to initialize and control information
foraging agents. As the agents undertake their foraging
sessions in the Web server, we will record their surfing-
depth (step) distribution and the rank-frequency distribu-
tion of link clicks. The frequency of link clicks refers to the
number of times for which a link is passed through by the
agents. It is also called link-click-frequency.

In Experiment 1, we initialize 5,000 agents foraging
according to the above-given motivational support and

decision models for three categories of foraging agents. In
this experiment, we assume that the Interest Profiles of the
agents follow a power-law distribution and the contents of
Web pages on various topics follow a normal-like distribution.
The detailed experimental parameters are given in Table 1.

Figs. 1 and 2 present the statistical distributions of
foraging depth and link-click-frequency obtained in Experi-
ment 1 for recurrent and rational agents, respectively.

From Figs. 1 and 2, we can note that there do exist strong
regularities in the behavior of agents foraging in the Web
server. The cumulative probability distribution of agent steps in
accessing pages follows a heavy tail. Thus, the probability of
agent foraging depth slowly decreases. It is interesting to
observe from Figs. 1b and 2b that the distributions of link-
click-frequency exhibit a power law. A similar result on the
distribution of Website popularity has been empirically
observed and reported in [43].

In obtaining the lines of Figs. 1 and 2, we apply a
weighted linear-regression method, in which we assign the

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 4, APRIL 2004

TABLE 1
The Parameters for Experiment 1

Fig. 1. Recurrent agents in Experiment 1. (a) Cumulative distribution of agent foraging depth (step), where “�” corresponds to experimental data and
“�” corresponds to a linear-regression fitted line. The tail of the distribution follows a power-law distribution with power 	c ¼ �1:843 and the residual
of linear regression � ¼ 0:01. 
 denotes agents’ satisfaction rate (i.e., the ratio of the number of satisfied agents to the total number of agents what
have surfed on the Web). (b) Distribution of link-click-frequency (link click refers to the total times for which agents pass through a link). The tail
follows a power-law distribution with power 	l ¼ �1:396, as obtained by weighted linear regression.



probability at each depth or link-click-frequency with the
frequency of the depth or link-click-frequency occurrence.
This implies that the higher the occurrence rate of a depth
or a link-click-frequency is, the higher the weight will be.

5.2 Model Validation Using Real-World Web Logs

In order to validate our model, we will use some real-world
Web log data sets and compare their corresponding
empirical distributions with those produced by the infor-
mation foraging agents as mentioned above.

The first data set is NASA Web server log that recorded
all HTTP requests received by the NASA Kennedy Space
Center Web server in Florida from 23:59:59 3 August 1995 to
23:59:59 31 August 1995. The data is available at http://
ita.ee.lbl.gov/html/contrib/NASA-HTTP.html. Before we
plot the distributions, we first filter the data set by keeping
only the requests that asked for the html files. This allows
us to remove the noisy requests that were not directly sent
by users such as the requests for image files. Here, we
regard a user session as a sequence of a user’s continuously
browsed pages on the Web, which can be derived from the
filtered data set. To obtain the user sessions, we assume that
the continuous requests from the same IP correspond to the
same user. We also assume that a user session ends if the
idle time of a user exceeds a threshold of 30 minutes.

In the filtered NASA data set, there are 333,471 requests
in 118,252 user sessions. The average depth of surfing by
users is 2.82 requests per user. In addition, there are 1,558
nodes and 20,467 links found in the data set that were
visited by users. The average links per node is around 13.

The distributions of user surfing depth and link-click-
frequency for the NASA data set are shown in Figs. 3a and
3b, respectively.

The second data set is from the Website of a laboratory
at Georgia Institute of Technology (GIT-lab), which
recorded the requests from 26 March 1997 to 11 May
1997. We preprocess the data in the same way as we did
for the NASA data. As a result, we have found that there
are 24,396 requests contained in the filtered data set, and
6,538 user sessions, an average of 3.73 requests per user.

Also, there are 1,147 nodes and 6,984 links visited by users.
The distributions of user surfing depth and link-click-
frequency for the GIT-lab data set are shown in Fig. 4.

Now, let us compare the empirical distributions of Figs. 3
and 4 with the distributions of Figs. 1 and 2 generated by
information foraging agents in an artificial Web server. We
can note that the results are similar, from the shapes of
distributions to the parameters of the fitted functions. The
NASA data set reveals emergent regularities closer to those
produced by rational agents as in Fig. 2, whereas the GIT-
lab data set presents emergent regularities closer to those
produced by recurrent agents as in Fig. 1. These results
demonstrate that our white-box model, incorporating the
behavioral characteristics of Web users with measurable
and adjustable factors, does exhibit the regularities as found
in empirical Web data. The foraging operations in the
model correspond to the surfing operations in the real-
world Web server.

In addition to the distributions of user steps in accessing
pages and link-click-frequency, we are also interested in the
distribution of user steps in accessing domains or topics—an
issue of great importance that has never been studied
before. We define agent steps in accessing domains as the
number of domains that an agent has visited and define an
agent’s satisfaction rate as the ratio of the number of satisfied
agents to the total number of agents after they have
completed surfing. Fig. 5 presents the distributions of steps
in accessing domains by recurrent and rational agents in
Experiment 1, respectively. From Fig. 5, we can readily
observe that the cumulative probability distributions of
agent steps in accessing domains follows an exponential
function.

We have further obtained an empirical data set that
recorded user behavior in accessing the domains of a
Website. The data set is a Web log file for the Microsoft
corporate Website, recording the domains or topics of
www.microsoft.com that anonymous users visited in a
one-week timeframe in February 1998. The data set is
available from http://kdd.ics.uci.edu/databases/msweb/
msweb.html. In this data set, there are 294 main domains
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Fig. 2. Rational agents in Experiment 1. (a) Cumulative distribution of agent foraging depth (step), where “�” corresponds to experimental data and

“�” corresponds to a linear-regression fitted line. The tail of the distribution follows a power-law distribution with power 	c ¼ �2:179 and the

regression residual � ¼ 0:02. 
 denotes agent’s satisfaction rate. (b) Distribution of link-click-frequency. The distribution follows a power-law

distribution with power 	l ¼ �1:987, as obtained by weighted linear regression.



and 32,711 users, with an average of three steps per
domain. The number of user sessions is 6,336. The
average number of links among domains passed through
by the users is 6,336/294 or 21.55. The distribution of user
steps in accessing domains is shown in Fig. 6. Now, if we
compare Fig. 5 with Fig. 6, we can note that the domain-
visit regularity generated by our model characterizes the
empirically observed domain-visit regularity well.

6 DISCUSSION

In the preceding section, we have presented a model of
information foraging agents and shown how this model is
derived and used to characterize empirical Web regularities.
In this section, we will further investigate the interrelation-
ships between the emergent Web regularities as computed

from our model and the characteristics of various user
Interest Profiles and Content Distributions.

6.1 Foraging Depth

One of the main objectives in our research is to find out
how the regularities in user navigation may be affected by
the Content Distributions on the Web. In Experiment 2, we
assume that the Content Distribution in the Web nodes
follows a power-law and we keep all other parameters as in
Experiment 1. We are interested in examining the
influence of different Content Distribution models on
agent navigation behavior. The specific parameters for this
experiment are given in Table 2.

Now, let us compare the distributions of agent foraging
depth in accessing Web pages as obtained from Experi-
ments 1 and 2. Fig. 7 shows the foraging depth distributions
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Fig. 4. Distributions based on real-world GIT-lab Web log data. (a) Cumulative distribution of user surfing step. The distribution exhibits a heavy tail

with the tail’s scale of 	c ¼ �1:698. The linear-regression residual s is about 0:395. (b) Distribution of link-click-frequency. It agrees well with a power

law of power 	l ¼ �1:993, as obtained by weighted linear regression.

Fig. 3. Distributions based on real-world NASAWeb log data. (a) Cumulative distribution of user surfing step. The distribution follows a heavy tail with
the tail’s scale of 	c ¼ �2:669. The linear-regression residual s is about 1:17. (b) Distribution of link-click-frequency. It agrees well with a power law of

power 	l ¼ �1:62, as obtained by weighted linear regression.



of recurrent and rational agents, respectively, from Experi-

ment 2. We note that the two plots in Fig. 7 are almost the

same as those in Figs. 1a and 2b, respectively. Therefore, we

suggest that the regularity of agent foraging depth in

accessing Web pages may not be affected by the models of

Content Distributions in the Web nodes.

Next, we will examine the effect of agent Interest Profiles

on the Web regularities. For this purpose, we will conduct

Experiment 3, in which the Interest Profiles of agents are

created based on a normal-distribution model. We will set all

other parameters the same as Experiment 1. The specific

parameters are given in Table 3.

Figs. 8a and 8b present the distributions of agent

foraging depth in accessing Web pages by recurrent and

rational agents, respectively, as obtained in Experiment 3.

From Fig. 8, we note that both distributions exhibit an

exponential function. As the only difference between the

settings of Experiments 1 and 3 is the distribution model of

Interest Profiles used in the agents, we suggest that the

regularities of power-law distributions observed in agent

foraging depth in accessing Web pages are largely resulted

from the power-law distribution of agent interests in

various topics.

6.2 Link-Click-Frequency

Next, let us take a look at the link-click-frequency

distributions in the earlier-mentioned experiments. Figs. 9

and 10 present the distributions obtained in Experiments 2

and 3, respectively. As shown in the figures, the distribu-

tions of link-click-frequency remain to be a power law under

the conditions of different agent Interest Distribution and

Content Distribution models.

It should be pointed out that the above results can be

established for recurrent and rational agents only. In the

case of random agents, the regularities in link-click-

frequency will disappear. Figs. 11a and 11b show the plots

of link-click-frequency for random agents in Experiments 1

and 2, respectively.
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Fig. 6. Real-world Microsoft Web log data. Cumulative distribution of

user step in accessing domains. The distribution follows an exponential

function with 	d ¼ �0:141. The regression residual � is about 0:137.

Fig. 5. Agents visiting domains in Experiment 1. (a) Cumulative distribution of foraging depth in accessing domains by recurrent agents, where “�”
corresponds to experimental data and “�” corresponds to a linear-regression fitted line. The distribution follows an exponential function with
exponent 	d ¼ 0:892 and residual � ¼ 0:08. (b) Cumulative distribution of foraging depth in accessing domains by rational agents. The distribution
follows an exponential function with a smaller exponent 	d ¼ 0:357 and residual � ¼ 0:02.

TABLE 2
The Parameters for Experiment 2



In fact, if we compare Fig. 11a with Fig. 1b and Figs. 2b

and 11b with Fig. 9, we can observe that from random

agents to recurrent agents, the power law in link-click-

frequency distribution will become more and more obvious.

The only distinction among the different categories of

agents in our information foraging model is their ability to

predict which of linked next-level pages may contain more

interesting contents. Thus, we suggest that the power-law

distribution of link-click-frequency may be affected by the

content predictability of the agents.

6.3 Degree-of-Coupling (doc)

In Section 4.1.3, we introduced a parameter for setting

minimum similarity between two linked Web pages, called

degree-of-coupling (doc), r. The larger the value of r is, the

more links among Web pages belonging to different topics

as well as the more links per each Web page. Given a certain

r, the topology of an artificial Web server is determined.

Agents with multiple interests will more readily forage

from the contents on one topic to the contents on another

topic. On the other hand, agents with a single interest will

become more obsessive to select a direction from many

hyperlinks within a page.

Fig. 12 shows that the average number of links will

increase as r increases. This result concerning Web structure

is commonly found on the real-world Web. The question

that remains is what will be a reasonable degree-of-coupling

for agents. We believe that there should be an ideal r value

in our model. In order to answer this question, we will

conduct Experiment 4 to examine the results under

different r values. In Experiment 4, we will gradually alter

r, while keeping the rest of parameters the same as those in

Experiment 2.

Figs. 13a and 13b show the power values in the observed

power-law distributions of foraging depth and the average

foraging steps, with respect to degree-of-coupling, r,

respectively. From Fig. 13a, we find that the power 	c is

increasing with some fluctuations. From Fig. 13b, we note

that the values of average step by rational agents are higher

than those of recurrent agents. The explanation for this

result is that the ability to find relevant information by

rational agents is weaker than that by recurrent agents and,

thus, rational agents must go through more pages in order

to be satisfied. Consequently, their satisfaction rate will be

lower than that of recurrent agents, as shown in Fig. 14a.
Website owners usually hope that users can stay longer

or surf deeper at their Websites while viewing information,

and at the same time, satisfy their interests. Fig. 14b shows

the combined measure of agent foraging depth and

satisfaction rate. From Fig. 14b, we observe that in order

to get an optimal effect, the value of degree-of-coupling, r,

should be set to 0:7 � 0:8. In such a case, the average link

number per node is about 9 � 16, as shown in Fig. 12.
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Fig. 7. Agent foraging depth observed in Experiment 2, where the Content Distribution follows a power law, different from that of Experiment 1.

(a) Cumulative distribution of foraging depth in accessing Web pages by recurrent agents. “�” corresponds to experimental data, and “�” corresponds

to a linear-regression fitted line. The obtained distribution follows a power law with power 	c ¼ �1:532 and residual � ¼ 0:0145. (b) Cumulative

distribution of foraging depth by rational agents. The distribution follows a power law with power 	 ¼ �1:638 and residual � ¼ 0:013.

TABLE 3
The Parameters for Experiment 3
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Fig. 8. Agent foraging depth observed in Experiment 3, where the Interest Profiles of agents follow a normal-distribution model, different from that of
Experiment 2. (a) Cumulative distribution of foraging depth in accessing Web pages by recurrent agents. “�” corresponds to experimental data, and
“�” corresponds to a linear-regression fitted line. The obtained distribution follows an exponential function with exponent 	c ¼ �0:18 and residual
� ¼ 0:08. (b) Cumulative distribution of foraging depth by rational agents. The distribution follows an exponential function with exponent 	 ¼ �0:133
and residual � ¼ 0:17.

Fig. 9. Distribtuions of link-click-frequency in Experiment 2. (a) Distribution of link-click-frequency for recurrent agents. The distribution tail is

approximately a power law with power 	l ¼ �1:83, as obtained by weighted linear regression. (b) Distribution of link-click-frequency for rational

agents. The distribution is approximately a power law with power 	l ¼ �1:37, as obtained by weighted linear regression.

Fig. 10. Distribtuions of link-click-frequency in Experiment 3. (a) Distribution of link-click-frequency for recurrent agents. The distribution tail is

approximately a power law with power 	l ¼ �1:64, as obtained by weighted linear regression. (b) Distribution of link-click-frequency for rational

agents. The distribution is approximately a power law with power 	l ¼ �1:43, as obtained by weighted linear regression.



6.4 Mixed Agent Population

In real-world Web surfing, different users who visit a

certain Website can have distinct navigation strategies.

Some users may fall in the category of recurrent users,

while others may be new comers. When the new comers

feel that the Website contains or leads to some contents of

interest to them, they will become more likely to visit the

Website again. It is important for the designer of a Website

to recognize from emergent Web regularities the underlying

dominant navigation strategies of users.
So far, we have observed the regularities produced by

three categories of information foraging agents with various

Interest Profile Distributions. It may be noted that recurrent

and random agents are two extreme cases, whereas rational

agents have the ability to predict the next-level contents that

is between the abilities of recurrent and random agents. The

fact that all categories of users may be involved in bringing

about the emergent regularities in Web surfing has led us to

the following question: What will be the distributions of

foraging depth and link-click-frequency if all three cate-

gories of information agents are involved? In order to

examine this case, we have conducted Experiment 5, where

all three categories of agents, i.e., recurrent, rational, and
random agents, are involved and the number of agents in
each group is 5,000. Fig. 15 presents the results of
Experiment 5.

From Fig. 15a, it can be observed that there exists a

strong regularity in the probability distribution of foraging

depth in accessing Web pages in the case of mixed agent

population. The obtained result is consistent to the

regularities found in empirical Web log data sets. Fig. 15b

presents the distribution of foraging depth in accessing

domains, which, like the real-world statistics, follows an

exponential function. Fig. 15c shows the power-law dis-

tribution of link-click-frequency. In Fig. 15c, the occurrence

point of the most probable link-click-frequency is not at 1.

This is because the number of agents is too large as

compared to the number of links.

To summarize, emergent regularities can readily be

observed when information foraging agents make use of

different navigation strategies. As far as the satisfaction rate

is concerned, the mixed agent population is relatively easier

to satisfy than rational agents, but more difficult than

recurrent agents, as we have already shown in Fig. 14b. One

way to increase the level of satisfaction rate would be to

improve the descriptions of hyperlinks such that they are

topic-specific and informative to foraging agents.

6.5 Satisfaction versus Unsatisfaction

In the preceding sections, we have considered and classified

agents with different navigation strategies depending on

whether they are proficient users (recurrent), content

explorers (rational), or curious users (random). In each case,

an agent will leave the Web server either with the contents it

has found or without any success. In Experiment 6, we are

interested in the difference in the foraging-depth distribu-

tions between satisfied and unsatisfied agents. We will use

the same agent data and the same Web server as those in

Experiment 2, except that the motivation update mechanism

for agents will be defined using (29). The parameters of

Experiment 6 are given in Table 4.
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Fig. 11. Distributions of link-click-frequency for random agents. (a) Random agents in Experiment 1. (b) Random agents in Experiment 2.

Fig. 12. The average number of links with respect to degree-of-coupling,

r, in Experiment 4.



Fig. 16 shows the distributions of satisfied and unsatis-

fied recurrent agents, whereas Fig. 17 shows the distribu-

tions of satisfied and unsatisfied rational agents. From both

figures, we can observe that the regularities can be found in

both satisfied agents and unsatisfied agents cases. This

experiment also demonstrates that the regularities will not

be affected by the motivation update mechanism. From

Figs. 16 and 17, we also find that the distribution of

unsatisfied agents has a heavier tail (i.e., higher values) than

that of satisfied agents. Fig. 18 presents the parameter

distributions in Experiment 6, with respect to the Web

structure parameter, degree-of-coupling, r.

6.6 Remarks on Simulation and Validation

6.6.1 Parameters in Simulation

In our present studies, we have selected the number of

nodes and the number of topics in an artificial Web server

based on the following general considerations:

1. The simulation experiments should be computation-
ally manageable to obtain results.

2. The order of magnitude should be somewhat
comparable to those of the empirical data sets used
for validation.

There are also other adjustable parameters in the above-

mentioned simulation. In order to test the sensitivity of the

parameters, we have conducted other experiments to

examine the possible effects on distribution regularities

while changing the number of agents, the number of

domains or topics, and the parameters for the distribution

of agent Interest Profiles and for the Content Distribution in

the Web server. The results of our experiments reveal that

altering these parameters will not change the regularities of

power-law or exponential distributions as mentioned

above, but alter the shape parameters for the distributions.

This further indicates that the distribution regularities

emerged from agent foraging behavior is stable and

ubiquitous.
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Fig. 13. (a) The power values, 	c, in the observed power-law distributions of foraging depth and (b) the average foraging steps, with respect to

degree-of-coupling, r, in Experiment 4. “�” corresponds to rational agents and “?” corresponds to recurrent agents.

Fig. 14. (a) The satisfaction rate, 
, and (b) the combined measure of agent foraging depth and satisfaction rate, with respect to degree-of-coupling,

r, in Experiment 4. “�” corresponds to rational agents and “?” corresponds to recurrent agents.



6.6.2 The Web Server Traces for Validation

In this work, we have used real-world Web traces to

experimentally validate the regularities observed from our

model. The advantages of using such traces are:

1. It is relatively easier to compare with related work
on characterizing strong Web regularities, e.g., those
reported in [3].

2. The regularities empirically observed from the
server traces are less biased toward particular user
segments.

3. In Web servers such as the NASA Kennedy Space

Center Web server, most of the Web pages were

centrally maintained and linked with only few out-

going links.

However, it should be mentioned that generally speak-

ing, due to the possible linkages with other Web servers,

only a Web server log might not be sufficiently capture

complete user access sessions.1 In addition, one html

request may not correspond to one click in some cases.

As client-based traces of Web traffic become widely

available and less biased, it would be interesting to conduct a

further validation of our simulation-based characterization

study using such traces. From the client-based trace

characteristics as highlighted in [11], [51], we conjecture that

the results would be similar to those presented in this paper.
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Fig. 15. A mixed population of recurrent, rational, and random agents in Experiment 5. (a) Cumulative distribution of foraging depth, which has a

power tail. (b) Cumulative distribution of foraging depth in accessing domains. (c) Distribution of link-click-frequency.

TABLE 4
The Parameters for Experiment 6

1. In our simulation experiments, this issue was in part taken into
account by truncating a foraging session that reaches the boundary of the
artificial Web server.



7 CONCLUSION

In this paper, we have demonstrated an agent-based

modeling approach to characterizing empirical Web usage

regularities. In particular, we have formulated an in-

formation foraging agent-based model and validated this

model against some empirical Web log data sets. We have

found that:

1. Our white-box model, incorporating the behavioral

characteristics (i.e., motivation aggregation) of Web

users with measurable and adjustable factors, does

exhibit the regularities as found in empirical Web

data. The foraging operations in the model corre-

spond to the surfing operations in the real-world
Web server.

2. Different navigation strategies can lead to different
emergent regularities. From random agents to

recurrent agents, the power law in link-click-fre-

quency distribution will become more and more

obvious. The only distinction among the different

categories of agents in our information foraging

model is their ability to predict which of linked next-

level pages may contain more interesting contents.
3. As far as the distribution of user Interest Profiles

underlying emergent regularities is concerned, the
regularities of power-law distributions observed in
agent foraging depth in accessing Web pages are
largely resulted from the power-law distribution of
user interests in various topics.

4. The regularity of agent foraging depth in accessing

Web pages may not be affected by how Web

contents are distributed among Websites.
5. Further, if we separately record users who can

successfully find relevant information and those

who fail to do so, we can still observe those

regularities.

In summary, our work offers a means for explaining

strong Web regularities with respect to user Interest

Profiles, Web Content Distribution and coupling, and user

navigation strategies. It enables us to predict the effects on

emergent usage regularities if certain aspects of Web

servers or user foraging behaviors are changed.
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Fig. 17. Cumulative distribution of foraging depth for rational agents in
Experiment 6, with r ¼ 0:7. “�” corresponds to unsatisfied agents and “?”
corresponds to satisfied agents.

Fig. 16. Cumulative distribution of foraging depth for recurrent agents in
Experiment 6, with r ¼ 0:7. “�” corresponds to unsatisfied agents and “?”
corresponds to satisfied agents.

Fig. 18. Parameter distributions in Experiment 6, with r changing from 0:5 to 1:1. (a) The satisfaction rate, 
, and (b) the average steps in accessing
domains, with respect to r.



While presenting an interesting and promising research

direction, we should point out that one of the useful

extensions for future work would be to show how the

quantitative representations or constructs as used in

modeling Web contents and user interest profiles are

manifested in the real-world Web.
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