
ADAPTIVE DISTRIBUTED CACHING WITH MINIMAL MEMORY USAGE 
 

Markus J. Kaiser, Kwok Ching Tsui and Jiming Liu 
 

Department of Computer Science 
Hong Kong Baptist University 

Kowloon Tong, Kowloon, Hong Kong 
 

ABSTRACT 
 
We have shown previously that our Adaptive Distributed 
Caching (ADC) algorithm is able to compete with typical 
hashing based approaches in the realm of distributed proxy 
systems. In our first approach, we allowed the algorithm to 
run with the assumption of unlimited system resources 
(e.g. physical RAM). In this paper we introduce an 
extension to ADC, which gives the algorithm the 
capability to perform in more realistic environments with 
limited memory. We will discuss the arising problem, 
introduce the new ADC and provide experimental results, 
which will show that our algorithm is able to achieve the 
performance characteristic of our previous work even with 
limited resources. 

 

1. INTRODUCTION 
 
The Internet is growing exponentially and web caches 
have been shown to be a feasible way to reduce the overall 
network traffic [6]. A cache is usually placed between the 
requesting clients and the resolving origin server, storing 
transferred objects for future retrieval and reducing the 
overall request latency for cached objects [8].  

Proxies that are not able to resolve an incoming request 
have to make a choice between either forwarding the 
request directly to the origin server or query a neighboring 
proxy for the needed object. The idea that a proxy can 
forward requests to another peer lead to research in the 
area of cooperative proxies and distributed proxy systems 
[7]. Cooperative proxies try to combine their individual 
caches in such a way that maximum cache usage is 
achieved while acting transparently as one single load-
balanced proxy cache [11].  

Previous research on cooperative proxies can be found 
in the area of hierarchical [7] and hashing approaches [9], 
adaptive caching [2], CacheMesh [1] and our previously 
introduced algorithms - SOAP [5] and ADC [3].  
 
 

1.1. Hierarchical vs. Hashing 
 
Common approaches for cooperative proxy systems 
encompass mostly solutions based on hierarchical cache 
structures or classical hashing algorithms [9]. While 
hierarchically organized proxies forward unresolved 
requests to sibling and parent caches using ICP, hashing 
proxies, like CARP [10], map the object-ID (URL) of an 
unresolved request onto the same proxy peer based on a 
globally known hashing function.  
 
1.2. Adaptive Distributed Caching (ADC) 
 
Preliminary work on ADC is covered by our studies in 
proxy load balancing by a central coordinator [4] and 
SOAP, which introduced the idea of adaptive forwarding 
by evaluating the response time for each requested object 
[5]. We introduced in our latest work an algorithm for 
adaptive distributed caching (ADC) based on a set of 
autonomous proxy agents. We have shown that our 
algorithm is well able to find a balance between optimal 
cache usage and distribution of hot documents and reaches 
good values for the object allocation results that are 
comparable with the near-ideal hashing algorithm.  
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Figure 1.  Ideal Cooperation 

 

Client 

Proxy A Proxy B Proxy C 

Server A Server B Server C 



The reminder of this paper is organized in the 
following way: we will first restate the core components of 
the ADC algorithm and its limitations, introduce the latest 
changes and improvements to overcome the problem of 
memory limitation in the following section, followed by a 
set of experimentations for evaluating our modifications. 
The paper will be concluded by a final discussion and 
future work. 

 
2. ADAPTIVE DISTRIBUTED CACHING 

THROUGH PROXY AGENTS 
 

2.1. Previous Work 
 
In our latest paper, we introduced an adaptive distributed 
caching algorithm that combines the advantages of 
hierarchical distributed caching (allowing multiple copies 
of the same object) and of hashing based distributed 
caching (fast allocation through global agreement). Our 
proxy agents maintain multiple copies of the frequently 
requested objects to balance the user request load between 
the cooperative proxies when hot documents experience a 
high request rate and reduce the number of copies in 
situations where only few requests are experienced. In 
both cases the algorithm allows the distributed proxy 
agents to agree on the specific location of one object 
without the need for a central coordinator or a 
broadcasting protocol. 
 
2.2. Algorithm 
 
The core of the ADC algorithm can be divided into two 
local techniques that allow global stabilization: Request 
Forwarding and Selective Caching with its components 
Mapping Table and Self-Organization by Multi-Casting. 
The same version of the algorithm is installed on every 
running proxy.  
 
2.2.1. Selective Caching & Aging 
Selective Caching was introduced in our previous work to 
allow each proxy to autonomously specialize on a specific 
set of cached data [3]. In hierarchical and hashing systems, 
every proxy stores all passing objects regardless of its 
future significance and uses the LRU algorithm as cache 
replacement strategy.  This approach creates a high cache 

fluctuation rate with minimal reliability in regard to the 
cached content. Proxy agents based on ADC keep track of 
the average request frequency of all requested objects 
based on the last three experienced requests. The learned 
data in the form of time gap between two requests will be 
used to decide whether the new data should be cached or 
discarded. A newly arrived object will only be cached if its 
average request time is smaller than the worst case 
currently residing in the cache.  
 
2.2.2. Mapping Table 
The mapping table is a local data structure within every 
proxy for resolving the object location to be used by the 
forwarding process using the object ID (URL). In a more 
abstract sense we can see the mapping table as a direct 
replacement of the static hashing function, used in hashing 
approaches, to map object IDs onto their unique location.  
It is the main objective of our algorithm to allow all 
existing mapping tables to agree on a unique location for 
each object without a broadcasting protocol or central 
coordinator. The size of the mapping table is the main 
focus of this paper. In our previous work we allowed the 
table to grow infinitely, keeping track of all previously 
experienced objects, which usually leads to out of memory 
problems and performance drawbacks. In the following 
section we will introduce a way to limit the mapping table 
while still keeping the performance at the previously 
attained level.  
 

3. MAPPING TABLE FOR LIMITED SYSTEM 
RESOURCES 

 
As previously mentioned, our algorithm for adaptive 
distributed caching assumes infinite resource capacity for 
the local mapping table in every proxy. This scenario is 
highly unrealistic and it was the ultimate goal of this paper 
to identify an extension to ADC so that it is more suitable 
for a realistic situation while keeping the performance 
characteristics achieved previously. Different approaches 
and modifications have been tried out to overcome the 
stated obstacle and the introduction of additional single 
and multiple mapping tables appeared as the most suitable 
to achieve our goal. 
 
3.1. Problems Encountered 
 
At this point let us give an example of the underlying 
problems that arise when we limit the mapping table to an 
infinite size. Whenever a previously un-requested object is 
experienced by one of the proxies, it should have an entry 
in the mapping table so that future requests for it can use 
the stored information for the computation of the request 
frequency. Essentially each mapping table entry should 
exist long enough to allow the occurrence of another hit. 
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Figure 2. Request Forwarding Path 

 



In our previous algorithm, each newly created entry will 
remain in the mapping table forever, leading to a growing 
mapping table. Depending on the amount of unique 
requested objects, the system will eventually run out of 
memory. 

In the case of a limited-size mapping table, it will fill 
up over time and existing entries will sooner or later be 
replaced by new requests. As described earlier, we use the 
average time between two requests to decide whether an 
object should be stored or discarded. Therefore, each 
newly created entry should stay long enough in the 
mapping table so that a repeat request can occur to allow 
the algorithm to compute the average request time.  
 
3.2. New Algorithm 
 
To deal with the above problem, we found it useful to part 
the mapping table into a section for objects that are 
requested more than once and another one for new objects 
that are only requested once. The underlying idea can be 
stated as follows. 
 
3.2.1. Single Table 
The single table is used to simply keep track of the current 
flow of requests. Each unknown object will receive a new 
entry on the top of the table and displacing the oldest entry 
at the bottom of the table – the well -known LRU 
algorithm. It is a requirement of the single table that it is 
large enough so that requests with at least two hits can 
occur.  Preliminary studies have shown that the minimum 
table size is highly dependent on the experienced request 
pattern and more work is necessary to characterize this 
relationship. When an existing entry in the mapping table 
experiences another hit, the time difference between the 
two requests will be used as a first approximation of the 
average object request frequency and the object will move 
from the single table to the multiple table (described 
below). The LAST column represents the local time value, 
for the last time when the specific object was requested 
while the AVG value represents the average time between 
two requests of the same type (Figure 3). 
 
 
 

3.2.2. Multiple Table 
The multiple table is also restricted in its size and contains 
only objects that were requested more than once ordered 
by their average request time. Once the table is fill ed, 
newly arriving objects from the single table have to have a 
lower average value than the worst case currently residing 
in the table before it will be placed at the appropriate 
position.  Removed objects from the multiple table will be 
placed into the single table as a regular entry, giving it the 
chance to be hit again later. The forwarding address for 
elements with the THIS value marks objects for which this 
proxy itself is responsible when future requests arrive and 
unresolved queries need to be forwarded to the origin 
server. The general structure of the multiple table is the 
same as that of the single table and it should be pointed 
out that the table is always ordered in ascending order of 
the fourth column (average request time). This order 
allows the simple identification of the object with the 
worst average time and quick insertions/deletions based 
using binary search. 
 
3.2.3. Cached Table 
The cached table in a proxy within the ADC architecture 
keeps track of all currently cached objects there. This table 
is very similar to the previously described multiple table, 
with the exception that the table entries represent actually 
stored objects. Similar to the multiple table, this table is 
also ordered by the average request value in column four 
and new objects have to outperform at least the worst case 
in (the last row) the table and will be placed in the 
appropriate position within it. Elements that drop out of 
the bottom of this table move back to the multiple table 
which gives them the chance to be hit again in the near 
future or to drop out completely over time. 
 
3.3. Noisy Hits 
 
Splitti ng up the mapping table from our previous work 
into a single and a multiple table has overcome the 
obstacle of limited resources but has introduced a new 
problem of Noisy Hits. When we order the mapping table 
based on the average request time, an object that has been 
requested only two times but within a very short time 
frame and never again will be wrongly placed into the 
mapping table (or even the caching part in the worst case) 

OBJ-ID PROXY LAST AVG HITS 
www.xy634 Proxy[5] 9952 0 1 

www.xy34 Proxy[4] 9953 0 1 

www.xy123 Proxy[1] 9954 0 1 

www.xy64 Proxy[2] 9955 0 1 

www.xy53 Proxy[1] 9956 123 432 

www.xy343 Proxy[7] 9957 0 1 

www.xy29 Proxy[4] 9961 0 1 

Figure 3.  A Sample Single Table 

 

OBJ-ID PROXY LAST AVG HITS 
www.xy64 Proxy[8] 2252 70 2 
www.xy55 This 4253 75 2 
www.xy13 Proxy[1] 4154 83 34 
www.xy644 This 6555 90 2 
www.xy52 Proxy[4] 3356 123 42 
www.xy433 Proxy[8] 7557 313 4 
www.xy299 Proxy[4] 3261 874 54 

Figure 4.  A Sample Multiple Table 

 



and uses up resources that could otherwise be assigned to 
more frequently requested objects. Different approaches 
have been tried out to filter out the noisy hits. When 
considering simplicity of the algorithm and computational 
cost, we decided that each object has to be hit at least 
twice to enter the multiple table, and at least three times 
before moving them into the caching table. With this 
approach, we are losing a small percentage of the overall 
hit-rate by compromising objects that were requested only 
once or twice, but it allows the algorithm to focus on the 
more important, well-established objects.  
 

4. EXPERIMENTATION 
 

To validate/verify the new algorithm described above, we 
ran multiple simulations over a set of artificially created 
request patterns based on the polygraph test bed [15] and 
compared the results to those of a common hashing based 
algorithm.  
 
4.2.  ZIPF Test Set 
 
In our previous paper [3], we introduced a simple 
artificially created request pattern based on ZIPF 
distribution over a set of 10,000 unique objects with 
500,000 requests. We simulated a set of 10 proxies with a 
total cache size of 1,000 objects (each proxy is able to 
store 100 objects).  

For the simulation with the ZIPF data, we select 1000 
entries as the average multiple table size, a value that was 
chosen based on preliminary studies, and compare the 
results of ADC to the two hashing algorithms. Figure 8 
shows that for our own ZIPF distribution, the ADC 
algorithm is well able to compete with both hashing 
approaches.  
 
4.3. POLYGRAPH Test Set 
 
For the second session of experimentations, we tried to 
create artificial data that represents closer the request 
patterns experienced on a real system and used the widely 
used Polygraph tool to build a file with 2.3 million 
requests. Figure 5 shows the source code of the polygraph 
language. We used the standard Polymix 4 file without the 
initial fill-phase.  Essentially, the final request file pattern 
contains two peak request rates over a set of 
approximately 1.5 million requests with some request gaps 
in between.  
 
4.3.1. Hit-Rate 
We ran the Polymix 4 file against ADC and both hashing 
algorithms, and describe in this section the observed hit 
rate.  
 

Figure 6 shows the hit rates in three sections. The first 
part covers the hashing algorithm with always caching; the 
second part the hashing with selective caching and the last 
part the ADC based approach. All three sections come 
with three graphs, a moving average over that 5,000 and 
50,000 and all requests. It is clear that the updated version 
of the ADC algorithm (with single, multiple and caching 
tables) outperforms both hashing algorithms over the set of 
2.3 million requests. It is also clear that the new ADC 
algorithm requires a certain learning phase, which comes 
with an additional overhead as can be observed in the 
slowly increasing graph of the total average hit-rate.  
 
4.3.2. Hops Rate & Execution Time 
In the second part of this section we take a look at the 
average hops rate, which represents the effort to search for 
a specific cached object. One hop is defined by the request 
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Figure 5. Algorithm comparison 

 

 
 
 
 
 
 

Figure 6. Polygraph Settings 
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Figure 7. Hit Rate Polygraph 

 

/* PolyMix-4 workload  */ 
 
TheBench.peak_req_rate = 100/sec; 

FillRate = TheBench.peak_req_rate; 

ProxyCacheSize = 1MB; 



being forwarded from one proxy to another one towards 
the target server and on its way back. Our results show that 
both hashing approaches need on average around 5.5 hops 
to resolve a requested object. The ADC approach starts off 
with around 8 hops per request and decreases to an 
average of around 7 hops, an acceptable overhead in 
comparison to the ideal function based search procedure 
of hashing. 
 

5. CONCLUSION 
 

In this paper we extended the existing ADC algorithm so 
that it is capable of performing under resource restrictions 
like physical RAM. For this purpose we introduced a way 
to limit the mapping table by splitti ng it up into a table for 
single requested objects, multiple requested objects and 
cached objects. In the experimentation we compared the 
new algorithm to two typical hashing based algorithms 
using the artificial data sets of a ZIPF distribution over 
10,000 objects and the 2.3 milli on requests received from 
the widely used benchmark tool called Polygraph. The 
results show that our modifications to ADC have no major 
performance drawbacks with respect to changes in the 
single table size and the new ADC is well able to 
outperform both hashing approaches in to the case of the 
polygraph benchmark data set. Additionally, the new ADC 
achieves competitive results under the categories of HOPS 
and execution time. 

We will continue to focus on the distribution of the 
simulation over a set of multiple machines with a focus on 
changes in the infrastructure and overall execution time in 
relationship to the single and multiple table size. We will 
also look into the problem of noisy hits, the relationship 
between incoming request distribution and single table 
size, ways to shorten the learning period. 
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