
ADAPTIVE DISTRIBUTED CACHING WITH MINIMAL MEMORY USAGE

Markus J. Kaiser, Kwok Ching Tsui and Jiming Liu

Department of Computer Science
Hong Kong Baptist University

Kowloon Tong, Kowloon, Hong Kong

ABSTRACT

We have shown previously that our Adaptive Distributed
Caching (ADC) algorithm is able to compete with typical
hashing based approaches in the realm of distributed proxy
systems. In our first approach, we allowed the algorithm to
run with the assumption of unlimited system resources
(e.g. physical RAM). In this paper we introduce an
extension to ADC, which gives the algorithm the
capability to perform in more realistic environments with
limited memory. We will discuss the arising problem,
introduce the new ADC and provide experimental results,
which will show that our algorithm is able to achieve the
performance characteristic of our previous work even with
limited resources.

1. INTRODUCTION

The Internet is growing exponentially and web caches
have been shown to be a feasible way to reduce the overall
network traffic [6]. A cache is usually placed between the
requesting clients and the resolving origin server, storing
transferred objects for future retrieval and reducing the
overall request latency for cached objects [8].

Proxies that are not able to resolve an incoming request
have to make a choice between either forwarding the
request directly to the origin server or query a neighboring
proxy for the needed object. The idea that a proxy can
forward requests to another peer lead to research in the
area of cooperative proxies and distributed proxy systems
[7]. Cooperative proxies try to combine their individual
caches in such a way that maximum cache usage is
achieved while acting transparently as one single load-
balanced proxy cache [11].

Previous research on cooperative proxies can be found
in the area of hierarchical [7] and hashing approaches [9],
adaptive caching [2], CacheMesh [1] and our previously
introduced algorithms - SOAP [5] and ADC [3].

1.1. Hierarchical vs. Hashing

Common approaches for cooperative proxy systems
encompass mostly solutions based on hierarchical cache
structures or classical hashing algorithms [9]. While
hierarchically organized proxies forward unresolved
requests to sibling and parent caches using ICP, hashing
proxies, like CARP [10], map the object-ID (URL) of an
unresolved request onto the same proxy peer based on a
globally known hashing function.

1.2. Adaptive Distributed Caching (ADC)

Preliminary work on ADC is covered by our studies in
proxy load balancing by a central coordinator [4] and
SOAP, which introduced the idea of adaptive forwarding
by evaluating the response time for each requested object
[5]. We introduced in our latest work an algorithm for
adaptive distributed caching (ADC) based on a set of
autonomous proxy agents. We have shown that our
algorithm is well able to find a balance between optimal
cache usage and distribution of hot documents and reaches
good values for the object allocation results that are
comparable with the near-ideal hashing algorithm.

CLIENTS

PROXIES

SERVERS

Figure 1. Ideal Cooperation

Client

Proxy A Proxy B Proxy C

Server A Server B Server C

The reminder of this paper is organized in the
following way: we will first restate the core components of
the ADC algorithm and its limitations, introduce the latest
changes and improvements to overcome the problem of
memory limitation in the following section, followed by a
set of experimentations for evaluating our modifications.
The paper will be concluded by a final discussion and
future work.

2. ADAPTIVE DISTRIBUTED CACHING

THROUGH PROXY AGENTS

2.1. Previous Work

In our latest paper, we introduced an adaptive distributed
caching algorithm that combines the advantages of
hierarchical distributed caching (allowing multiple copies
of the same object) and of hashing based distributed
caching (fast allocation through global agreement). Our
proxy agents maintain multiple copies of the frequently
requested objects to balance the user request load between
the cooperative proxies when hot documents experience a
high request rate and reduce the number of copies in
situations where only few requests are experienced. In
both cases the algorithm allows the distributed proxy
agents to agree on the specific location of one object
without the need for a central coordinator or a
broadcasting protocol.

2.2. Algorithm

The core of the ADC algorithm can be divided into two
local techniques that allow global stabilization: Request
Forwarding and Selective Caching with its components
Mapping Table and Self-Organization by Multi-Casting.
The same version of the algorithm is installed on every
running proxy.

2.2.1. Selective Caching & Aging
Selective Caching was introduced in our previous work to
allow each proxy to autonomously specialize on a specific
set of cached data [3]. In hierarchical and hashing systems,
every proxy stores all passing objects regardless of its
future significance and uses the LRU algorithm as cache
replacement strategy. This approach creates a high cache

fluctuation rate with minimal reliability in regard to the
cached content. Proxy agents based on ADC keep track of
the average request frequency of all requested objects
based on the last three experienced requests. The learned
data in the form of time gap between two requests will be
used to decide whether the new data should be cached or
discarded. A newly arrived object will only be cached if its
average request time is smaller than the worst case
currently residing in the cache.

2.2.2. Mapping Table
The mapping table is a local data structure within every
proxy for resolving the object location to be used by the
forwarding process using the object ID (URL). In a more
abstract sense we can see the mapping table as a direct
replacement of the static hashing function, used in hashing
approaches, to map object IDs onto their unique location.
It is the main objective of our algorithm to allow all
existing mapping tables to agree on a unique location for
each object without a broadcasting protocol or central
coordinator. The size of the mapping table is the main
focus of this paper. In our previous work we allowed the
table to grow infinitely, keeping track of all previously
experienced objects, which usually leads to out of memory
problems and performance drawbacks. In the following
section we will introduce a way to limit the mapping table
while still keeping the performance at the previously
attained level.

3. MAPPING TABLE FOR LIMITED SYSTEM
RESOURCES

As previously mentioned, our algorithm for adaptive
distributed caching assumes infinite resource capacity for
the local mapping table in every proxy. This scenario is
highly unrealistic and it was the ultimate goal of this paper
to identify an extension to ADC so that it is more suitable
for a realistic situation while keeping the performance
characteristics achieved previously. Different approaches
and modifications have been tried out to overcome the
stated obstacle and the introduction of additional single
and multiple mapping tables appeared as the most suitable
to achieve our goal.

3.1. Problems Encountered

At this point let us give an example of the underlying
problems that arise when we limit the mapping table to an
infinite size. Whenever a previously un-requested object is
experienced by one of the proxies, it should have an entry
in the mapping table so that future requests for it can use
the stored information for the computation of the request
frequency. Essentially each mapping table entry should
exist long enough to allow the occurrence of another hit.

 PROXIES
 Client

Server

Figure 2. Request Forwarding Path

In our previous algorithm, each newly created entry will
remain in the mapping table forever, leading to a growing
mapping table. Depending on the amount of unique
requested objects, the system will eventually run out of
memory.

In the case of a limited-size mapping table, it will fill
up over time and existing entries will sooner or later be
replaced by new requests. As described earlier, we use the
average time between two requests to decide whether an
object should be stored or discarded. Therefore, each
newly created entry should stay long enough in the
mapping table so that a repeat request can occur to allow
the algorithm to compute the average request time.

3.2. New Algorithm

To deal with the above problem, we found it useful to part
the mapping table into a section for objects that are
requested more than once and another one for new objects
that are only requested once. The underlying idea can be
stated as follows.

3.2.1. Single Table
The single table is used to simply keep track of the current
flow of requests. Each unknown object will receive a new
entry on the top of the table and displacing the oldest entry
at the bottom of the table – the well -known LRU
algorithm. It is a requirement of the single table that it is
large enough so that requests with at least two hits can
occur. Preliminary studies have shown that the minimum
table size is highly dependent on the experienced request
pattern and more work is necessary to characterize this
relationship. When an existing entry in the mapping table
experiences another hit, the time difference between the
two requests will be used as a first approximation of the
average object request frequency and the object will move
from the single table to the multiple table (described
below). The LAST column represents the local time value,
for the last time when the specific object was requested
while the AVG value represents the average time between
two requests of the same type (Figure 3).

3.2.2. Multiple Table
The multiple table is also restricted in its size and contains
only objects that were requested more than once ordered
by their average request time. Once the table is fill ed,
newly arriving objects from the single table have to have a
lower average value than the worst case currently residing
in the table before it will be placed at the appropriate
position. Removed objects from the multiple table will be
placed into the single table as a regular entry, giving it the
chance to be hit again later. The forwarding address for
elements with the THIS value marks objects for which this
proxy itself is responsible when future requests arrive and
unresolved queries need to be forwarded to the origin
server. The general structure of the multiple table is the
same as that of the single table and it should be pointed
out that the table is always ordered in ascending order of
the fourth column (average request time). This order
allows the simple identification of the object with the
worst average time and quick insertions/deletions based
using binary search.

3.2.3. Cached Table
The cached table in a proxy within the ADC architecture
keeps track of all currently cached objects there. This table
is very similar to the previously described multiple table,
with the exception that the table entries represent actually
stored objects. Similar to the multiple table, this table is
also ordered by the average request value in column four
and new objects have to outperform at least the worst case
in (the last row) the table and will be placed in the
appropriate position within it. Elements that drop out of
the bottom of this table move back to the multiple table
which gives them the chance to be hit again in the near
future or to drop out completely over time.

3.3. Noisy Hits

Splitti ng up the mapping table from our previous work
into a single and a multiple table has overcome the
obstacle of limited resources but has introduced a new
problem of Noisy Hits. When we order the mapping table
based on the average request time, an object that has been
requested only two times but within a very short time
frame and never again will be wrongly placed into the
mapping table (or even the caching part in the worst case)

OBJ-ID PROXY LAST AVG HITS
www.xy634 Proxy[5] 9952 0 1

www.xy34 Proxy[4] 9953 0 1

www.xy123 Proxy[1] 9954 0 1

www.xy64 Proxy[2] 9955 0 1

www.xy53 Proxy[1] 9956 123 432

www.xy343 Proxy[7] 9957 0 1

www.xy29 Proxy[4] 9961 0 1

Figure 3. A Sample Single Table

OBJ-ID PROXY LAST AVG HITS
www.xy64 Proxy[8] 2252 70 2
www.xy55 This 4253 75 2
www.xy13 Proxy[1] 4154 83 34
www.xy644 This 6555 90 2
www.xy52 Proxy[4] 3356 123 42
www.xy433 Proxy[8] 7557 313 4
www.xy299 Proxy[4] 3261 874 54

Figure 4. A Sample Multiple Table

and uses up resources that could otherwise be assigned to
more frequently requested objects. Different approaches
have been tried out to filter out the noisy hits. When
considering simplicity of the algorithm and computational
cost, we decided that each object has to be hit at least
twice to enter the multiple table, and at least three times
before moving them into the caching table. With this
approach, we are losing a small percentage of the overall
hit-rate by compromising objects that were requested only
once or twice, but it allows the algorithm to focus on the
more important, well-established objects.

4. EXPERIMENTATION

To validate/verify the new algorithm described above, we
ran multiple simulations over a set of artificially created
request patterns based on the polygraph test bed [15] and
compared the results to those of a common hashing based
algorithm.

4.2. ZIPF Test Set

In our previous paper [3], we introduced a simple
artificially created request pattern based on ZIPF
distribution over a set of 10,000 unique objects with
500,000 requests. We simulated a set of 10 proxies with a
total cache size of 1,000 objects (each proxy is able to
store 100 objects).

For the simulation with the ZIPF data, we select 1000
entries as the average multiple table size, a value that was
chosen based on preliminary studies, and compare the
results of ADC to the two hashing algorithms. Figure 8
shows that for our own ZIPF distribution, the ADC
algorithm is well able to compete with both hashing
approaches.

4.3. POLYGRAPH Test Set

For the second session of experimentations, we tried to
create artificial data that represents closer the request
patterns experienced on a real system and used the widely
used Polygraph tool to build a file with 2.3 million
requests. Figure 5 shows the source code of the polygraph
language. We used the standard Polymix 4 file without the
initial fill-phase. Essentially, the final request file pattern
contains two peak request rates over a set of
approximately 1.5 million requests with some request gaps
in between.

4.3.1. Hit-Rate
We ran the Polymix 4 file against ADC and both hashing
algorithms, and describe in this section the observed hit
rate.

Figure 6 shows the hit rates in three sections. The first
part covers the hashing algorithm with always caching; the
second part the hashing with selective caching and the last
part the ADC based approach. All three sections come
with three graphs, a moving average over that 5,000 and
50,000 and all requests. It is clear that the updated version
of the ADC algorithm (with single, multiple and caching
tables) outperforms both hashing algorithms over the set of
2.3 million requests. It is also clear that the new ADC
algorithm requires a certain learning phase, which comes
with an additional overhead as can be observed in the
slowly increasing graph of the total average hit-rate.

4.3.2. Hops Rate & Execution Time
In the second part of this section we take a look at the
average hops rate, which represents the effort to search for
a specific cached object. One hop is defined by the request

ALGORITHM COMPARISON

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 11 21 31 41 51 61 71 81 91 101
HIT RATE

R
E

Q
U

E
S

T
S

HASH ALL
HASH SELL
ADC

Figure 5. Algorithm comparison

Figure 6. Polygraph Settings

HIT - RATE - POLYGRAPH

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

15
1

30
1

45
1

60
1

75
1

90
1

10
51

12
01

13
51

15
01

16
51

18
01

19
51

H
IT

S
 [%

]

MA-5000
MA-50000
AVERAGE

Figure 7. Hit Rate Polygraph

/* PolyMix-4 workload */

TheBench.peak_req_rate = 100/sec;

FillRate = TheBench.peak_req_rate;

ProxyCacheSize = 1MB;

being forwarded from one proxy to another one towards
the target server and on its way back. Our results show that
both hashing approaches need on average around 5.5 hops
to resolve a requested object. The ADC approach starts off
with around 8 hops per request and decreases to an
average of around 7 hops, an acceptable overhead in
comparison to the ideal function based search procedure
of hashing.

5. CONCLUSION

In this paper we extended the existing ADC algorithm so
that it is capable of performing under resource restrictions
like physical RAM. For this purpose we introduced a way
to limit the mapping table by splitti ng it up into a table for
single requested objects, multiple requested objects and
cached objects. In the experimentation we compared the
new algorithm to two typical hashing based algorithms
using the artificial data sets of a ZIPF distribution over
10,000 objects and the 2.3 milli on requests received from
the widely used benchmark tool called Polygraph. The
results show that our modifications to ADC have no major
performance drawbacks with respect to changes in the
single table size and the new ADC is well able to
outperform both hashing approaches in to the case of the
polygraph benchmark data set. Additionally, the new ADC
achieves competitive results under the categories of HOPS
and execution time.

We will continue to focus on the distribution of the
simulation over a set of multiple machines with a focus on
changes in the infrastructure and overall execution time in
relationship to the single and multiple table size. We will
also look into the problem of noisy hits, the relationship
between incoming request distribution and single table
size, ways to shorten the learning period.

6. ACKNOWLEDGEMENT

This work is supported by Baptist University research
grant FRG/01-02/I-03.

7. REFERENCES

[1] Z. Wang, “Cachemesh: A Distributed Cache System for

World Wide Web”, Web Cache Workshop, 1997.

[2] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, “Adaptive
Web Caching: Towards a New Caching Architecture”, 3rd
International WWW Caching Workshop, June 1998.

[3] M.J. Kaiser, K.C. Tsui, J. Liu, “Adaptive Distributed
Caching” , Congress on Evolutionary Computation, IEEE
2002.

[4] K.C. Tsui, J. Liu, H.L. Liu, “Autonomy Oriented Load
Balancing in Proxy Cache Servers” , Web Intelli gence:

Research and Development, First Asia-Pacific Conference,
WI 2001, p.115-124.

[5] M.J. Kaiser, K.C. Tsui, J. Liu, “Self-organized Autonomous
Web Proxies” , Conference on Autonomous Agents &
Multi -agent Systems, IEEE 2002.

[6] J. Wang, “A survey of Web Caching Schemes for the
Internet” , ACM Computer Communication Review,
29(5):36--46, October 1999.

[7] P. Rodriguez, C. Spanner, E.W. Biersack, “Web Caching
Architectures: Hierarchical and Distributed Caching” . 4th
International Caching Workshop, 1999.

[8] A. Wolman, G.M. Voelker, N. Sharma, N. Cardwell , A.
Karlin, H.M. Levy, “On the Scale and Performance of
Cooperative Web Proxy Caching” , SOSP-17, 12/1999.

[9] K.W. Ross, “Hash-Routing for Collections of Shared Web
Caches” , IEEE Network Magazine, 11, 7:37--44, Nov-Dec
1997.

[10] J. Cohen, N. Phadnis, V. Valloppillil , K.W. Ross, “Cache
array routing protocol v.1.1” , Sept. 1997, Internet Draft.

[11] K.-L. Wu, Phili p S. Yu, “Load Balancing and Hot Spot
Relief for Hash Routing among a Collection of Proxy
Caches” , Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems

[12] C.-Y. Chiang, Y. Li, M.T. Liu, M.E. Muller, “On Request
Forwarding for Dynamic Web Caching Hierarchies” , In
Proceedings of the 20th International Conference on
Distributed Computing Systems (ICDCS'00), Taipei,
Taiwan, April 2000

[13] J. Dill ey, M. Arlitt , “ Improving Proxy Cache Performance:
Analysis of three Replacement Policies” , IEEE Internet
Computing, Nov.-Dec. 1999.

[14] L. Breslau, P. Cao, L. Fan, Graham Philli ps, Scott Shenker,
“Web Caching and Zipf-li ke Distributions: Evidence and
Implications” , Technical Report 1371, Computer Sciences
Dept, Univ. of Wisconsin-Madison, April 1998.

[15] http://www.web-polygraph.org/

