
Dynamic Resource Selection For Service Composition in The Grid

William K. Cheung+, Jiming Liu+, Kevin H. Tsang+, Raymond K. Wong++

Department of Computer Science+

Hong Kong Baptist University
Hong Kong

{william,jiming,hhtsang}@comp.hkbu.edu.hk

School of Computer Science & Engineering++
University of New South Wales

Australia
wong@cse.unsw.edu.au

Abstract

While numerous efforts have focused on service
composition in the Grid environment, service selection
among similar services from multiple providers has
not been addressed. In particular, all service
composition work done so far are based on a given
selection of services under a well set environment. As a
result, uncertainty (e.g., server load, network traffic,
computation time of the services due to changing
memory and other unexpected conditions) under a
real, dynamic environment has never been considered.
This paper prototypes the service selection under a
Grid environment and proposes an uncertainty
framework to address the issue. Experimental results
show that our considerations are valid and our
preliminary solution works well in our Globus Grid
network.

Keywords: Services composition, resource and
performance ontologies, Grid services, uncertainty
management

1. Introduction

Although Web services are becoming the backbone for
electronic business and interoperable applications,
standards such as WSDL [1], UDDI [2], and SOAP [3]
do not address the issues of service re-use and
composition, especially dynamic composition of
existing services from multiple sources. Various efforts
on addressing this issue including the recent initiative
of BPEL4WS [4] focus on representing compositions
but they do not address the actual process of selecting
and composing the services. Furthermore, the benefits
of embracing Web services on Grid [5] have been
recently realized in the Open Grid Services
Architecture (OGSA) of Globus (GT3) – the de-facto
standard of Grid middleware [6]. Since Grid platform
is in general more conscious regarding the utilization
and reliability of resources, services composed in Grid

need to be planned in an optimized way. This problem
is even more challenging if various uncertainties
caused by changing server load, network traffic,
memory conditions and hence runtime for each
services are considered. Along this line and inspired by
the resource matching proposal [16], this paper
attempts to investigate the uncertainties during service
selection and composition, propose an initial solution
and finally realize its significance by implementing it
(called BU-Grid) and running series of experiments.

1.1 Related Works
Due to the increasing attention to Web services from
the research and industry communities, there have
been lots of recent works addressing various issues of
Web services (e.g., [7]). To name a few, for example,
in [8], the issue of service composition is addressed in
the context of Web components, as a way for creating
composite Web Services by re-using, specializing and
extending existing ones. McIlarith and Son [9]
proposed an approach to building agent technology
based on the notion of generic procedures and
customizing user constraints. They argue that an
augmented version of the logic programming language
Golog provides a natural formalism for programming
Web services. Prototypes that guide a user in
composing Web services in a semi-automatic manner
have been proposed in [10,11]. The semi-automatic
process is facilitated by presenting matching services
to the user at each step of a composition and filtering
the possibilities by using semantic descriptions of the
services. While there are numerous papers describing
specifications and methods for service composition,
seldom of them have addressed the issues of choosing
services based on its costs and resources (which is an
important issue in utilizing resources in a Grid
environment). For instance, [12] mentioned a simple
scoring service based on the summation of the services'
weighted scores. However, the details of estimating the
scores and evaluating criteria (which are crucial in the
actual implementation and system evaluation, again,
especially in Grid) have been left out. Blythe et al., in

[13], used limited state information (the current data
storage of the distributed hosts) for optimizing services
compositions for e-Science applications. The work
closest to ours is due to Sample et al. [14] that
incorporated services uncertainty (e.g., costs,
performance, reliability) via probabilistic modeling in
the composition process.

1.2 Paper Organization
The remaining of the paper is as follow. Section 2
gives a typical environment for autonomous services
composition. Section 3 describes in detail the overall
system architecture of BU-Grid. Section 4 provides in
detail some bidding mechanisms for services selection
in a dynamic Grid environment. Experimental results
and the lessons learnt are found in Section 5 and 6,
respectively. Section 7 concludes the paper with a
number of future research directions.

Figure 1. A typical service composition
environment.

2. Dynamic Services Composition

2.1 A General Environment
A typical environment for supporting Grid/Web
service composition is illustrated in Figure 1. A
collection of service providers expose, via the Internet,
the services they support as Web services. The services
are registered at a service registry (e.g. UDDI) for
service discovery. The semantics of the available Web
services (e.g., the semantics of the input/output
parameters) are described by some machine
understandable semantic Web language (e.g. OWL-S).
Relationships and concepts of the vocabularies used to
enable semantic matching of services are shared in an
ontology repository. A service consumer is a client

program which sends service requests (e.g., in terms of
desired input/output relationships) to the Grid/Web
service broker which bears the duty of selecting
suitable primitive services, composing them as well as
monitoring their execution.

2.2 An Illustrated Example: e-Finance Services
Suppose there exists the need of decision support for
stock trading which involves a typical service flow
(Figure 2) from clarifying the specific goal of the
user – Service-1, to fetching stock information from
heterogeneous information sources – Service-2, to
analyzing the information for a summarized report –
Service-3, and eventually to buying stock on-line –
Service-4. In the service-oriented computation market,
different companies start providing implementations of
the services with different degrees of performance and
cost. The service consumers then compare and select
specific implementations for each service along the
flow. As the e-Service industry develops, the demand
of the services will become more complicated and
diversified. Some services used to be provided by one
company start splitting for further specialization and
some used to be separated start merging for providing
one-stop “canned” consulting services. Dynamic
composition of a suitable plan out of the set of
diversified services available in the computational
market becomes non-trival and the architecture
proposed in this paper is for addressing this issue.

Figure 2. A particular e-Finance service flow.

2.3 Uncertainties in The Grid Environment
To contrast with the traditional distributed computing
environments, the Grid aims to coordinate dynamically
resources distributed in the Internet which is an
environment with its performance subject to diverse
sources of uncertainties (e.g., transient system load and
network bandwidth, dynamically cached data files,
etc.). In addition, the dynamic coordination
requirement results in a great need for Grid related
systems to maintain the trust relationship among the
distributed resources.

3. BU-Grid System Architecture
Request
Service

Goal
Identified?

Refine User
Goal

[No]

Execute
Service Flow

Present
Result

Identify User
Goal

Retrieve
Flow Base

[Yes]

Flow Exist?

Update Ranking
Score

Select Service
through Bidding

Flow
Completed?

Retrieve Service
Registry

[No]

More then
one flow?

Select Flow
through Ranking

[Yes]

More than one service
implementation in the flow?

[No]

[Yes]
[No]

Compose
Service Flow

[Yes]

Update Flow
Base

Retrieve
User Profile

Update User
Profile

[Yes]

[No]

The architectural design of the proposed BU-Grid, to
be further described in the following (also see Figure 3
for an overview), contains components that are
common in most of the service composition systems.
In addition, it is featured by the incorporation of a)
bidding services and bid evaluation components for
dynamic service selection, as well as b) a plan base and
a plan retriever for plan re-use support.

Figure 4. Activity diagram of service request use
case.

 : Service
Consumer

 : QueryForm : RequestManager : QueryParser : FlowComposer : PlanBase : IndexTable :
SemanticProcessor

 : BidEvaluator

 : ServiceFlow

 : ServiceRanking : ExecutionEngine : UserProfile

1: Service Request

Goal not Identified

12: [No Existing Flow] Query

13: Services

10: Query

11: Services

14: Match with Subgoal

15: Boolean

9: Create

16: Add Service to Flow

Flow not completed

2: Get Respond

3: Process Query

6: Goal

7: Respond

8: Compose

17: Service Flows

18: [Number of Service Flow > 1] Service Flow election

19: Service Flow

22: Execute the Service Flow

23: Result

24: Result

25: Result

27: Store Service Flow

28: Update Ranking Score

20: [Number of Service in Service Flow > 1] Service Selection

21: Service Implementation

4: Retrieve

5: Profile

26: Update User Profile

Figure 3. The system architecture of BU-Grid.

3.1 Service Registration and Indexing
Semantic descriptions of Grid services are stored at the
Service Registry, which may include:
- High-level services descriptors: E.g., for e-

business applications, they can be company name,
business nature/categories, contact person, phone
number, email address, etc.

- Low-level services interface descriptors: E.g.,
service name, functional description, URL of the
WSDL file or Grid Service Handle (GSH),
semantics of the input/output parameters, etc.

Figure 5. Sequence diagram of service request use
case.
 To support efficient access of GSHs from the Service

Registry and efficient update of the services’ state information, both the high-level and low-level service
semantics are indexed and categorized. Furthermore, to
extend the service discovery capability to go beyond
the simple keyword-based approach, different domain-
specific ontologies are maintained in Ontology
Repository to support semantic matching.

3.2 Task Specification & Service Composition
In BU-Grid, a task is represented by specifying the
required input and desired output. To solve the task (or
to satisfy the specification), a meta-level service is to
be composed using the primitive services available in
the Service Registry.

By treating the input as the initial state, the desired
output as the goal, and the available services as the
operators, service composition can readily be
formulated as an AI planning problem [14]. Under the
Grid context, one challenge is that the planning has to
be performed in a dynamic environment, containing
multiple functionally equivalent operators (services)
but with possibly different implementations and time-
varying resources. Besides, services matchmaking
based on semantics is also a non-trivial task.

3.2.1 Services Matchmaking
To enable correct matchmaking between Grid services,
we need to well-define services compatibility. There
exist at least two types of compatibility measures,
namely data type compatibility as well as semantic
compatibility. Eq.(1) and Eq.(2) give two possible
forms of compatibility in terms of data type and
semantics between an output of a service and an input
of a matching service.

a) Data Type Compatibility








=

otherwise
downcast

upcastsame
typetypeityCompatibil inputoutputt

0
5.0

/1
),(

 (1)

where “upcast” means the output has to be upcasted
(e.g., from int to float) so as to be fed into the next
input, and similarly for “downcast”.

b) Semantics Compatibility

1
(,) 0.8

0
s input output

equivalent
Compatability semantic semantic subclass

otherwise


= 



 (2)

where “subclass” means that the output is a subclass of
the input and the need of ontology is explicitly
implied.

3.2.2 Planning
Based on the services compatibility measures defined,
planning for service composition can be proceeded
using different planning paradigms. One example is
regression planning which is based on backward
chaining. Starting from the output of the specified task
as the ultimate goal, the planner can search the Service
Registry for the services with their outputs compatible
with that of the specified task. It is possible that the set

of compatible services can be categorized into several
distinct service interfaces, each contains a unique
input/output pair. One can then use those distinct
service interfaces as sub-goals and continue to search
for the best plan. Sometimes, for efficiency purpose,
one may want to use a local search strategy by
choosing one of the interfaces and continuing the
search. The selection can be done based on a local
performance estimation of the interfaces. See Figure 4
for an overview and refer to Section 6.2 for more
discussion on dynamic plan optimization.

As one service interface is in fact representing a group
of functionally identical services, its performance
estimation should be characterized by the best service
under the same interface. So, under this scenario, the
remaining question is how to select the best service
under the dynamic environment.

3.2.3 Service Selection
Services with identical input/output interfaces can have
different implementations, time-varying system load,
time-varying cached data, etc. Specifying these a)
performance related and b) state related information
via ontology is important to support more robust task
planning.

A) Resource and Performance
Via the GT3 middleware, one can obtain state
information of a Grid node from the service
MasterForkManagedJobFactoryService
(see Table 1). For network related states, they have not
yet been available in GT3 and one can install the
Ganglia system for obtaining them in an XML format
which is based on a particular DTD for Ganglia (see
Table 2 for a complete list). Based on the specific
requirement of the application, different scoring
schemes derived from those system state information
can be adopted for service selection. Besides, some
current/aggregated performance statistics obtained
from the past history should also be an additional
determining factor.1

B) Ontologies
Various proposals have been published in using RDF-
Schema for ontology specification. Without re-
inventing the wheels, this paper assumes the three
ontologies in RDF-Schema as proposed in [16],
namely resource ontology (e.g., OperatingSystem
.TotalPhysicalMemory = 512MB), resource

1 Note that the service cost is another orthogonal factor
to be considered in a computation market, which
however is not the focus of this paper.

request ontology (e.g., MinPhysicalMemory =
1024MB) and policy ontology (that capture the
resource authorization and usage policies). The actual
resource matching based on these ontology were
described in [16]. Besides, we believe that
performance related ones (e.g., ResponseTime =
14min.) should also be useful. In this paper, we
propose to make use of both types of information for
service selection (see Section 4).

4.2 Bidding Process
The broker (search engine) first notifies each of the
service providers that host the required service
implementations. Being notified, each service
implementation will make use of the current estimated
service time Ei(I) as well as the current system load to
compute a bid value as in Eq.(3) and send the bid back
to the broker:

() ()
)(

11
IE

LIB
i

ii ×−= (3)

C) Selection
With the service resource and performance ontologies
ready, particular service implementation can then be
wisely picked for better Grid resource utilization. In
particular, a bidding-like mechanism based on a
dynamic scoring scheme (Figure 4) is proposed for this
service selection task, as detailed in Section 4.

where Li is the CPU usage of the node hosting the ith
service implementation. Note that Li is a state
information and Ei(I) is a performance prediction.

The broker then selects a service implementation
according to the probability distribution:

() ()
()∑

=

i
i

i

IB
IB

iP (4)

Figure 4. Service selection.

4.3 Estimation of Service Performance
After the selected implementation finished the
assigned job, it will notify the broker the result. The
broker will then return the actual service time Ai and
the estimated service time of the ith service
implementation will be updated as

() () i
t
i

t
i AIEIE ×+×−=+ αα)(11 (5)

where α is the updating rate. In our experiment, its
value is set to 0.8. The responsiveness of the system is
determined by the value of α. Such an updating rule
is able to capture smooth variation of service
performance.

Figure 5. An overview of service composition and
execution process.

4. Dynamic Service Selection Via Bidding

Here we propose a bidding-like mechanism for the
aforementioned service selection problem with the
hope of balancing the load among a set of Grid nodes
in a virtual organization.

4.4 A MiniMax Bidding Strategy
4.1 Notations For cases where worst-case performance has to be

controlled, the minimax strategy can be used for
computing the bidding score. In particular, we can
store the actual service times for a time window of size
N (=10 for our experiment) and we take the maximum
instead of average to avoid selecting node with large

Let I denote a particular service interface, Ei(I) denote
the estimated service time of the ith implementation for
the service interface I, Bi(I) denote the value sent to the
broker by the ith implementation for bidding the
interface I to be performed.

service time fluctuation. The formula for the bidding
score can be reformulated as

() ()
{ , 1,... 1}

11
max ()i i

tt i i i N

B I L
A

∈ − − +

= − × (6)

Other than the minimax scheme, one can also compute
directly the standard deviation as uncertainty and
incorporate it into the bidding score (later on called the
uncertainty scheme), for example,

() () 11
()i i

i i

B I L
E I sβ

= − ×
+

 (7)

where

()2

1

1
1

i

i t
t i N

s A
N = − +

= −
− ∑ tA

and β is used for controlling the degree of tolerance for
performance fluctuation.

Figure 6. The sequence diagram of the bidding
process.

5. Experiments

In order to study in detail the effectiveness of the
proposed bidding process on the Globus platform and
the behavior at each grid node, we have set up a small
grid environment with six grid nodes, one being the
Service Broker and the other five being the Service
Providers. Their properties are shown in Table 1.
Figure 6 shows the sequence diagram of the overall
bidding process. All of the Grid services are running
in the service container provided by GT3. The
BrokerService queries the IndexService of each Grid
node to get the list of available service

implementations. BiddingService consults
SystemStatusService of its own node to get the current
system information. Three experiments have been
conducted for evaluating different virtual organization
scenarios on the grid platform. Without loss of
generality, we assume homogeneous service type for
all the grid nodes for testing the service selection
process. For experiments related to heterogeneous
service types and composite types, readers are referred
to one of our previous works [17].

 node-1 node-2 node-3 node-4 node-5
CPU P4

2.4GHz
P3

.7GHz
P3

.65GHz
P3

.65GHz
P3

.43GHz
RAM
size 512MB 256MB 256MB 256MB 256MB

Table 1 The properties of the five grid nodes used
in the experiments.

Service
Time

Single
Node

Three
Nodes

Five
Nodes

Minimum 17.6s 17.5s 18.1s
Maximum 23.3s 49.7s 96.2s
Average 19.0s 31.8s 41.3s
Total 1047.7s 704.9s 552.1s

Table 2. Service time for different number of nodes
in the Grid environment.

5.1 The Effect of Increasing Number of Nodes
The first experiment tries to test the overall gain when
an increasing number (1, 3 & 5) of Grid nodes are
being used during the bidding process. The inter-
arrival time for the service requests is 5 seconds. The
results are tabulated in Table 2. It is noted that the
overall service time is significantly reduced and
individual service request should experience shorter
latency but occasionally longer service time. The
corresponding job schedules of the three cases are
shown in Figures 7-9 and the distribution of the job
assignments for the case with five nodes is shown in
Figure 10. Note that the job requests can successfully
be assigned to the five nodes according to their
computational resources.

5.2 Adaptability Towards Unexpected Loading
The second experiment tries to test the effectiveness of
the proposed bidding process for adaptive balancing of
the service requests under the situation with some
unexpected loading experienced by some of the Grid
nodes. We used five nodes for this experiment. In
particular, node-1 and node-2 are set to experience
additional loading from 100 sec to 300 sec and from
400 sec to 500 sec, respectively; starting from the time
the first service request arrives. The situations are

highlighted in Figure 12. The inter-arrival time is 5 sec.
By comparing the distribution of the job assignments
between the case with unexpected loading (Figure 13)
and that without the loading, it is noted that more job
assignments are shifted from node-1 and node-2 to the
others via the bidding process.

5.2 Adaptability Towards Service Reliability
The third experiment tries to test the effectiveness of
the use of the minimax scheme and the uncertainty
scheme. For the experiment setting, we only used three
nodes with similar computational power (i.e., node-2,
node-3, & node-4) to clearly demonstrate the effect
and programmed node-2 to have a large fluctuation in
service time to simulate the situation of an unreliable
service provider. The inter-arrival time for this
experiment is 20 seconds. First, we tried a uniformly
distributed fluctuation within the range of [-10,10] sec.
for the service time of node-2. With the use of the
proposed uncertainty scheme with β=3, the bidding
process can successfully assign less jobs to node-2
which is supposed to be less reliable in terms of
performance, as shown by comparing Figures 15 and
17. The minimax scheme, however, is not very
effective for that scenario. Then, we replaced the
uniform fluctuation by a binomial process with {+10, -
10} the only possible outcomes (so much more severe
than the uniform one). Under this scenario, the
minimax can effectively migrate the job assignments to
those with more stable service performance.

6. Discussion and Future Works

6.1 Semantic Service Matching
Semantics based service matching, such as those
ontology-based matchmaking techniques, has been
active in the domain of Web services. Recently,
researchers have tried to extend the techniques to Grid
services. Since Grid is resource conscious, resource
consideration during service matching is useful and
important (e.g., [16]). Our ongoing work is to extend
the techniques presented in this paper into the
ontology-based framework to facilitate a better and
more practical service matching in Grid.

6.2 Dynamic Plan Optimization
The next obvious step of this work is to integrate the
bidding mechanism one step upward to the planning
step. By assuming that each Grid service interface
keeps a table of scores S to indicate its desirability to
use some other services, where the scores can be some
statistics computed during the bidding for services
selection (Section 4). Then, the setup will be similar to

that of the PageRank algorithm [15] used by Google
search engine for indicating Web page importance.
For example (see Figure 5), let R denote the reward for
a selected plan (can be a constant equal to, say, 1), N
denote the number of the outputs of the specified task,
n denotes the current updating service interface, m
denotes the service interfaces that use the output of
current service interface n, and α denotes the updating
rate (can be a constant equal to some value less than
1). For service interfaces with their outputs form the
outputs of the specified task (i.e., the ultimate goal),

()
N
RSS t

n
t
n ⋅+⋅−=+ αα11

Then, for the subsequent planning steps,
() ∑⋅+⋅−=+

m

t
m

t
n

t
n SSS αα11

Such a scoring scheme implies implicitly that
frequently selected (good track records) service
interfaces will be updated more frequently. Also, those
interfaces often appear near to the final output of the
selected plans (bringing you faster to the goal) will
have higher scores. Also, those interfaces provide
more outputs (more resourceful) will have a higher
score. We are currently studying the effectiveness of
such a scoring scheme.

6.3 Plan Base
Performing service composition from scratch can be a
time-consuming process for time-critical applications.
One can use a plan base for storing plans that have
been executed. A similar idea has been echoed in [13].
The archived plans (as some options of pre-composed
services) can then be used for the construction of new
plans. The reuse of plans should be can increase the
efficiency of plan construction. For better use of the
storage resource, there can also be some related
policies for deleting plans that appear obsolete.

7. Conclusion

This paper focused on service selection under a
dynamic environment, i.e., with various uncertainties
due to changing server loading, network traffic etc.
Although the issue is critical and practical, it has been
disregarded by previous works in Web service
composition. While Web services embraced in Grid
platforms is getting popular, we demonstrated that
service selection could make significant performance
and resource utilization differences during service
composition in the Grid, especially in a dynamic
environment. Although the experimental results were
encouraging, we believe that further investigation on
selecting services for large scale service composition

15. R. Motwani, S. Brin, L. Page, and T. Winograd, "The
PageRank Citation Ranking: Bringing Order to the
Web,” Stanford Digital Libraries Working Paper, 1998.

will encourage more Web service usages, especially
for Grid environments where resource utilization and
service performance are concerned.

16. H. Tangmunarunkit, S. Decker, C. Kesselman,
"Ontology-based Resource Matching in the Grid – The
Grid meets the Semantic Web”, Workshop on
Semantics in P2P and Grid Computing, May 2003.

Acknowledgement

This work is supported by Centre for E-Transformation
Research, Hong Kong Baptist University under the RGC
Group Research Grant (HKBU 2/03/C).

17. W. Cheung, J. Liu, K. Tsang, R. Wong, “Towards
Autonomous Service Composition in A Grid
Environment,” to appear in Proceeding of 2004 IEEE
International Conference on Web Services, San Diego,
California, July, 2004

References

1. WSDL, http://www.w3.org/TR/wsdl
2. UDDI, http://www.uddi.org
3. SOAP, http://www.w3.org/TR/SOAP/
4. BPEL4WS, http://www-106.ibm.com/developerworks/

library/ws-bpel/
5. I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy

of the Grid: Enabling Scalable Virtual Organizations,"
International Journal of High Performance Computing
Applications, Vol. 15, pp. 200-222, 2001.

6. I. Foster, C. Kesselman, J.M. Nick and S. Tuecke, "Grid
Services for Distributed System Integration," IEEE
Computer, June 2002.

Figure 7. Job schedules with one node.

7. IEEE Internet Computing, Special issue: Middleware
for Web services, 2003.

8. J. Yang and M. Papazoglou, “Web components: A
substrate for web service reuse and composition,”
Advanced Information Systems Engineering,
Proceedings of the 14th International Conference,
CAiSE 2002 Toronto, Canada, May 27-31, 2002.

9. S. McIlraith and T. Son, “Adapting Golog for
composition of semantic Web services”, Proceedings of
the 8th International Conference on Principles of
Knowledge Representation and Reasoning, 2002.

Figure 8. Job schedules with three nodes (red for
node-1, yellow for node-2, green for node-3).

10. E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic
composition of Web services using semantic
descriptions,” Proceeding of Web Services: Modeling,
Architecture & Infrastructure workshop in ICEIS, April
2003

11. L. Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J. Cox, C.
Puleston, P.R. Smart, "Towards a Knowledge-based
Approach to Semantic Service Composition," 2nd
International Semantic Web Conference (ISWC2003),
20-23 October 2003, Florida, USA, Lecture Notes in
Computer Science, LNCS 2870, pp 319-334.

Figure 9. Job schedules with five nodes (red for
node-1, yellow for node-2, green for node-3, blue
for node-4, purple for node-5).

12. B. Benatallah, Q. Sheng, and M. Dumas, The Self-Serv
environment for Web services composition, in IEEE
Internet Computing, pages 40--48, 7(1), 2003.

13. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A.
Agarwal, G. Mehta, K. Vahi, "The Role of Planning in
Grid Computing," Proceedings of the 13th International
Conference on Automated Planning and Scheduling
(ICAPS), June 9-13, 2003, Trento, Italy.

14. N. Sample, P. Keyani, G. Wiederhold, "Scheduling
Under Uncertainty: Planning for the Ubiquitous Grid,"
Proceedings of the Fifth International Conference on
Coordination Models and Languages (Coord2002).

Figure 10.
Job assignment
distribution with
five nodes.

a) node-2

b) node-3

c) node-4

 Average
node-2 24.1s
node-3 23.1s
node-4 23.4s

a) node-1

b) node-2

Figure 14. Job service time for node-2, node-3 and
node-4 under unreliable service scenario with Eq.
(5) used as the updating rule.

Figure 15.
Job assignment
distribution under
unreliable service
scenario with Eq.
(5) used as the
updating rule.

Figure 11. Job service time for node-1 and node-2
under system load variation scenario.

a) node-1 b) node-2

 Figure 12. CPU usage for node-1 and node-2 under
system load variation scenario.

a) node-2

b) node-3

c) node-4

 Average
node-2 23.8s
node-3 23.0s
node-4 23.4s

Figure 13.
Job assignment
distribution with
five nodes under
the unexpected
system loading
scenario.

Figure 16. Job service time for node-2, node-3 and
node-4 under unreliable service scenario with the
uncertainty scheme used.

Figure 17.
Job assignment
distribution under
unreliable service
scenario with the
uncertainty
scheme used.

a) node-2

b) node-3

c) node-4

 Average
node-2 25.1s
node-3 23.0s
node-4 23.4s

Figure 18. Job service time for node-2, node-3 and
node-4 under unreliable service scenario with the
minimax scheme used.

Figure 19.
Job assignment
distribution under
unreliable service
scenario with the
minimax scheme
used.

	1. Introduction
	
	
	
	The remaining of the paper is as follow. Section 2 gives a typical environment for autonomous services composition. Section 3 describes in detail the overall system architecture of BU-Grid. Section 4 provides in detail some bidding mechanisms for service

	2. Dynamic Services Composition
	3. BU-Grid System Architecture
	
	A) Resource and Performance
	
	
	
	C) Selection

	5. Experiments
	6. Discussion and Future Works
	6. Conclusion
	References

