
Towards Autonomous Service Composition in A Grid Environment

William K. Cheung+, Jiming Liu+, Kevin H. Tsang+, Raymond K. Wong++

Department of Computer Science+

Hong Kong Baptist University
Hong Kong

{william,jiming,hhtsang}@comp.hkbu.edu.hk

School of Computer Science & Engineering++
University of New South Wales

Australia
wong@cse.unsw.edu.au

Abstract

Web services are becoming important in applications
from electronic commerce to application
interoperation. While numerous efforts have focused
on service composition, service selection among
similar services from multiple providers has not been
addressed. Such issue is more serious when services
are embraced in Grid platforms, which are usually
resource-conscious. Experimental results show that
our considerations are valid and our preliminary
solution works well in our Globus grid network.

Keywords: Autonomous services composition,
Bidding, Web services, Grid computing

1. Introduction

Web services are becoming the prominent paradigm
for electronic business and interoperable applications
across heterogeneous systems. However, Web services
standards such as WSDL [1], UDDI [2], and SOAP [3]
do not address the issues of service re-use and
composition, especially dynamic composition of
existing services from multiple sources. Various efforts
on addressing this issue including the recent initiative
of BPEL4WS [4] focus on representing compositions,
whereas, the actual issues involved in composing the
services, e.g., the selection process and composition
considerations such as run-time costs, etc., have not
been considered.

Another technology that is getting increasing
popularity is Grid [5]. Grid is a distributed
environment that enables flexible, secure, coordinated
resource sharing, among dynamic collections of
individuals, institutions and resources. The benefit of
embracing Web services on Grid have been recently
realized in the Open Grid Services Architecture
(OGSA) of Globus (GT3) – the de-facto standard of

Grid middleware [6], and shown in various projects
(e.g., Geodise - www.geodise.org, MyGrid -
www.mygrid.org.uk). However, Grid platform is in
general more conscious regarding the utilization and
reliability of resources, and services composed in Grid
need to be planned in an optimized way. Along this
line and different from previous works, this paper
attempts to investigate the underlying criteria in
practice, propose an initial solution using a bidding-
like mechanism, and finally realize its significance by
implementing the solution (called BU-Grid) and
running series of experiments. Experimental results are
encouraging and further improvements shall be
obtained from our ongoing effort.

1.1 Related Works
Due to the increasing attention to Web services from
the research and industry communities, there have
been lots of recent works addressing various issues of
Web services (e.g., [7]). To name a few, for example,
in [8], the issue of service composition is addressed in
the context of Web components, as a way for creating
composite Web Services by re-using, specializing and
extending existing ones. McIlarith and Son [9]
proposed an approach to building agent technology
based on the notion of generic procedures and
customizing user constraints. They argue that an
augmented version of the logic programming language
Golog provides a natural formalism for programming
Web services. Prototypes that guide a user in
composing Web services in a semi-automatic manner
have been proposed in [10,11]. The semi-automatic
process is facilitated by presenting matching services
to the user at each step of a composition and filtering
the possibilities by using semantic descriptions of the
services. While there are numerous papers describing
specifications and methods for service composition,
seldom of them have addressed the issues of choosing
services based on its costs and resources (which is an
important issue in utilizing resources in a Grid

environment). For instance, [12] mentioned a simple
scoring service based on the summation of the services'
weighted scores. However, the details of estimating the
scores and evaluating criteria (which are crucial in the
actual implementation and system evaluation, again,
especially in Grid) have been left out. Blythe et al., in
[13], used limited state information (the current data
storage of the distributed hosts) for optimizing services
compositions for e-Science applications. The work
closest to ours is due to Sample et al. [14] that
incorporated services uncertainty (e.g., costs,
performance, reliability) via probabilistic modeling in
the composition process.

1.2 Paper Organization
The remaining of the paper is as follow. Section 2
gives a typical environment for autonomous service
composition. Section 3 describes in detail the overall
system architecture of BU-Grid. Section 4 provides in
detail a bidding mechanism for service selection in a
dynamic Grid environment. Experimental results and
the lessons learnt are found in Section 5 and 6,
respectively. Section 7 concludes the paper with a
number of future research directions.

Figure 1. A typical service composition
environment.

2. Autonomous Service Composition

A typical environment for supporting Grid/Web
service composition is illustrated in Figure 1. A
collection of service providers expose, via the Internet,
the services they support as Web services. The services
are registered at a service registry (e.g. UDDI) for
service discovery. The semantics of the available Web

services (e.g., the semantics of the input/output
parameters) are described by some machine
understandable semantic Web language (e.g. OWL-S).
Relationships and concepts of the vocabularies used to
enable semantic matching of services are shared in a
ontology repository. A service consumer is a client
program which sends service requests (e.g., in terms of
desired input/output relationships) to the Grid/Web
service broker which bears the duty of selecting
suitable primitive services, composing them as well as
monitoring their execution.

Figure 2. The system architecture of BU-Grid.

3. BU-Grid System Architecture

The architectural design of the proposed BU-Grid, to
be further described in the following (also see Figure 2
for an overview), contains components that are
common in most of the service composition systems.
In addition, it is featured by the incorporation of a)
bidding services and bid evaluation components for
dynamic service selection, as well as b) a plan base and
a plan retriever for plan re-use support. While the
focus of this paper is to study in detail how the state
information can be used to form the selection criteria
and optimize the overall system utilization via a
bidding mechanism, details about the planning part and
its relationship with the proposed service bidding
mechanism will also be included for completeness.

3.1 Service Registration and Indexing
Semantic descriptions of Grid services are stored at the
Service Registry, which may include:
- High-level services descriptors: E.g., for e-

business applications, they can be company name,
business nature/categories, contact person, phone
number, email address, etc.

- Low-level services interface descriptors: E.g.,
service name, functional description, URL of the
WSDL file or Grid Service Handle (GSH),
semantics of the input/output parameters, etc.

To support efficient access of GSHs from the Service
Registry and efficient update of the services’ state
information, both the high-level and low-level service
semantics are indexed. Furthermore, to extend the
service discovery capability to go beyond simple
keyword search, different domain-specific ontologies
are maintained in Ontology Repository to support
semantic matching.

3.2 Task Specification & Service Composition
In BU-Grid, a task is represented by specifying the
required input1 and desired output. To plan for the task
(or to satisfy the specification), a meta-level service
will be composed on-demand using the primitive
services available in the Service Registry.

By treating the input as the initial state, the desired
output as the goal, and the available services as the
operators, service composition can readily be
formulated as an AI planning problem [14]. Under the
Grid context, one challenge is that the planning has to
be performed in a dynamic environment, containing
multiple functionally equivalent operators (services)
but with possibly different implementations as well as
time-varying resources. Besides, services matchmaking
based on semantics is also a non-trivial task.

3.2.1 Services Matchmaking
To enable correct matchmaking between Grid services,
we need to well-define services compatibility. There
exist at least two types of compatibility measures,
namely data type compatibility as well as semantic
compatibility. Eq.(1) and Eq.(2) give two possible
forms of compatibility in terms of data type and
semantics between an output of a service and an input
of a matching service.

a) Data Type Compatibility

1 Sometimes, a task can be fully specified by only
desired output, for example, accessing some processed
e-Science data from the grid.

⎪
⎩

⎪
⎨

⎧
=

otherwise
downcast

upcastsame
typetypeityCompatibil inputoutputt

0
5.0

/1
),(

 (1)

where “upcast” means the output has to be upcasted
(e.g., from int to float) so as to be fed into the next
input, and similarly for “downcast”.

b) Semantics Compatibility

⎪
⎩

⎪
⎨

⎧
=

otherwise
subclass

equivalent
semanticsemanticityCompatabil outputinputs

0
8.0

1
),(

 (2)

where “subclass” means that the output is a subclass of
the input and the need of ontology is explicitly implied.

3.2.2 Planning
Based on the services compatibility measures defined,
service composition can be proceeded using different
planning paradigms. One example is regression
planning which is based on backward chaining.
Starting from the output of the specified task as the
ultimate goal, the planner can search the Service
Registry for services with their outputs compatible
with that of the specified task. It is possible that the set
of compatible services can be categorized into several
distinct service interfaces, each contains a unique
input/output pair. One can then use those distinct
service interfaces as sub-goals and continue to search
for the best plan. Sometimes, for efficiency purpose,
one may want to use a local search strategy by
choosing one of the interfaces and continuing the
search. The selection can be done based on a local
performance estimation of the interfaces. See Figure 4
for an overview and refer to Section 6.2 for more
discussion on dynamic plan optimization.

As one service interface is in fact representing a group
of functionally equivalent services, its performance
estimation should be characterized by the best service
under the same interface. So, under this scenario, the
remaining question is how to select the best service
under the dynamic environment.

3.2.3 Service Selection
Services with equivalent input/output interfaces can
have different implementations and have transient
performance due to time-varying system load, data
cached, etc. A mechanism for making a wise choice for
better Grid resource utilization is needed. We believe
that bidding based on a dynamic scoring scheme can
be adopted for the service selection task, as detailed in
Section 4.

Figure 3. Service selection.

Figure 4. An overview of service composition and
execution process.

4. Service Selection Via Bidding

Here we propose a bidding-like mechanism for the
aforementioned service selection problem with the
hope of balancing the load among a set of Grid nodes
in a virtual organization.

4.1 Notations
Let I denote a particular service interface, Ei(I) denote
the estimated service time of the ith implementation for
the service interface I, Bi(I) denote the value sent to the
broker by the ith implementation for bidding the
interface I to be performed.

4.2 Bidding Process
The broker (search engine) first notifies each of the
service providers that host the required service
implementations. Being notified, each service
implementation will make use of the current estimated
service time Ei(I) (track record) as well as the current
system load (current resource) to compute a bid value
as in Eq.(3) and send the bid back to the broker:

() ()
)(

11
IE

LIB
i

ii ×−= (3)

where Li is the system load of the node hosting the ith
service implementation.

The broker then selects a service implementation
according to the probability distribution:

() ()
()∑

=

i
i

i

IB
IB

iP (4)

4.3 Estimation of Service Performance
After the selected implementation finished the
assigned job, it will notify the broker the result. The
broker will then return the actual service time Ai, and
the estimated service time of the ith service
implementation will be updated as

() () i
t
i

t
i AIEIE ×+×−=+ αα)(11 (5)

where α is the updating rate. In our experiment, its
value is set to 0.8.

Figure 5. The sequence diagram of the bidding
process.

5. Experiments

In order to study in detail the effectiveness of the
proposed bidding process on the Globus platform and
the behavior at each grid node, we have set up a small
grid environment with four grid nodes, one being the
Service Broker and the other three being the Service

Providers. Figure 5 shows the sequence diagram of the
overall bidding process. All the Grid services are
running in the service container provided by GT3. The
BrokerService queries the IndexService of each Grid
node to get the list of available service
implementations. BiddingService consults
MasterManagedJobFactoryService (MMJFS) of its
own node to get the current system information. Three
experiments have been conducted for evaluating three
different virtual organization scenarios on the grid
platform:

Experiment 1 assumes that the available service
implementations (Service A) in all the nodes are
homogeneous, and all the incoming service requests
can be served by Service A.

Experiment 2 assumes that the available service
implementations are heterogeneous, including Service
A, B and C. The implementations of Service A and
Service C are 3 and 2 times less efficient than that of
Service B. Also, all the incoming service requests can
be served by either the implementations of Service A,
B or C.

Experiment 3 assumes that each node contains one
composite service implementation and one primitive
service implementation needed as part of the
composite service. The service request stream is of
homogeneous type and requests the Service Broker for
the composite service A+2B regularly. The composite
service A+2B means that it has to perform subtask A
first before two subtasks B can be performed in
parallel. A composite service request is said to be
fulfilled only if all its subtasks are finished. Thus, there
are in fact two levels of bidding as illustrated in Figure
6.

Figure 6. An illustration of a multi-level bidding
needed by composite services.

The inter-arrival time for the service request was 20
seconds throughout the experiments. For performance
evaluation, information like job start time, end time,
system load, and service time are collected during the
experiments and the results are shown in Figure 7-15

Given: service requests arrive at a 20 sec. interval
 node-1

(CPU 2.6GHz)
node-2

(CPU 0.65GHz)
node-3

(CPU 0.7GHz)
Expt. 1 (homo.) Service A Service A Service A
Expt. 2 (hetero.) Service A Service B Service C
Expt. 3
(composite)

Service A+2B,
Service B

Service A+2B,
Service B

Service A+2B,
Service B

Table 1. Experiment setups for performance
evaluation.

Observation 1: While the three experiments were
designed to correspond to three different virtual
organization scenarios on the grid platform, our
proposed bidding mechanism managed to distribute the
service request streams to the three Service Providers
for improving system utilization, as shown in Figure 8,
11 and 14.

Observation 2: In Experiment 1, as all the service
implementations were homogeneous, node-1, being the
most powerful machine, naturally shouldered more
jobs via the bidding mechanism, when compared with
the other two nodes.

Observation 3: By comparing Figure 7 (Expt. 1) and
Figure 10 (Expt. 2), it is noted that the service
implementations of both Service A and C being less
efficient than that of Service B resulted in more jobs
being assigned to node-2 which is hosting the more
efficient service implementation Service B in Expt. 2,
even though node-1 is the fastest machine. This
reinforces the design of the proposed bidding
mechanism that, other than the computing power, it
should (implicitly) take into the consideration of the
efficiency of the service implementation and react
accordingly.

Observation 4: As we moved from Experiment 1 to 3,
the overall load of the set of requested jobs was
increasing (see Figure 8, 11, 14). We observed that all
the grid nodes were moving closer to be full loaded at
most of the time, which we believe to be an indicator
of good resource utilization. However, the service time
per job fluctuated quite seriously as the overall load
increases (see Figure 14). We believe that the
fluctuation is caused by the time dependency
requirement of the composite services. We are still
investigating the conditions and bidding strategies for
reducing the fluctuation, and thus improving the
service reliability.

Figure 7. Job schedules under homogeneous
services scenario (red for node-1, blue for node-2,
green for node-3).

a) node-1 b) node-2

c) node-3

Figure 8. System load of each grid nodes under
homogeneous services scenario.

a) node-1 b) node-2

c) node-3

Figure 9. Job service time of each grid nodes under
homogeneous services scenario.

Figure 10. Job schedules under heterogeneous
services scenario (red for node-1, blue for node-2,
green for node-3).

a) node-1 b) node-2

c) node-3

Figure 11. System load of each grid nodes under
heterogeneous services scenario.

a) node-1 b) node-2

c) node-3

Figure 12. Job service time for each grid node
under heterogeneous services scenario.

Figure 13. Job schedules under composite services
scenario (all the jobs are mixed).

a) node-1 b) node-2

c) node-3

Figure 14. System load of each grid nodes under
composite services scenario.

a) node-1 (A+2B) b) node-1 (B)

c) node-2 (A+2B)

d) node-2 (B)

e) node-3 (A+2B) f) node-3 (B)

Figure 15. Job service time for each grid node
under composite services scenario.

6. Discussion and Future Works

6.1 Accuracy of The Provided Load Estimation
The current implementation of the GT3 can only
provide up-to-minute state information, where we
encountered some difficulties in more fine-grained
load balancing. The effect will be especially important
if the execution time per job is short and the quantity
of them is huge. It seems that a Grid service for
supporting on-demand real-time system load reporting
could be needed in the Grid middleware.

6.2 Dynamic Plan Optimization
The next obvious step of this work is to integrate the
bidding mechanism one step upward to the planning
step. By assuming that each Grid service interface
keeps a table of scores S to indicate its desirability to
use some other services, where the scores can be some
statistics computed during the bidding for services
selection (Section 4). Then, the setup will be similar to
that of the PageRank algorithm [15] used by Google
search engine for indicating Web page importance.

For example (see Figure 4), let R denote the reward for
a selected plan (can be a constant equal to, say, 1), N
denote the number of the outputs of the specified task,
n denotes the current updating service interface, m
denotes the service interfaces that use the output of
current service interface n, and α denotes the updating
rate (can be a constant equal to some value less than 1).

For service interfaces with their outputs form the
outputs of the specified task (i.e., the ultimate goal),

()
N
RSS t

n
t
n ⋅+⋅−=+ αα11

Then, for the subsequent planning steps,
() ∑⋅+⋅−=+

m

t
m

t
n

t
n SSS αα11

Such a scoring scheme implies implicitly that
frequently selected (good track records) service
interfaces will be updated more frequently. Also, those
interfaces often appear near to the final output of the
selected plans (bringing you faster to the goal) will
have higher scores. Also, those interfaces provide
more outputs (more resourceful) will have a higher
score. We are currently studying the effectiveness of
such a scoring scheme.

6.3 Plan Base
Performing service composition from scratch can be a
time-consuming process for time-critical applications.
One can use a plan base for storing plans that have
been executed. A similar idea has been echoed in [13].

The archived plans (as some options of pre-composed
services) can then be used for the construction of new
plans. The reuse of plans should be can increase the
efficiency of plan construction. For better use of the
storage resource, there can also be some related
policies for deleting plans that appear obsolete.

Figure 16. Plan Generation.

7. Conclusion

This paper focuses on service selection, which is
usually disregarded by previous works in Web service
composition. While Web services embraced in Grid
platforms is getting popular, we demonstrated that
service selection could make significant performance
and resource utilization differences during service
composition. In particular, the service bidding
mechanism proposed here ensures the performance of
the service to be performed and also the fairness to the
service providers/bidders. Although the experimental
results were encouraging, we believe that further
investigation on selecting services for large scale
service composition will encourage more Web service
usages, especially for Grid environments where
resource utilization and service performance are
concerned.

Acknowledgement

This work is supported by Centre for E-Transformation
Research, Hong Kong Baptist University under the RGC
Group Research Grant (HKBU 2/03/C).

References

1. WSDL, http://www.w3.org/TR/wsdl
2. UDDI, http://www.uddi.org
3. SOAP, http://www.w3.org/TR/SOAP/
4. BPEL4WS, http://www-106.ibm.com/developerworks/

library/ws-bpel/
5. I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy

of the Grid: Enabling Scalable Virtual Organizations,"
International Journal of High Performance Computing
Applications, Vol. 15, pp. 200-222, 2001

6. I. Foster, C. Kesselman, J.M. Nick and S. Tuecke, "Grid
Services for Distributed System Integration," IEEE
Computer, June, 2002

7. IEEE Internet Computing, Special issue: Middleware
for Web services, 2003.

8. J. Yang and M. Papazoglou, “Web components: A
substrate for web service reuse and composition,”
Advanced Information Systems Engineering,
Proceedings of the 14th International Conference,
CAiSE 2002 Toronto, Canada, May 27-31, 2002.

9. S. McIlraith and T. Son, “Adapting golog for
composition of semantic Web services”, Proceedings of
the 8th International Conference on Principles of
Knowledge Representation and Reasoning, 2002

10. Evren Sirin, James Hendler, and Bijan Parsia, “Semi-
automatic composition of Web services using semantic
descriptions,” Proceeding of Web Services: Modeling,
Architecture and Infrastructure workshop in ICEIS,
April, 2003

11. L. Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J. Cox, C.
Puleston, P.R. Smart, "Towards a Knowledge-based
Approach to Semantic Service Composition," 2nd
International Semantic Web Conference (ISWC2003),
20-23 October 2003, Florida, USA, Lecture Notes in
Computer Science, LNCS 2870, pp 319-334

12. B. Benatallah, Q. Sheng, and M. Dumas, The Self-Serv
environment for Web services composition, in IEEE
Internet Computing, pages 40--48, 7(1), 2003.

13. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A.
Agarwal, G. Mehta, K. Vahi, "The Role of Planning in
Grid Computing," Proceedings of the 13th International
Conference on Automated Planning and Scheduling
(ICAPS), June 9-13, 2003, Trento, Italy

14. N. Sample, Pedram Keyani, Gio Wiederhold,
"Scheduling Under Uncertainty: Planning for the
Ubiquitous Grid," Proceedings of the Fifth International
Conference on Coordination Models and Languages
(Coord2002)

15. R. Motwani, S. Brin, L. Page, and T. Winograd, "The
PageRank Citation Ranking: Bringing Order to the
Web,” Stanford Digital Libraries Working Paper, 1998.

