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Abstract 

 
Web services are becoming important in applications 
from electronic commerce to application 
interoperation. While numerous efforts have focused 
on service composition, service selection among 
similar services from multiple providers has not been 
addressed. Such issue is more serious when services 
are embraced in Grid platforms, which are usually 
resource-conscious. Experimental results show that 
our considerations are valid and our preliminary 
solution works well in our Globus grid network. 
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1. Introduction 
 
Web services are becoming the prominent paradigm 
for electronic business and interoperable applications 
across heterogeneous systems. However, Web services 
standards such as WSDL [1], UDDI [2], and SOAP [3] 
do not address the issues of service re-use and 
composition, especially dynamic composition of 
existing services from multiple sources. Various efforts 
on addressing this issue including the recent initiative 
of BPEL4WS [4] focus on representing compositions, 
whereas, the actual issues involved in composing the 
services, e.g., the selection process and composition 
considerations such as run-time costs, etc., have not 
been considered. 
 
Another technology that is getting increasing 
popularity is Grid [5]. Grid is a distributed 
environment that enables flexible, secure, coordinated 
resource sharing, among dynamic collections of 
individuals, institutions and resources. The benefit of 
embracing Web services on Grid have been recently 
realized in the Open Grid Services Architecture 
(OGSA) of Globus (GT3) – the de-facto standard of 

Grid middleware [6], and shown in various projects 
(e.g., Geodise - www.geodise.org, MyGrid - 
www.mygrid.org.uk). However, Grid platform is in 
general more conscious regarding the utilization and 
reliability of resources, and services composed in Grid 
need to be planned in an optimized way. Along this 
line and different from previous works, this paper 
attempts to investigate the underlying criteria in 
practice, propose an initial solution using a bidding-
like mechanism, and finally realize its significance by 
implementing the solution (called BU-Grid) and 
running series of experiments. Experimental results are 
encouraging and further improvements shall be 
obtained from our ongoing effort. 
 
1.1 Related Works 
Due to the increasing attention to Web services from 
the research and industry communities, there have 
been lots of recent works addressing various issues of 
Web services (e.g., [7]). To name a few, for example, 
in [8], the issue of service composition is addressed in 
the context of Web components, as a way for creating 
composite Web Services by re-using, specializing and 
extending existing ones. McIlarith and Son [9] 
proposed an approach to building agent technology 
based on the notion of generic procedures and 
customizing user constraints. They argue that an 
augmented version of the logic programming language 
Golog provides a natural formalism for programming 
Web services. Prototypes that guide a user in 
composing Web services in a semi-automatic manner 
have been proposed in [10,11]. The semi-automatic 
process is facilitated by presenting matching services 
to the user at each step of a composition and filtering 
the possibilities by using semantic descriptions of the 
services. While there are numerous papers describing 
specifications and methods for service composition, 
seldom of them have addressed the issues of choosing 
services based on its costs and resources (which is an 
important issue in utilizing resources in a Grid 



environment). For instance, [12] mentioned a simple 
scoring service based on the summation of the services' 
weighted scores. However, the details of estimating the 
scores and evaluating criteria (which are crucial in the 
actual implementation and system evaluation, again, 
especially in Grid) have been left out. Blythe et al., in 
[13], used limited state information (the current data 
storage of the distributed hosts) for optimizing services 
compositions for e-Science applications. The work 
closest to ours is due to Sample et al. [14] that 
incorporated services uncertainty (e.g., costs, 
performance, reliability) via probabilistic modeling in 
the composition process.  
 
1.2 Paper Organization 
The remaining of the paper is as follow. Section 2 
gives a typical environment for autonomous service 
composition. Section 3 describes in detail the overall 
system architecture of BU-Grid. Section 4 provides in 
detail a bidding mechanism for service selection in a 
dynamic Grid environment. Experimental results and 
the lessons learnt are found in Section 5 and 6, 
respectively. Section 7 concludes the paper with a 
number of future research directions. 
 
 

 

 
Figure 1. A typical service composition 
environment. 
 
2. Autonomous Service Composition 
 
A typical environment for supporting Grid/Web 
service composition is illustrated in Figure 1. A 
collection of service providers expose, via the Internet, 
the services they support as Web services. The services 
are registered at a service registry (e.g. UDDI) for 
service discovery. The semantics of the available Web 

services (e.g., the semantics of the input/output 
parameters) are described by some machine 
understandable semantic Web language (e.g. OWL-S).  
Relationships and concepts of the vocabularies used to 
enable semantic matching of services are shared in a 
ontology repository.  A service consumer is a client 
program which sends service requests (e.g., in terms of 
desired input/output relationships) to the Grid/Web 
service broker which bears the duty of selecting 
suitable primitive services, composing them as well as 
monitoring their execution. 
 

 
Figure 2. The system architecture of BU-Grid. 
 
3. BU-Grid System Architecture 
 
The architectural design of the proposed BU-Grid, to 
be further described in the following (also see Figure 2 
for an overview), contains components that are 
common in most of the service composition systems. 
In addition, it is featured by the incorporation of a) 
bidding services and bid evaluation components for 
dynamic service selection, as well as b) a plan base and 
a plan retriever for plan re-use support. While the 
focus of this paper is to study in detail how the state 
information can be used to form the selection criteria 
and optimize the overall system utilization via a 
bidding mechanism, details about the planning part and 
its relationship with the proposed service bidding 
mechanism will also be included for completeness. 
 



3.1 Service Registration and Indexing 
Semantic descriptions of Grid services are stored at the 
Service Registry, which may include: 
- High-level services descriptors: E.g., for e-

business applications, they can be company name, 
business nature/categories, contact person, phone 
number, email address, etc. 

- Low-level services interface descriptors: E.g., 
service name, functional description, URL of the 
WSDL file or Grid Service Handle (GSH), 
semantics of the input/output parameters, etc. 

To support efficient access of GSHs from the Service 
Registry and efficient update of the services’ state 
information, both the high-level and low-level service 
semantics are indexed. Furthermore, to extend the 
service discovery capability to go beyond simple 
keyword search, different domain-specific ontologies 
are maintained in Ontology Repository to support 
semantic matching. 
 
3.2 Task Specification & Service Composition 
In BU-Grid, a task is represented by specifying the 
required input1 and desired output. To plan for the task 
(or to satisfy the specification), a meta-level service 
will be composed on-demand using the primitive 
services available in the Service Registry.  
 
By treating the input as the initial state, the desired 
output as the goal, and the available services as the 
operators, service composition can readily be 
formulated as an AI planning problem [14]. Under the 
Grid context, one challenge is that the planning has to 
be performed in a dynamic environment, containing 
multiple functionally equivalent operators (services) 
but with possibly different implementations as well as 
time-varying resources. Besides, services matchmaking 
based on semantics is also a non-trivial task. 
 
3.2.1 Services Matchmaking 
To enable correct matchmaking between Grid services, 
we need to well-define services compatibility. There 
exist at least two types of compatibility measures, 
namely data type compatibility as well as semantic 
compatibility. Eq.(1) and Eq.(2) give two possible 
forms of compatibility in terms of data type and 
semantics between an output of a service and an input 
of a matching service. 
 
a) Data Type Compatibility 

                                                           
1  Sometimes, a task can be fully specified by only 
desired output, for example, accessing some processed 
e-Science data from the grid. 
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where “upcast” means the output has to be upcasted 
(e.g., from int to float) so as to be fed into the next 
input, and similarly for “downcast”. 
  
b) Semantics Compatibility 
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where “subclass” means that the output is a subclass of 
the input and the need of ontology is explicitly implied. 
 
3.2.2 Planning 
Based on the services compatibility measures defined, 
service composition can be proceeded using different 
planning paradigms. One example is regression 
planning which is based on backward chaining. 
Starting from the output of the specified task as the 
ultimate goal, the planner can search the Service 
Registry for services with their outputs compatible 
with that of the specified task. It is possible that the set 
of compatible services can be categorized into several 
distinct service interfaces, each contains a unique 
input/output pair. One can then use those distinct 
service interfaces as sub-goals and continue to search 
for the best plan. Sometimes, for efficiency purpose, 
one may want to use a local search strategy by 
choosing one of the interfaces and continuing the 
search. The selection can be done based on a local 
performance estimation of the interfaces. See Figure 4 
for an overview and refer to Section 6.2 for more 
discussion on dynamic plan optimization. 
 
As one service interface is in fact representing a group 
of functionally equivalent services, its performance 
estimation should be characterized by the best service 
under the same interface. So, under this scenario, the 
remaining question is how to select the best service 
under the dynamic environment. 
 
3.2.3 Service Selection 
Services with equivalent input/output interfaces can 
have different implementations and have transient 
performance due to time-varying system load, data 
cached, etc. A mechanism for making a wise choice for 
better Grid resource utilization is needed. We believe 
that bidding based on a dynamic scoring scheme can 
be adopted for the service selection task, as detailed in 
Section 4. 
  



 
Figure 3. Service selection. 
 

 
Figure 4. An overview of service composition and 
execution process. 

 
4. Service Selection Via Bidding 
 
Here we propose a bidding-like mechanism for the 
aforementioned service selection problem with the 
hope of balancing the load among a set of Grid nodes 
in a virtual organization. 
  
4.1 Notations 
Let I denote a particular service interface, Ei(I) denote 
the estimated service time of the ith implementation for 
the service interface I, Bi(I) denote the value sent to the 
broker by the ith implementation for bidding the 
interface I to be performed. 
 
4.2 Bidding Process 
The broker (search engine) first notifies each of the 
service providers that host the required service 
implementations. Being notified, each service 
implementation will make use of the current estimated 
service time Ei(I) (track record) as well as the current 
system load (current resource) to compute a bid value 
as in Eq.(3) and send the bid back to the broker: 
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where Li is the system load of the node hosting the ith 
service implementation. 
 

 
The broker then selects a service implementation 
according to the probability distribution: 
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4.3 Estimation of Service Performance 
After the selected implementation finished the 
assigned job, it will notify the broker the result. The 
broker will then return the actual service time Ai, and 
the estimated service time of the ith service 
implementation will be updated as 

( ) ( ) i
t
i

t
i AIEIE ×+×−=+ αα )(11             (5) 

where α is the updating rate. In our experiment, its 
value is set to 0.8. 

 
 
 

 
Figure 5. The sequence diagram of the bidding 
process. 
 
5. Experiments 
 
In order to study in detail the effectiveness of the 
proposed bidding process on the Globus platform and 
the behavior at each grid node, we have set up a small 
grid environment with four grid nodes, one being the 
Service Broker and the other three being the Service 



Providers. Figure 5 shows the sequence diagram of the 
overall bidding process.  All the Grid services are 
running in the service container provided by GT3.  The 
BrokerService queries the IndexService of each Grid 
node to get the list of available service 
implementations. BiddingService consults 
MasterManagedJobFactoryService (MMJFS) of its 
own node to get the current system information. Three 
experiments have been conducted for evaluating three 
different virtual organization scenarios on the grid 
platform: 
 
Experiment 1 assumes that the available service 
implementations (Service A) in all the nodes are 
homogeneous, and all the incoming service requests 
can be served by Service A.  
 
Experiment 2 assumes that the available service 
implementations are heterogeneous, including Service 
A, B and C. The implementations of Service A and 
Service C are 3 and 2 times less efficient than that of 
Service B. Also, all the incoming service requests can 
be served by either the implementations of Service A, 
B or C. 
 
Experiment 3 assumes that each node contains one 
composite service implementation and one primitive 
service implementation needed as part of the 
composite service. The service request stream is of 
homogeneous type and requests the Service Broker for 
the composite service A+2B regularly. The composite 
service A+2B means that it has to perform subtask A 
first before two subtasks B can be performed in 
parallel. A composite service request is said to be 
fulfilled only if all its subtasks are finished. Thus, there 
are in fact two levels of bidding as illustrated in Figure 
6. 

 
Figure 6. An illustration of a multi-level bidding 
needed by composite services. 
 
The inter-arrival time for the service request was 20 
seconds throughout the experiments. For performance 
evaluation, information like job start time, end time, 
system load, and service time are collected during the 
experiments and the results are shown in Figure 7-15 

 
Given: service requests arrive at a 20 sec. interval 
 node-1 

(CPU 2.6GHz)
node-2 

(CPU 0.65GHz) 
node-3 

(CPU 0.7GHz)
Expt. 1 (homo.) Service A Service A Service A 
Expt. 2 (hetero.) Service A Service B Service C 
Expt. 3 
(composite) 

Service A+2B,
Service B 

Service A+2B, 
Service B 

Service A+2B,
Service B 

Table 1. Experiment setups for performance 
evaluation. 
   
Observation 1: While the three experiments were 
designed to correspond to three different virtual 
organization scenarios on the grid platform, our 
proposed bidding mechanism managed to distribute the 
service request streams to the three Service Providers 
for improving system utilization, as shown in Figure 8, 
11 and 14.  
 
Observation 2: In Experiment 1, as all the service 
implementations were homogeneous, node-1, being the 
most powerful machine, naturally shouldered more 
jobs via the bidding mechanism, when compared with 
the other two nodes. 
 
Observation 3: By comparing Figure 7 (Expt. 1) and 
Figure 10 (Expt. 2), it is noted that the service 
implementations of both Service A and C being less 
efficient than that of Service B resulted in more jobs 
being assigned to node-2 which is hosting the more 
efficient service implementation Service B in Expt. 2, 
even though node-1 is the fastest machine. This 
reinforces the design of the proposed bidding 
mechanism that, other than the computing power, it 
should (implicitly) take into the consideration of the 
efficiency of the service implementation and react 
accordingly. 
 
Observation 4: As we moved from Experiment 1 to 3, 
the overall load of the set of requested jobs was 
increasing (see Figure 8, 11, 14). We observed that all 
the grid nodes were moving closer to be full loaded at 
most of the time, which we believe to be an indicator 
of good resource utilization. However, the service time 
per job fluctuated quite seriously as the overall load 
increases (see Figure 14). We believe that the 
fluctuation is caused by the time dependency 
requirement of the composite services. We are still 
investigating the conditions and bidding strategies for 
reducing the fluctuation, and thus improving the 
service reliability. 
 



Figure 7. Job schedules under homogeneous 
services scenario (red for node-1, blue for node-2, 
green for node-3). 
 

a) node-1 b) node-2 

c) node-3 

 

Figure 8. System load of each grid nodes under 
homogeneous services scenario. 
 

 
a) node-1 b) node-2 

c) node-3 

 

Figure 9. Job service time of each grid nodes under 
homogeneous services scenario. 
 

 
Figure 10. Job schedules under heterogeneous 
services scenario (red for node-1, blue for node-2, 
green for node-3). 
 

a) node-1 b) node-2 

c) node-3 

 

Figure 11. System load of each grid nodes under 
heterogeneous services scenario. 
 

a) node-1 b) node-2 

c) node-3 

 

Figure 12. Job service time for each grid node 
under heterogeneous services scenario. 
 



 
Figure 13. Job schedules under composite services 
scenario (all the jobs are mixed). 
 

 
a) node-1 b) node-2 

 
c) node-3 

 

Figure 14. System load of each grid nodes under 
composite services scenario. 
 

 
a) node-1 (A+2B) b) node-1 (B) 

 
c) node-2 (A+2B) 

 
d) node-2 (B) 

 
e) node-3 (A+2B) f) node-3 (B) 

Figure 15. Job service time for each grid node 
under composite services scenario. 
 

6. Discussion and Future Works 
 
6.1 Accuracy of The Provided Load Estimation 
The current implementation of the GT3 can only 
provide up-to-minute state information, where we 
encountered some difficulties in more fine-grained 
load balancing. The effect will be especially important 
if the execution time per job is short and the quantity 
of them is huge. It seems that a Grid service for 
supporting on-demand real-time system load reporting 
could be needed in the Grid middleware. 
 
6.2 Dynamic Plan Optimization  
The next obvious step of this work is to integrate the 
bidding mechanism one step upward to the planning 
step. By assuming that each Grid service interface 
keeps a table of scores S to indicate its desirability to 
use some other services, where the scores can be some 
statistics computed during the bidding for services 
selection (Section 4). Then, the setup will be similar to 
that of the PageRank algorithm [15] used by Google 
search engine for indicating Web page importance.   
 
For example (see Figure 4), let R denote the reward for 
a selected plan (can be a constant equal to, say, 1), N 
denote the number of the outputs of the specified task, 
n denotes the current updating service interface, m 
denotes the service interfaces that use the output of 
current service interface n, and α denotes the updating 
rate (can be a constant equal to some value less than 1). 
 
For service interfaces with their outputs form the 
outputs of the specified task (i.e., the ultimate goal), 

( )
N
RSS t

n
t
n ⋅+⋅−=+ αα11  

Then, for the subsequent planning steps, 
( ) ∑⋅+⋅−=+

m

t
m

t
n

t
n SSS αα11  

Such a scoring scheme implies implicitly that 
frequently selected (good track records) service 
interfaces will be updated more frequently. Also, those 
interfaces often appear near to the final output of the 
selected plans (bringing you faster to the goal) will 
have higher scores. Also, those interfaces provide 
more outputs (more resourceful) will have a higher 
score. We are currently studying the effectiveness of 
such a scoring scheme. 
 
6.3 Plan Base 
Performing service composition from scratch can be a 
time-consuming process for time-critical applications. 
One can use a plan base for storing plans that have 
been executed. A similar idea has been echoed in [13]. 



The archived plans (as some options of pre-composed 
services) can then be used for the construction of new 
plans.  The reuse of plans should be can increase the 
efficiency of plan construction.  For better use of the 
storage resource, there can also be some related 
policies for deleting plans that appear obsolete. 
 

 
Figure 16. Plan Generation. 
 
7. Conclusion 
 
This paper focuses on service selection, which is 
usually disregarded by previous works in Web service 
composition. While Web services embraced in Grid 
platforms is getting popular, we demonstrated that 
service selection could make significant performance 
and resource utilization differences during service 
composition. In particular, the service bidding 
mechanism proposed here ensures the performance of 
the service to be performed and also the fairness to the 
service providers/bidders. Although the experimental 
results were encouraging, we believe that further 
investigation on selecting services for large scale 
service composition will encourage more Web service 
usages, especially for Grid environments where 
resource utilization and service performance are 
concerned. 
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