
Modeling Agent-Based Load Balancing with Time Delays

Yuanshi Wang
Department of Mathematics

Zhongshan University
Guangzhou, China

mcswys@zsu.edu.cn

Jiming Liu, Xiaolong Jin
Department of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong

{jiming, jxl}@comp.hkbu.edu.hk

Abstract

In grid computing, agent-based load balancing is one
of the most important problems. In this paper, we present a
macroscopic model to describe the dynamics of agent-based
load balancing with time delays. We concern the number
and size of teams where tasks queue. The time gap, during
which a single agent searches a suitable node and transfers
a task to the node, is incorporated into balancing process
as delay. Our model is composed of functional differential
equations. By numerical simulations, we show that vari-
ables (the number and size of teams, etc.) in the model re-
main nonnegative, which is in agreement with the physical
background of the variables. We show that although there
is a period of oscillation, the dynamic behavior tends to a
steady state, which is in agreement with the recent experi-
ments on Anthill. An interesting phenomenon is shown: the
larger the delay, the longer the period of oscillation, and
the slower the converging speed of load balancing.

1. Introduction

The next generation of e-business is led by commu-
nity computing under the concept of having computing re-
sources over the Internet integrated and shared [1, 2, 7].
One of the key technologies in community computing is
grid computing. Grid computing is originally motivated
from large-scale scientific computation where supercom-
puters are often needed. Scientists try to integrate idle com-
puters on networks to a “computing grid” to replace su-
percomputers. After a large-scale scientific computation is
decomposed into different independent tasks, the remained
problem is to disperse the tasks, that is, to balance the tasks
on different idle computers on networks.

Traditionally there is a master who disperses tasks to his
slaves. This is not applicable in grid computing as the net-
works of idle computers lack fixed structures. In a natural
environment, a group of ants can collect objects into piles

without any master. This phenomenon gives a clue to solve
our problem. Resnick [12] simulated the phenomenon by
artificial ants and found that in order to collect objects into
piles, the ants only need to obey three simple rules:

1. An ant wanders around randomly until it encounters an
object;

2. If it was carrying an object, it drops the object and con-
tinues to wander randomly;

3. If it was not carrying an object, it picks the object up
and continues to wander.

The goal of Resnick’s artificial ants is to collect objects. In
order to disperse tasks on networks, Montresor and Meling
[3, 9] built artificial ants where rules are inverse to those in
Resnick’s simulations:

1. SearchMax: an ant wanders across the network, look-
ing for overloaded nodes;

2. SearchMin: an ant wanders across the network, look-
ing for underloaded nodes;

3. Transfer: an ant transfers tasks from the most over-
loaded node to the most underloaded node.

Under the simple rules, the experiments in [3, 9] showed
that the artificial ants can disperse tasks evenly. In one of
their experiments, there are 100 idle nodes on grids. Ini-
tially there are 10,000 tasks on a node. Twenty ants are gen-
erated to disperse the tasks. The ants obey the above three
rules. After 50 iterations, the tasks are evenly dispersed on
the idle nodes, that is, there are 100 tasks on each idle node.
The experiments in [3, 9] gave empirical simulations of load
balancing. However, this kind of microscopic simulations
cannot describe the dynamic behavior directly and cannot
reflect how the continuous changes of local factors affect the
global dynamic behavior. Macroscopic models, on the other
hand, can offer such analysis [4, 5, 6, 8, 10, 11, 14, 16].



In the simulations of [3, 9], each dispersed task is car-
ried by an ant. Ants search overloaded and underloaded
nodes, and transfer tasks from the overloaded nodes to the
underloaded nodes. There is a time gap that ants spend on
SearchMax, SearchMin and Transfer. The time gap is called
time delay.

In this paper, we give functional differential equations,
as motivated by the model in [8, 15], to describe the agent-
based load balancing process with time delays. In [8, 15],
the dynamic behavior of their systems tended to a steady
state without incorporating time delays. Our question to
be addressed here is what will be the effect of time delays
in the dynamic behavior of load balancing. By numerical
simulations, we show that variables (the number and size
of teams, etc.) in our model remain nonnegative, which is
in agreement with the physical background of the variables.
We show that although there is a period of oscillations, the
dynamic behavior tends to a steady state, which is in agree-
ment with the recent experiments on Anthill in [3, 9]. An
interesting phenomenon is shown: the larger the delay, the
longer the period of oscillations, and the slower the con-
verging speed of load balancing.

The rest of the paper is organized as follows: In Section
2, we describe the load balancing mechanism with time de-
lays and give assumptions of our model. In Section 3, we
present the macroscopic model and a detailed explanation
of the model. In Section 4, we show the positiveness and
convergence of variables we concern. In Section 5, we show
the effects of time delays. Conclusions are in Section 6.

2. Balancing with Time Delays

2.1. Load Balancing Mechanism

The agent-based load balancing we concern here is as
follows. Initially a pile of tasks is generated on networks.
Then a pile of agents, whose number is equal to that of the
tasks, is generated. Each task is carried by an agent. We
regard a task as an agent. The agents wander on networks
and search proper nodes to join and queue. The time delay
is that a single agent spends on wandering in order to meet
a node. We concern the number of wandering agents, the
number and size of teams where tasks queue.

Agents can be generated from every node on networks.
Each node on networks supplies the same service and each
agent must be served by one node. The service time is as-
sumed constant for every agent. Agents have local infor-
mation about the team lengths on networks, but they do not
have the global knowledge on the state of grids.

Agents wander among nodes to search for small teams.
Single agents independently make decisions from their own
experiences. They will not join a very large team because
of their patience. That is, there is a maximum size m for

teams. In the simulations of [3, 9], a time period is needed
for ants’ SearchMax, SearchMin, Transfer. Since we look
each task as an agent, the time period becomes that a single
agent spends on wandering. The time period is assumed
to be a positive constant τ . An agents can leave or join
the team in a service node, or form a new team if there
is no other agents there. After joining a team, a single
agent can also leave the team and moves to other nodes.
Therefore, agents’ behavior can be decomposed into two
elements: leaving and queuing. Local factors, such as time
delays, initial conditions, strategies for leaving and queuing
will determine the global dynamic behavior of the system.
The following mechanism shows the formation of load
balancing with time delays.

————————————————————

00 load balancing with time delays;
01 begin
02 Single Agent (SA) position during initial
03 period [0, τ ]: SA either queues at a team of
04 size s0 or wanders on nerworks;
05 if s0 > m,
06 SA leaves the team of size s0;
07 the size of the team becomes s0 − 1;
08 goto START;
09 endif
10 if SA does not leave the team of size s0,
11 goto EXIT;
12 endif
13 the size of the team becomes s0 − 1;
14 START: SA wanders randomly on networks
15 for a period τ and meets a team of size s;
16 if s > m or SA leaves the team of size s
17 goto START;
18 endif
19 if SA joins the team of size s,
20 the size of the team becomes s + 1;
21 endif
22 if SA leaves the team of size s + 1,
23 the size of the team becomes s;
24 goto START;
25 endif
26 EXIT: SA queues in a team and does not leave;
27 end

————————————————————

2.2. Main Problems

The first problem we concern is to present a macroscopic
model to describe the load balancing mechanism in Section



2.1.
The second problem is about the basic properties of the

model, such as stability and variables’ positiveness. Here,
the stability is shown in the experiments on Anthill [3, 9],
the positiveness is important to the effectiveness of the
model.

The third problem is to study load balancing through the
model. In this paper, we concern the effects of time delays
on dynamics of load balancing.

2.3. Assumptions

The primitive strategies and additional proper assump-
tions of our model are listed below:

1. The time that a single agent spends on wandering is
assumed to be a positive constant τ . Agents follow the
same strategies of leaving and queuing and occupy the
same service time. That is, all the agents are peer-to-
peer.

2. On networks, every node can generate tasks (agents)
and supply the same service which is needed by agents.
That is, all the nodes are peer-to-peer.

3. During the initial period [0, τ ], agents either queue in
various nodes or wander on networks.

4. When wandering, a single agent meets service nodes
on networks randomly.

5. It is beneficial for agents to queue at small teams.

6. Each agent will not queue at a node whose team is of
maximum size m. Agents independently decide leav-
ing or queuing at an encountered node.

7. The total number of agents in the system remains con-
stant at time t ∈ (τ, +∞).

3. The Dynamic Model

In this section, we construct a macroscopic model to de-
scribe the dynamic behavior of agent-based load balancing
with time delays as described in Section 2. The model
is based on several quantities: the number of wandering
agents, the number and size of teams. The time delay is
defined as that a single agent spends on wandering in order
to meet a node.

Let y denote the number of wandering agents. Let y s

denote the number of teams whose size is s. Let m denote
the maximum team size. Then

y ≥ 0, ys ≥ 0, 1 ≤ s ≤ m.

Initially agents are generated from nodes on grids, that
is, the system consists of S agents which either queue in
various nodes or wander on the network, it follows from the
seventh assumption that

y(t) +
m∑

s=1

sys(t) = S, t ∈ [0, τ ].

During the initial period [0, τ ], the maximum team size
may be larger than m. It follows from the seventh as-
sumption in Section 2 that the agents, who are in the lth
(l ≥ m + 1) position of various teams, will leave the teams.
The leaving state is concurrent asynchronous. Therefore the
leaving process would be completed very rapidly since no
decision should be made by the departing agents. The de-
parting agents wander synchronously on networks. Each
agent decides by itself whether or not to join the teams it
encounters. After all the lth (l ≥ m + 1) agents leave their
positions, the maximum team size in the system will not
be larger than m. Therefore we focus on the case that the
maximum team size is not larger than m.

The following macroscopic model is composed of func-
tional differential equations with time delays, similar differ-
ential equations without time delays have been discussed in
[8, 13, 15]:

dy1(t)
dt

= λy(t − τ) + d2y2(t) − c1y(t − τ)y1(t),

dys(t)
dt

= ds+1ys+1(t) + cs−1y(t − τ)ys−1(t)

−dsys(t) − csy(t − τ)ys(t),

2 ≤ s ≤ m − 1, (1)

dym(t)
dt

= cm−1y(t − τ)ym−1(t) − dmym(t),

y(t) +
m∑

s=1

sys(t) = S,

where
τ > 0, 0 < λ < 1,

0 < cs < 1, 0 < ds < 1,

ys ≥ 0, y ≥ 0,

dys(t)
dt is the change rate of teams of size s, 1 ≤ s ≤ m, t ∈

(τ, +∞).
Parameter τ is a positive constant which carries the time

delay effect into load balancing process.
Parameter λ is the rate at which a wandering agent meets

an idle node and forms a new team of size one, therefore we
have λ < 1.



Parameter cs is the rate at which a wandering agent meets
and joins a team of size s, therefore we have cs < 1.

Parameter ds is the rate at which a queuing agent in a
team of size s leaves, therefore we have ds < 1. Both cs and
ds are determined by agents’ experience after they wander
on networks for a period.

The terms in system (1) show the load balancing process
with time delays.

In the first equation of (1), the change rate of teams of
size one is described. The term λy(t − τ) denotes that a
wandering agent meets an idle node and forms a new team
of size one at time t.

The term d2y2(t) denotes that a team of size two at time
t becomes a team of size one after an agent’s leaving.

The term −c1y(t − τ)y1(t) denotes that a team of size
one becomes a team of size two at time t after a wandering
agent’s queuing.

In the second equation of (1), the change rate of teams of
size s is described, 2 ≤ s ≤ m − 1. The term ds+1ys+1(t)
denotes that a team of size s + 1 becomes a team of size s
at time t after an agent’s leaving.

The term cs−1y(t−τ)ys−1(t) denotes that a team of size
s − 1 becomes a team of size s at time t after a wandering
agent’s queuing.

The term −dsys(t) denotes that a team of size s becomes
a team of size s − 1 at time t after an agent’s leaving.

The term −csy(t − τ)ys(t) denotes that a team of size
s becomes a team of size s + 1 at time t after a wandering
agent’s queuing.

In the third equation of (1), the change rate of teams of
size m is described. Here, single agents would not join a
team of size m, and there is no teams of size m + 1. The
term cm−1y(t−τ)ym−1(t) denotes that a team of size m−1
becomes a team of size m at time t after a wandering agent’s
queuing.

The term −dmym(t) denotes that a team of size m be-
comes a team of size m−1 at time t after an agent’s leaving.

The equation

y(t) +
m∑

s=1

sys(t) = S

denotes that there is no neat change in the number of agents
(tasks) at time t, t ∈ (τ, +∞).

4. Positiveness and Stability

Since variables we concern are the number of wandering
agents and the number of teams, then the variables

y(t), ys(t), 1 ≤ s ≤ m

should be nonnegative. On the other hand, it follows from
the experiments of [3, 9] that the state of load balancing

0 1 2 3 4

x 10
4

500

600

700

800

900

1000

time

y(
t)

0 1 2 3 4

x 10
4

0

0.5

1

1.5

time

y 1(t
)

0 1 2 3 4

x 10
4

0

50

100

150

200

250

time

y 2(t
)

0 0.5 1 1.5
0

50

100

150

200

250

y
1
(t)

y 2(t
)

Figure 1. Let S = 1000, λ = c = d = 0.001, τ =
1, y(t) = 1000, y1(t) = y2(t) = 0 as t > 0. Load
balancing tends to a steady state and vari-
ables remain nonnegative.

tends to a steady state after tens of iterations, that is, the
dynamic behavior converges to a steady state.

In this section, we let m = 2. By numerical integrations,
we show that the system (1) is in agreement with the above
two properties:

1. Variables y(t), y1(t), y2(t) remains nonnegative as t >
0;

2. Variables y(t), y1(t), y2(t) tend to a steady state as
t → +∞.

The first aspect shows that the number of agents would not
be negative in system (1), which is in agreement with the
physical background of the variables. The second aspect
shows that the dynamic behavior of the system (1) will tend
to a steady state, therefore the load balancing will tend to a
certain distribution.

Let m = 2, then the system (1) becomes:

dy1(t)
dt

= λy(t − τ) + dy2(t) − cy(t − τ)y1(t),

dy2(t)
dt

= cy(t − τ)y1(t) − dy2(t), (2)

y(t) +
2∑

s=1

sys(t) = S.

In order to make our numerical integrations obviously,
variables y(t), y1(t), y2(t) are assumed to remain constant
in the first time period [0, τ ]. To show the positiveness of
y(t), y1(t), y2(t), we consider the following four cases,



0 1 2 3 4

x 10
4

−1

−0.5

0

0.5

1

time

y(
t)

0 1 2 3 4

x 10
4

999

999.5

1000

1000.5

1001

time

y 1(t
)

0 1 2 3 4

x 10
4

−1

−0.5

0

0.5

1

time

y 2(t
)

999 999.5 1000 1000.5 1001
−1

−0.5

0

0.5

1

y
1
(t)

y 2(t
)

Figure 2. Let S = 1000, λ = c = d = 0.001, τ =
1, y1(t) = 1000, y(t) = y2(t) = 0 as t > 0. Load
balancing is at a perfectly balanced steady
state.

where the first three cases are on boundary. Other cases on
boundary can be discussed similarly.

Simulation 1. Let

S = 1000, c1 = d2 = 0.001, τ = 1,

y(t) = 1000, y1(t) = y2(t) = 0 as t ∈ [0, τ ].

That is, y1(t), y2(t) are on boundary as t ∈ [0, τ ]. The sim-
ulation in Fig. 1 shows that although y1(t) = y2(t) = 0 as
t ∈ [0, τ ], they become positive as t > τ, that is, they leave
the boundary of y1 = y2 = 0. By the way, y(t) remains
positive as t > τ . Therefore, the simulation shows that
solutions of (2) initiated from boundary y1(t) = y2(t) = 0
as t ∈ [0, τ ], remain positive as t > τ . It follows from
Fig. 1 that variables y(t), y1(t), y2(t) tend to steady state
as t tends to infinity. Here y(t) decreases smoothly, y2(t)
increases smoothly. There is a time t0, as t ∈ [τ, t0], y1(t)
increases rapidly, which means that during the time period
[τ, t0], many wandering agents find idle node and form
teams of size one. As t ∈ [t0, +∞], y1(t) increases not so
rapidly, which means that during the time period [t0, +∞],
there are not so much idle nodes for wandering agents to
find and teams of size one increase not so rapidly.

Simulation 2. Let

S = 1000, c1 = d2 = 0.001, τ = 1,

y1(t) = 1000, y(t) = y2(t) = 0 as t ∈ [0, τ ].

That is, y(t), y2(t) are on boundary as t ∈ [0, τ ]. The
simulation in Fig. 2 shows that although y(t) = y2(t) = 0

as t ∈ [0, τ ], they are nonnegative as t > τ, that is, they
are on the boundary of y(t) = y2(t) = 0. An interesting
phenomenon emerges on this case where a perfect balanc-
ing exists: if the load distribution is on a perfect balancing,
it follows from our model that the load balancing behavior
will remain at the perfect balancing state forever. By the
way, one can easily prove that perfect balancing states
are equilibria of system (1). It follows from Fig. 2 that
variables y(t), y1(t), y2(t) tend to steady state as t tends to
infinity.

Simulation 3. Let

S = 1000, c1 = d2 = 0.001, τ = 1,

y2(t) = 500, y(t) = y1(t) = 0 as t ∈ [0, τ ].

That is, y(t), y1(t) are on boundary as t ∈ [0, τ ]. The sim-
ulation in Fig. 3 shows that although y(t) = y1(t) = 0 as
t ∈ [0, τ ], they become positive as t > τ, that is, they leave
the boundary of y = y1 = 0. By the way, y2(t) remains
positive as t > τ . Therefore, the simulation shows that
solutions of (2) initiated from boundary y(t) = y1(t) = 0
as t ∈ [0, τ ], remain positive as t > τ . It follows from
Fig. 3 that variables y(t), y1(t), y2(t) tend to steady state
as t tends to infinity. Here, there is a time t0 where y(t)
reaches its maximum, which means that since there are
too many teams of size two (maximum team size) during
initial time period [0, τ ], then many agents leave their teams
and become wandering agents. Similar discussions can be
given for the decrease of y2(t) and the increase of y1(t).

Simulation 4. Let

S = 1000, c1 = d2 = 0.001, τ = 1,

y2(t) = 400, y(t) = y1(t) = 100 as t ∈ [0, τ ].

That is, y(t), y1(t), y2(t) are all positive as t ∈ [0, τ ]. The
simulation in Fig. 4 shows that y(t), y1(t), y2(t) are all pos-
itive as t > τ . Therefore, the simulation shows that solu-
tions of (2) initiated from y(t) > 0, y1(t) > 0, y2(t) > 0
as t ∈ [0, τ ], remain positive as t > τ . It follows from
Fig. 4 that variables y(t), y1(t), y2(t) tend to steady state
as t tends to infinity. Here, there is a time t0 where y1(t)
reaches its minimum, which means there is a small number
of teams of size one.

5. Effects of Time Delays

Since a single agent has to spend time τ to search a node,
the length of τ affects the task allocation. In this section, we
show the effects of time delays by numerical simulations.

Let m = 2, then the system (1) becomes the system (2).
We consider the following two cases.



0 1 2 3 4

x 10
4

0

5

10

15

20

time

y(
t)

0 1 2 3 4

x 10
4

0

5

10

15

20

25

30

time
y 1(t

)

0 1 2 3 4

x 10
4

475

480

485

490

495

500

time

y 2(t
)

0 10 20 30
475

480

485

490

495

500

y
1
(t)

y 2(t
)

Figure 3. Let S = 1000, λ = c = d = 0.001, τ =
1, y2(t) = 500, y(t) = y1(t) = 0 as t > 0. Load
balancing tends to a steady state and vari-
ables remain positive.

0 1 2 3 4

x 10
4

0

20

40

60

80

100

time

y(
t)

0 1 2 3 4

x 10
4

20

40

60

80

100

time

y 1(t
)

0 1 2 3 4

x 10
4

400

420

440

460

480

time

y 2(t
)

20 40 60 80 100
400

420

440

460

480

y
1
(t)

y 2(t
)

Figure 4. Let S = 1000, λ = c = d = 0.001, τ =
1, y2(t) = 400, y(t) = y1(t) = 100 as t > 0. Load
balancing tends to a steady state and vari-
ables remain positive.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

470

475

480

485

490

495

500

time

y2
(t

)

τ = 1 
τ = 20
τ = 40

Figure 5. Let S = 1000, λ = c = d = 0.001, τ =
1, 20, 40, y2(t) = 500, y(t) = y1(t) = 0 as t > 0.
the larger the time delay τ , the slower the con-
verging speed of task allocation.

Simulation 5. Let

S = 1000, λ = c = d = 0.001,

y2(t) = 500, y(t) = y1(t) = 0 as t ∈ [0, τ ],

that is, there are a total of 1000 tasks on networks and there
are 500 teams of size 2 in initial period [0, τ ]. Simulations
in Fig. 5 show that as τ increases, the converging speed
of y2(t) is decreased, more and more oscillations emerge.
Similar simulations can be given that the converging speed
of variables y(t), y1(t) vary as time delay τ varies: the
larger the time delay τ , the slower the converging speeds.

Simulation 6. Let

S = 1000, λ = c = d = 0.001,

y2(t) = 400, y(t) = y1(t) = 100 as t ∈ [0, τ ],

that is, there are a total of 1000 tasks on networks and there
are 400 teams of size 2, 100 teams of size 1 and 100 wan-
dering agents in initial period [0, τ ]. Simulations in Fig. 6
show that the larger the time delay τ , the longer the period
of oscillation.

In Figs. 5-6, as τ is small, such as τ < 1, the time delay
plays an unimportant role in dynamics of load balancing.
However, as τ is large, such as τ > 20, the time delay plays
an important role in dynamics of load balancing: oscillation
emerges; converging speed of load balancing decreases.



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

400

410

420

430

440

450

460

470

480

490

500

time

y 2(t
)

τ =1 
τ =20
τ =40

Figure 6. Let S = 1000, λ = c = d = 0.001, τ =
1, 20, 40, y2(t) = 400, y(t) = y1(t) = 100 as t >
0. the larger the time delay τ , the longer the
period of oscillation.

6. Conclusion

In this paper, we have presented a macroscopic model to
describe the dynamics of agent-based load balancing with
time delays, where the time period among ants’ SearchMax,
SearchMin, and Tranfer is considered. We give a detailed
explanation of our model to establish the close relationship
with agent-based load balancing mechanism. To show the
stability and variables’ positiveness, we give simulations
with different initial conditions. The stability we show is in
agreement with the recent experiments of [3, 9]; The posi-
tiveness that we show here is important to the effectiveness
of the model. About time delays, we give an interesting re-
sult that as τ is small, the time delay plays a less significant
role in the dynamics of load balancing. However as τ is
large, the effects of the time delay are obvious: oscillation
emerges; converging speed of load balancing decreases.

There are some open problems with respect to the model:

1. The positiveness of variables is not proven strictly;

2. How do steady states vary with initial conditions?

3. How do steady states vary with single agents’ strate-
gies of leaving and queuing?

4. To apply the macroscopic model to microscopic simu-
lations, parameters in the model should be determined.

Finally, our model describes load balancing from local
factors such as time delays, strategies of leaving and queu-
ing, etc., and shows the global dynamics as affected by the

local factors. The model shows the effects of time delays,
the convergence of dynamic behavior, the steady states, etc.,
which are very important to the development of future load
balancing systems.

References

[1] D. Abramson, R. Buyya, and J. Giddy. A computational
economy for grid computing and its implementation in the
nimrod-g resource broker. Future Generation Computer
System, 18:1061–1074, 2002.

[2] W. Agassounon and A. Martinoli. A macroscopic model of
an aggregation experiment using embodied agents in groups
of time-varying sizes. In Proceeding of the 2002 IEEE Sys-
tems, Man and Cybernetics Conference, 2002. Tunisia.

[3] O. Babaolu, H. Meling, and A. Montresor. A framework
for the development of agent-based peer-to-peer systems.
Proceedings of the 22th International Conference on Dis-
tributed Computing Systems, 2002.

[4] J. Hofbauer and K. Sigmund. Evolutionary Games and
Replicator Dynamics. Cambridge University, 1998.

[5] T. Hogg and B. A. Huberman. Dynamics of large au-
tonomous computational systems. Proceedings of the Santa
Fe Workshop on Collective Cognition, 2002.

[6] F. C. Hoppensteadt and C. S. Peskin. Mathematics in
Medicine and the Life Sciences. Springer-Verlag, 1992.

[7] A. Itai, M. Rodeh, and H. Shachnai. The passport control
problem or how to keep a dynamic service system load bal-
anced? Theoretical Computer Science, 282:303–318, 2002.

[8] K. Lerman and O. Shehory. Coalition formation for large-
scale electronic markets. Proceedings of the International
Conference on Multi-Aent Systems, 2000.

[9] A. Montresor, H. Meling, and O. Babaoglu. Load-balancing
through a swarm of autonomous agents. Technical Report
UBLCS-02-08, 2002.

[10] W. P. Nelson and A. S. Perelson. Mathematical analysis of
delay differential equation model of hiv-1 infection. Mathe-
matical Biosciences, 179:73–94, 2002.

[11] Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L.
Swinney, and W. Y. Tam. Sustained chemical waves in an
annular gel reactor: a chemical pinwheel. Nature, 329, 1987.

[12] M. Resnick. Turtles, Termites, and traffic Jams: Explo-
rations in Massively Parallel Microworlds. MIT Press,
1994.

[13] Y. Takeuchi. Global Dynamical Properites of Lotka-Volterra
Systems. World Scientific, 1996.

[14] A. M. Turing. The Chemical Basis of Morphogenesis, vol-
ume B327. Phil. Trans. Royal Soc. Lond., 1995.

[15] Y. Wang and J. Liu. Macroscopic model for load balancing
on grids. Proceedings of the International Conference on
AAMAS, July 2003.

[16] Z. Zhang. Qualitative Theory of Differential Equations, vol-
ume RI 101. AMS, 1992.


