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In this paper, we extend and modify the ERA approach proposed in Ref. 13 to
solve Propositional Satisfiability Problems (SATs). The new ERA approach involves
a multiagent system where each agent only senses its local environment and applies
some self-organizing rules for governing its movements. The environment, which is a
two-dimensional cellular environment, records and updates the local values that are
computed and affected according to the movements of individual agents. In solving a
SAT with the ERA approach, we first divide variables into several groups, and represent
each variable group with an agent whose possible positions correspond to the elements
in a Cartesian product of variable domains, and then randomly place each agent onto
one of its possible positions. Thereafter, the ERA system will keep on dispatching
agents to choose their movements until an exact or approximate solution emerges.
The experimental results on some benchmark SAT test-sets have shown that the ERA
approach can obtain comparable results as well as stable performances for SAT problems.
In particular, it can find approximate solutions for SAT problems in only a few steps.
The real value of this approach is that it is a distributed asynchronous approach without
any centralized control or evaluation, where the agents can cooperate to solve problems
without explicit communication.
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self-organization; multiagent system; ERA.

1. Introduction

1.1. Propositional Satisfiability Problem (SAT)

A Propositional Satisfiability Problem (SAT) is an NP-complete problem. Many

issues in Artificial Intelligence (AI) as well as in other areas of computer science and

∗Author for correspondence.
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engineering can be formulated into Propositional Satisfiability Problems (SAT).3,4

Some examples of such problems include: spatial and temporal planning, qualitative

and symbolic reasoning, computational linguistics, scheduling, resource allocation

and planning, graph problems, and circuit diagnosis.

1.1.1. Definitions

Generally speaking, a Propositional Satisfiability Problem (SAT) is to test whether

or not there exists (at least) one solution for a given propositional formula.

Definition 1. A Propositional Satisfiability Problem (SAT), P , consists of:

1. A finite set of propositional variables, X = {X1,X2, . . . ,Xn}.
2. A domain set, D = {D1, D2, . . . , Dn}, for all i ∈ [1, n], Xi ∈ Di and Di =

{True,False}.
3. A clause set, CL = {Cl(R1), Cl(R2), . . . , Cl(Rm)}, where each Ri is a subset of

X, and each clause Cl(Ri) is a disjunction of the literals corresponding to the

variables in set Ri.

Definition 2. The solution, S, of a SAT is an assignment to all variables such

that, under this assignment, the truth values of all given clauses are true, i.e.

1. S is an ordered set, S =< v1, v2, . . . , vn >, for all i ∈ [1, n], vi is equal to True

or False, S ∈ D1 ×D2 × · · · ×Dn.

2. ∀j ∈ [1,m], T (Cl(Rj)) = True, where T (·) is a function that returns the truth

value of a clause.

1.1.2. Conventional methods

Generally speaking, the methods to solve a SAT can be divided into two main

categories: systematic methods and local search methods.10 A systematic method

is a traditional way to solve SATs that allots a value to a selected variable at

each step and then checks if there are some clauses unsatisfied. If this is the case,

it will backtrack to a previous variable to assign it with another value, and then

repeat this process. Or else, it will select a new variable to branch until a solution

is found or the problem is unsatisfiable. This method will walk through the search

space, so it is a complete method, i.e. it can obtain a “it is satisfiable” or “it is

unsatisfiable” result for a given problem. Some examples of systematic method are

POSIT, TABLEAU, GRASP, SATZ, and REL−SAT.10

Compared to systematic methods, local search is a relatively new method, which

appeared in 1992 when Selman et al.20 and Gu6 almost simultaneously and inde-

pendently proposed it. The local search procedure starts with a complete, randomly

initialized assignment, then checks if it satisfies all clauses. If not, it will randomly

or heuristically select a variable to flip (i.e. change its value). It repeats this process

until a solution is found. Local search has three key elements,1 they are:
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1. Configuration: one possible assignment of all variables, not required to be a

solution.

2. Evaluation value: the number of unsatisfied clauses.

3. Neighbor : the configuration obtained by flipping the assignment of a variable in

the current configuration.

During the past, local search has been shown to outperform systematic methods.

But, it is incomplete in nature. It cannot prove that a propositional formula

has no satisfying assignment. In addition, it cannot guarantee that it will find

a solution for a satisfiable formula. Despite this, many improvements have been

introduced to local search. As a result, there are two main streams in local

search; namely, GSAT6,20 and WalkSAT.19 Both of them have many vari-

ants, such as, GWSAT,19 GSAT/Tabu,16,21 HSAT,4 HWSAT5 of GSAT and

WalkSAT/Tabu,17 Novelty,17 R-Novelty17 of WalkSAT.

1.2. Self-organizing system

The term “self-organization” was first introduced by W. R. Ashby in 1947.a The

phenomenon of self-organization exists in a variety of natural systems and scientific

fields, such as galaxies, planets, biology, chemistry, computer science, geology,

sociology and economy, etc.2,8,18,22,24

A self-organizing system consists of two main components: elements and an

environment where the elements are situated. A system that is self-organized

indicates that the system’s elements are autonomous individuals and can behave

rationally and independently. And further, there is no explicit outside control on

the system, i.e. it is not controlled by outer, top–down rules. Self-organization is

actually an “evolutionary” process. During the process, the elements change their

behaviors according to the changes occurring on their environment. The behaviors

are often complex, but not predefined. In other words, they are emergent. More

detailed descriptions on self-organization can be found in Refs. 12, 15, 24 and 25.

Based on the point of view of Ünsal in Ref. 22, one can generalize the actions

of elements in a self-organizing system with three steps. First, the elements sense

the environment or receive the signals from the other elements. And then, based on

the information received from the environment or other elements, the elements make

rational decisions, i.e. rationally decide what to do next. Finally, the elements act

by their decisions. Their actions will in turn affect the environment and the actions

of the other elements. The essence of a self-organized system is interactions between

its members and the environment. Through the interactions, a self-organized system

can exhibit emergent behaviors.

A self-organizing system can yield a global result through local information

exchanges without global control and planning. This is a very interesting system

aBut some people thought that it was Farley and Clark who in 1954 defined this term.
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model. Lately, researchers have paid much attention to it. By virtue of self-

organization, they have proposed some methods for solving practical problems.

Introducing self-organization into neural networks is a successful example. Self-

organization has also been used in other fields, such as image feature extraction as

described in Ref. 14.

In the SAT related area, there have existed two self-organization based

approaches. Inspired by cellular automata7,14 and swarm,23 Liu et al. in Ref. 13

proposed an approach, namely ERA, for solving Constraint Satisfaction Problems

(CSPs). In the ERA approach, each distributed agent represents a variable, and

a two-dimensional grid-like environment where all agents live corresponds to the

domains of all variables. To solve a given CSP problem, all agents will be distributed

in the environment. From then on, agents will move in its local area. Agents

can interact with each other via their environment until a special solution state

emerges. They have employed the ERA approach to solve two kinds of classical

CSPs: n-queen problems and graph coloring problems. Their experimental results

showed that the ERA approach is efficient in solving both types of problems, and can

find approximate solutions in just a few steps. Another approach was recently pro-

posed by Hirayama and Yokoo in Ref. 9, called Multi-DB. In Multi-DB, each agent

has multiple variables and relevant clauses to the variables. To solve a problem,

all agents will communicate with its related agents by sending and receiving OK

and improve messages. Through communication, the related agents can negotiate

with each other to assign appropriate assignments to their variables so that the

assignments to the variables satisfy all clauses.

1.3. The proposed approach

In this paper, we will explore the use of the ERA approach in SATs. To do so,

we extend and modify it in order to make it more applicable to solving SATs. We

will see that, from the point of view of solving a SAT, the new ERA approach

somewhat behaves like local search. But, in nature, they are different. The main

difference between ERA and local search lies in the following three points:

1. The evaluation value of ERA is not the number of unsatisfied clauses for

the whole assignment as in local search, but rather the number of unsatisfied

clauses related to the variables of an agent. These evaluation values constitute

an environment in the ERA system.

2. The ERA system is concurrent whereas local search is sequential. As if in cellular

automata, agents can move and update asynchronously.

3. In local search, the neighbors of an assignment are restricted to those that are

different with this assignment in the value of only one variable. That is, the radius

of neighborhood is one. But, in ERA, we enlarge the radius of neighborhood, it

can be larger than one.
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As compared to the conventional methods for solving SATs mentioned in

Sec. 1.1.2, our EAR approach has three features:

1. All agents in ERA are autonomous. No centralized control policy exists to govern

the actions of agents.

2. Agents know and concern only the clauses related to their own variables. Based

on the evaluation value to these clauses, agents select their next movements.

So, there is no global evaluation in the ERA approach. But in the conventional

methods, the evaluation functions are usually based on all clauses.

3. In ERA, all agents can move asynchronously. So, at a certain time, there may be

a number of variables that change their values. But, in the conventional methods,

there is only one variable changing its value at each step.

As far as the Multi-DB method mentioned in the previous section, we notice

that in both Multi-DB and ERA, each agent represents some variables and related

clauses of the variables. But, in Multi-DB, all related agents cooperate by message

communication. In ERA, agents cooperate via their respective interactions with

their environment rather than explicit communication. So, the ERA approach is

particularly suited to distributed applications where the explicit communication is

not feasible.

1.4. The organization of the paper

The remainder of this paper is organized as follows: Sec. 2 describes the basic

ideas behind the ERA self-organization approach. Section 3 presents an illustrative

example of solving a SAT problem using ERA. Section 4 describes experiments and

observations, and discusses several important issues related to the ERA approach for

solving SATs. Finally, Sec. 5 concludes the paper by highlighting the contributions

of this work and pointing out the future work on the ERA approach.

2. The ERA Model

In this paper, we will introduce a distributed self-organizing approach to solve SATs.

In our case, the domain of a SAT is represented into a multiagent environment.

Thus, the problem of finding a solution to the SAT is reduced to that of local

behavior-governed movements within such an environment. Specifically, the notions

of agent and multiagent system can be defined as follows:

Definition 3. An agent, a, is a virtual entity that essentially has the following

properties:

1. Be able to live and act in its local environment;

2. Be able to sense its local environment;

3. Be driven by certain goals;

4. Have some behavioral strategies.
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Definition 4. A multiagent system is one that contains the following elements:

1. An environment, E, a space in which the agents live;

2. A set of reactive rules, R, governing the interaction between the agents and their

environment.

3. A set of agents, A = {a1, a2, . . . , an}.

The goal of this work is to examine how exact or approximate solutions to SATs

can be self-organized by a multiagent system consisting of E,R and A.

2.1. General framework

The ERA system is meant to be a straightforward framework for interacting agents

to achieve a goal. In ERA, we divide variables into groups, and each group can

include one or more variable(s). Each agent represents a group of variables. The

environment records the number of clause violations of the current state for each

combination of values in the Cartesian product that is constructed by the domains

of variables in corresponding variable group. So the position of an agent indicates

the value combination of its related variables. The agent can move freely within

a row and has its own moving strategies. Its goal is to move to a position whose

clause violation number is zero, we call it zero-position (for details see Definition 5).

The reactive rules correspond to the schedules for dispatching agents and updating

the environment.

ERA can be described as ERA = {E,R,A}. A solution state in ERA is

reached when every agent (variable group) finds its zero-position (consistent values

combination) that satisfies all clauses. In other words, a solution in ERA is specified

by the positions of distributed agents.

In the following paragraph, we will use an example to illustrate how the ERA

model works in solving a SAT.

Example 1. A SAT:

X = {X1,X2,X3,X4} , n = 4 ;

D = {D1, D2, D3, D4} , D1 = {True, False} , D2 = {True, False} ;

D3 = {True, False} , D4 = {True, False} ;

C = {T (X1 ∨ ¬X2 ∨X3) = True , T (X1 ∨X2 ∨ ¬X3) = True ,

T (X2 ∨X3 ∨ ¬X4) = True , T (¬X2 ∨ ¬X3 ∨X4) = True ,

T (X1 ∨X3 ∨ ¬X4) = True , T (X1 ∨X3 ∨X4) = True ,

T (¬X1 ∨X2 ∨ ¬X3) = True , T (¬X1 ∨ ¬X2 ∨X3) = True ,

T (¬X1 ∨ ¬X2 ∨ ¬X3) = True} .

This example can be modeled as a multiagent system as follows. First, we

divide four variables into two groups: {X1,X2} and {X3,X4}. In this case, the
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X1, X2

X3, X4

T,T T,F F,T F,FT,F

T,T T,F F,T F,FF,F

Fig. 1. An illustration of agent model for Example 1.

Cartesian product of each variable group will be {〈True, T rue〉, 〈True, False〉,
〈False, T rue〉, 〈False, False〉}. Second, we use two agents to represent the two

variable groups. So, the space for agent to move will correspond to the Cartesian

product of the variable group (see Fig. 1). In Fig. 1, there are two agents. Each

agent occupies a row that is its space to move. The lattices in the row just represent

the elements in the Cartesian product of a corresponding variable group.

In Fig. 1, two agents both reside at zero-positions. So, Fig. 1 corresponds to a

solution state of S = 〈True, False, False, False〉 to the above SAT.

From the aforesaid example, we can give a general framework for ERA:

SAT{X(variables), D(domain), C(clause)} ⇒Multi-agent system

D & C⇒ Environment & Updating rule

X⇒ Agents (each agent represents a group of variable(s))

Solution⇒ Positions of agents

2.2. Environment

If we divide n variables into u groups (each group may has different number of

variables), then an environment, E, has u rows corresponding to the number of

variable groups. For all i ∈ [1, u], if we assume rowi represents a variable group

{Xi1,Xi2, . . . ,Xik}, then it will have |Di1 × Di2 × · · · × Dik| columns. It records

two kinds of values: domain value and violation value.

Definition 5. The data structure of E can be defined as follows:

1. Size

• u rows ⇔ u variable groups. E = 〈row1, row2, . . . , rowu〉.
• ∀ i ∈ [1, u], rowi ⇔ all possible value combinations of variables in {Xi1,

Xi2, . . . ,Xik} ⇔ Di1 ×Di2 × · · · × Dik, so rowi has |Di1 ×Di2 × · · · ×Dik|
columns. rowi = 〈lattice1i, lattice2i, . . . , lattice(|Di1×Di2×···×Dik|)i〉.
• E size is

∑
(|Di1 × Di2 × · · · × Dik|). e(j, i) refers to the position of

latticeji.

2. Value

• Domain value: e(j, i).value records the jth combination of values in

Cartesian product Di1×Di2×· · ·×Dik. It is static since the Cartesian product

is static.
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X1, X2

X3, X4

T,T T,F F,T F,FT,F

T,T T,F F,T F,FF,F

(a)

X1, X2

X3, X4 1 2 1 1

(b)

a1

a2

X1, X2

X3, X4

1 0 2 1

1 0 2 F,F1

(c)

Fig. 2. (a) The representation of domain values, (b) violation numbers if agent a1 is placed on
(1, 1), and (c) violation numbers of the whole environment.

• Violation number: e(j, i).violation records in the current state how many

clauses were not satisfied, which are related to variables in position e(j, i),

i.e. e(j, i).violation = m means there are m clauses, which include some vari-

able(s) in position e(j, i), is unsatisfied. These values are dynamic since the

agents keep on moving and their corresponding state is changing. After each

movement of one agent, the violation numbers should be updated by applying

an updating-rule, which will be described in detail in Sec. 2.4.

• Zero-position: position (j, i), in which e(j, i).violation = 0. That means all

clauses to which the variables in row i are related are satisfied.

For instance, we can further model Example 1 using the above concepts.

In Example 1, we have divided four variables into two groups: {X1,X2} and

{X3,X4}. The Cartesian product of each group is {〈True, T rue〉, 〈True, False〉,
〈False, T rue〉, 〈False, False〉}. Figure 2(a) shows the domain value of each lat-

tice in Example 1. Figure 2(b) shows that agent a1 stays at (1, 1), which means

X1 = True,X2 = True. According to the clause set, if a2 stays at (1, 2), the clause

T (¬X1 ∨ ¬X2 ∨ ¬X3) = True, which is constructed by variables X1,X2 in group

{X1,X2} and variable X3 in group {X3,X4}, will be violated. If a2 stays at (2, 2),

two clauses T (¬X2 ∨ ¬X3 ∨X4) = True, and T (¬X1 ∨ ¬X2 ∨ ¬X3) = True will

be violated. If a2 stays at (3, 2), it will violate clause T (¬X1 ∨¬X2 ∨X3) = True.

And if a2 stays at (4, 2), the clause T (¬X1 ∨ ¬X2 ∨X3) = True will be violated

again. So, the violation number of each lattice in row 2 is 1, 2, 1, and 1, respec-

tively. Figure 2(c) presents a snapshot for the state of the system with the violation

numbers. Since there are two agents at positions with violation number 1, it is not

a solution state.

2.3. Agents

All agents inhabit in an environment, in which their positions indicate value combi-

nations of a variable group. During the operation of the system, the agents will keep
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on moving, based on certain moving strategies. At each time step, the positions of

the agents provide a consistent or inconsistent assignment for all variables. The

agents are trying to find better positions that can lead them to a solution state.

Here is a summary of some main polices for agents in the ERA model:

1. ∀ i ∈ [1, u], ai represents a variable group {Xi1,Xi2, . . . ,Xik}.
2. Agent lives and moves in environment E. Agent ai lives in rowi. It can only move

to its right or left, cannot move up or down. ai.x represents its x-coordinate,

which is corresponding to the jth combination of values in Di1×Di2×· · ·×Dik.

So the position of ai can be denoted as (ai.x, i). In this paper, we use function

Ψ to define the movement of an agent.

Definition 6. Ψ : [1, u]× [1, |Di1×Di2×· · ·×Dik|]→ [1, |Di1×Di2×· · ·×Dik|].
Ψ(x, y) gives the x-coordination of the new position of agent ay, after it moves from

position of (x, y). So the new position can be represented as (Ψ(x, y), y).

3. In any state of the system, positions of all agents indicate an assignment for

all variables. ∀ i ∈ [1, u], e(ai.x, i).value = 〈vi1, vi2, . . . , vik〉, that means Xi1 =

vi1,Xi2 = vi2, . . . ,Xik = vik. By extracting positions of all agents, we can obtain

a complete assignment to all variables. Of course, it may not be a consistent

assignment, i.e. not a solution. But, if an assignment satisfies all the clauses,

i.e. ∀ i ∈ [1, u], e(ai.x, i).violation = 0, it is a solution.

4. Agent ai is able to sense its local environment, which is its rowi. ai can perceive

the violation number for each lattice in rowi. It can find the minimum violation

number. Here, we define a function Φ(i) for finding a position (x-coordination)

with the minimum violation number in rowi.

Definition 7. A minimum-position is position (x, i) where i ∈ [1, u], and (∀j ∈
[1, |Di1 ×Di2 × · · · ×Dik|]), e(x, i).violation ≤ e(j, i).violation.

Definition 8. Functions for finding the first minimum-position for each agent ai
in rowi:

Φ : [1, u]→ [1, |Di1 ×Di2 × · · · ×Dik|]

that is, Φ(i) = x, where (x, i) is a minimum-position, and (∀ j ∈ [1, x)), (j, i) is not

a minimum-position.

5. The objective of each agent is to stay at a zero-position. For each agent in

this system, because it can only sense its local environment and cannot sense

positions of other agents, it does not know what a “solution” is and what the

whole system wants. It simply acts based on its own objective moving toward

a zero-position. That is enough for solving a SAT, since if all agents stay at

zero-positions, we have found an exact solution to the problem.

6. In order to achieve the goal, each agent has its own moving strategies. Agents

want to move toward zero-positions at each time step. But, in most cases, they
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cannot, or only some lucky agents can, find zero-positions, simply because some

rows do not contain such positions. In such cases, agents will have to perform

other moving strategies. Below we introduce some of them. They are easy to

implement. As more than one strategy coexist, there should be a probability

associated with each strategy. Therefore, before an agent moves, it will first

decide which strategy to perform according to the probabilities.

(a) Least-move

An agent moves to a minimum-position with a probability of least-p. If there

exists more than one minimum-position, we let the agent choose the first

one on the left of the row. This strategy is instinctive to all agents. The

least-move strategy can be expressed as follows:

Ψ(j, i) = Φ(i) .

In this function, the result has nothing to do with the current position j,

and the number of computational operations to find the position for each i is

|Di1×Di2× · · ·×Dik|. We use another symbol to represent this movement:

Ψ−l(j, i) = Φ(i) .

(b) Better-move

An agent moves to a position that has a smaller violation number than its

current position with a probability of better-p. It will randomly select a po-

sition and then compare its violation number to decide whether or not it

should move to this position. We use function Random(k), which complies

uniform distribution, to get a random number between 1 and k. This move-

ment can be defined using function Ψ−b:

Ψ−b(j, i) =

{
j if e(r, i).violation ≥ e(j, i).violation
r if e(r, i).violation < e(j, i).violation

where, r = Random(|Di1 ×Di2 × · · · ×Dik|).
Although it may not be the best choice for the agent, the computational cost

required for this strategy is less than that of least-move. Only two operations

are involved for deciding this movement, i.e. producing a random number

and performing a comparison. This strategy can easily find a position to go

to if the agent currently stays at a larger violation position.

(c) Random-move

An agent moves randomly with a probability of random-p. Random-p will be

relatively smaller than the probabilities of selecting least-move and better-

move strategies. It is somewhat like a random-walk in local search. For the

same reason as in local search, random-move is necessary because without

randomized movements the system will get stuck in local-optima, that is, all

the agents are at minimum-positions, but not all of them at zero-positions.

In the state of local-optima, no agent will move to a new position if using

the strategies of least-move and better-move only. Thus, the agents will lose
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time step 0 1 2 3 

Solution state 
End   

Fig. 3. Asynchronous agent-environment interaction at different time steps.

their chance for finding a solution if without any techniques to avoid getting

stuck in local-optima.

Random-move can be defined using function Ψ−r:

Ψ−r(j, i) = Random(|Di1 ×Di2 × · · · ×Dik|) .

The above three moving strategies are elementary. They are simple and easy

to implement. We can combine these moving strategies to get new complex

strategies. We will discuss this issue in the later part.

2.4. System schedule

The multiagent system presented in this paper is asynchronous and discrete in

nature, with respect to its space, time and state space. The system will use a

discrete timer to synchronize its cycles, as illustrated in Fig. 3.

time step = 0:
The system is initialized. We place u agents onto the environment, a1 in

row1, a2 in row2, . . . , au in rowu. The simplest way to place the agents is to

randomly select positions. That is, for ai, we get a position of (Random(|Di1×
Di2 × · · · ×Dik|), i). Of course, it can as well be a solution state.

time step ← time step + 1:
After the initialization, the system will start to run. At each time step, which

means after one unit increment of the system timer, all agents will have a

chance to decide their movements, that is, whether to move or not and where

to move, and then move asynchronously. It should be pointed out that in this

paper, we are concerned only with a simulation of the multiagent system, which

dispatches the agents one by one. The order of dispatching does not influence

the performance of the algorithm. It may be based on a random or predefined

sequence.

After movement of an agent from (j1, i) to (j2, i), the violation number of the

environment will be updated according to the following two update-rules:

• Update-rule 1: Remove from (j1, i):

For (∀i′ ∈ [1, u])(∀j′ ∈ [1, |Di1 ×Di2 × · · · ×Dik|]):
If: there are v clauses some of whose variables are included in rowi and

rowi′ , and whose values are changed from false to true;

Then: e(j′, i′).violation← e(j′, i′).violation− v;
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• Update-rule 2: Add to (j2, i):

For (∀ i′ ∈ [1, u])(∀ j′ ∈ [1, |Di1 ×Di2 × · · · ×Dik|]):
If: there are v clauses some of whose variables are included in rowi and

rowi′ , and whose values are changed from true to false;

Then: e(j′, i′).violation← e(j′, i′).violation+ v;

End:

After each movement of an agent, the system will check whether all agents are

at zero-positions. If yes, a solution state is found. The system will stop and

output the answer. Otherwise, the system will continue to dispatch the next

agent to move in the dispatching order.

We can also set a threshold t-max for the timer such that when the time step

reaches t-max, the system will stop and output an assignment of the current

state, no matter whether it is a solution or not. Another way to terminate

the operation is when q agents are staying at zero-positions. Of course, these

settings are just for obtaining an approximate solution.

The following shows the complete algorithm for the ERA system.

Input: n variables, domains of variables, and clauses.

Output: an (approximate) solution.

Algorithm:

Section-1. Initialization:

1. time step = 0;

2. For all position (i, j) ∈ environment do

3. e(i, j).value = the jth value of Cartesian product Di1 ×Di2 × · · · ×Dik;

4. e(i, j).violation = 0;

5. End for

6. For all ai ∈ A do

7. ai.random-p = p1;

8. ai.least-p = p2;

9. ai.better-p = p3;

10. ai.x = Random(|Di1 ×Di2 × · · · ×Dik|);
11. End for

12. For all position (j′, i′) ∈ environment do

13. If there are v unsatisfied clauses with respect to some variables in row i′

Then

14. e(j′, i′).violation← v;

15. End for

Section-2. Running:

16. While (true) do

17. For all ai ∈ A do

18. p = Random(ai.random-p+ ai.least-p+ ai.better-p);
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19. If p ≤ ai.random-p then

20. New position (j′′, i) = (Ψr(ai.x, i), i);

21. Else if p ≤ ai.random-p+ ai.least-p then

22. New position (j′′, i) = (Ψl(ai.x, i), i);

23. Else

24. New position (j′′, i) = (Ψb(ai.x, i), i);

25. If current-position (ai.x, i) = (j′′, i) then

26. Stay;

27. Else

28. ai.x = j′′;

29. End for

30. Use two update-rules to update the violation values of an environment;

31. If current-state is an acceptable solution then GoTo 34;

32. time step ++;

33. End while

Section-3. Solution:

34. For all ai ∈ A do

35. For l from 1 to k

36. Xil = e(ai.x, i).value.l;

37. End For

38. End For

3. An Example

In this section, we will walk through an example to show how to apply the ERA

method to solve a SAT problem.

Example 2. A SAT,

X = {X1,X2,X3,X4,X5} , n = 5 ;

D = {D1, D2, D3, D4, D5} , D1 = {True, False} , D2 = {True, False} ,
D3 = {True, False} , D4 = {True, False} , D5 = {True, False} ;

C = {T (X3 ∨X4 ∨ ¬X5) = True , T (X2 ∨ ¬X3 ∨ ¬X5) = True ,

T (¬X1 ∨ ¬X2 ∨X3) = True , T (¬X1 ∨ ¬X2 ∨X4) = True ,

T (¬X3 ∨X4 ∨X5) = True , T (X1 ∨ ¬X2 ∨ ¬X3) = True ,

T (¬X2 ∨X4 ∨X5) = True , T (¬X1 ∨ ¬X3 ∨ ¬X5) = True ,

T (X2 ∨ ¬X3 ∨X4) = True , T (¬X1 ∨X4 ∨ ¬X5) = True ,

T (X2 ∨X3 ∨X5) = True , T (X1 ∨X2 ∨ ¬X4) = True ,

T (¬X1 ∨X2 ∨ ¬X5) = True , T (¬X1 ∨X3 ∨X4) = True

T (X1 ∨ ¬X4 ∨ ¬X5) = True} .
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This SAT contains five variables and 15 clauses. First, we divide five variables

into three groups: {X1,X2}, {X3,X4}, and {X5}, and use three agents, a1, a2 and

a3, to represent them. Second, we model the domains as the environment of the

agents. The domain values will be recorded as e(j, i).value [see Fig. 4(a)] and the

violation numbers for all positions will be initialized to 0. After that, agents will

be randomly placed onto different rows [see Fig. 4(b)]. Accordingly, with respect

to the positions of the agents, the violation numbers in the environment are up-

dated [see Fig. 4(c)]. Thereafter, the cycles of distributed agent movements start. In

ERA, the agents are dispatched in a random or predefined order. Here, we assume

the order is: a1 → a2 → a3.

At the first time step, with respect to the above defined dispatching sequence,

the system first dispatches agent a1 to move. Agent a1 moves by applying a least-

move strategy, Ψ−l(1, 1) = 3. As a result, it moves to position (3, 1). Agent a2 takes

a least-move too, from (2, 2) to (1, 2). And agent a3 randomly moves from (1, 3)

X5

X1, X2

X3, X4

T,T T,F F,T F,F

T,T T,F F,T F,F

T F

(a)

a3

a1

a2

X5

X1, X2

X3, X4

T,T T,F F,T F,FT,T

T,T T,F F,T F,FT,F

T FT

(b)

a3

a1

a2

3 5 1 2

1 3 1 5

3 3

(c)

Fig. 4. (a) Domain values, (b) an initialization state, (c) violation numbers.
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Fig. 5. The first time step. a1 least-moves. a2 least-moves. a3 random-moves.
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Fig. 6. The second time step. a1 better-moves, but fails. a2 least-moves. a3 least-moves, but fails.

to (2, 3) [see Fig. 5(b)]. Then, the system checks whether this state is a solution

state, and finds all three agents are not at zero-positions. So, it is not a solution

state. Thus, the system begins the second time step.

At the second time step, agent a1 select a better-move, Ψ−l(3, 1) = 4. But, due

to (4, 1).violation = (3, 1).violation = 1 [see Fig. 5(b) or 6(a)], a1 fails to move.

Hence, it stays at (3, 1). Agent a2 lease-moves from (1, 2) to (3, 2). Agent a3

prepares a least-move. But, it fails to move too. So, it stays [see Fig. 6(b)]. Then,

the system finds that all agents are at zero-positions, meaning that it is a solution

state.

a1 stays at position (3, 1)⇒ {X1 = False,X2 = True} ;

a2 stays at position (3, 2)⇒ {X3 = False,X4 = True};
a3 stays at position (2, 3)⇒ {X5 = False} .

So, the final solution is: X1 = False, X2 = True, X3 = False, X4 = True, and

X5 = False.

4. Experimental Results and Discussions

The preceding sections have provided a formal description of the ERA method for

solving SATs. In this section, we will present several ERA experimental results on a

set of benchmark SAT problems. We will also discuss some important issues related

to ERA for solving SATs. We can see that the results on SAT are comparable to

those of well-known algorithms for SAT.

In the experiments, we initialize all the agents with the same parameters

random-p, least-p, better-p, ∀ i ∈ [1, u], ai.random-p = random-p, ai.least-p = least-

p, ai.better-p = better-p.

4.1. Benchmark SAT problems

In order to compare with other algorithms for SAT, we will show the ERA

experimental results on some benchmark problems from Ref. 26: uf100-430 and

flat50-115. In Ref. 11, Hoos and Stützle made an empirical evaluation of different

local search algorithms for SAT, and two of their test-sets are uf100-430 and

flat50-115. uf100-430 is a subset of Uniform Random-3-SAT problems26 where each
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clause of instances has exactly three literals which are randomly selected from 2n

literals according to uniform distribution. (Here, we assume there are n variables

to construct instances.) flat50-115 is a subset of Flat Graph Coloring problems26

where clauses may have different number of literals.

In the following experiments, we tune the optimal parameter settings (see each

experiment) at first, and then collect statistical results on uf100-430 and flat50-115.

Experiment 1. In this experiment, the test-set is a subset of Uniform Random-3-

SAT problems: uf100-430. This test-set includes 1000 instances, and each instance

contains 100 variables and 430 clauses. We run each instance 100 times. The size

of variable group is 4, least-p : random-p = 40, type = F2BLR.

Experiment 2. Test-set is a subset of Flat Graph Coloring problems: flat50-115.

This test-set includes 1000 instances, and each instance contains 150 variables and

545 clauses. We give each instance 100 runs. The size of variable group is 3, least-p:

random-p = 80, type = F2BLR.

Observation 1. In the last row of Table 1, we have listed our experimental results,

i.e. the mean number of movements of agents to get solutions in 100 runs and in 1000

different instances. Also in Table 1, we have extracted and listed some experimental

data from Ref 11, and compared them with our results:

1. When contrasting with other popular algorithms in the SAT community, our

ERA method gives comparable results with both test-sets.

2. We note that, for some algorithms in Table 1, their performances are not stable

for different test-sets. Such as R-Novelty, its performance is the best in test-set

uf100-430, but in test-set flat50-115, the performance is poor. In this respect,

our ERA method yields consistent results. That means our method is stable

between two different problem types.

4.1.1. Measurement considerations

ERA is a distributed approach where agents move asynchronously. On the contrary,

other algorithms listed in Table 1 are sequential ones. Therefore, it is, in essence,

Table 1. Mean-movement(flip)-number of different
algorithms on two benchmark SAT problem test-sets.

Algorithms Uf100-430 Flat50-115

GWSAT 6532 7023
GSAT/TABU 4783 1040
HWSAT 3039 2641
WalkSAT 3672 3913
WalkSAT/TABU 2485 61393
Novelty 28257 20065
R-Novelty 1245 7109
ERA 3105 3866
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hard to compare these two kinds of entirely different approaches. In order to give

a qualitative view about the performance of the ERA approach in solving SATs,

in this paper we gave a comparison between a sequential simulation of the actual

ERA algorithm and those in Table 1. In particular, we compared the movements

in the sequential version of the ERA algorithm with the flips in other algorithms.

In other algorithms, the number of flips is an important and commonly used

index to evaluate the performance. “Flip” means changing the value of a variable in

a complete assignment from True to False, or from False to True. In the sequential

version of the ERA model, a movement of an agent will cause, in an extreme case,

bn/uc variables to change their values. If we just consider the value changes that

occur on the variables, the comparison in Table 1 is unfair to the other algorithms.

But, in essence, what those algorithms should count is how many time steps they

take to get a solution rather than values changed. Therefore, the correct way to

compare the sequential ERA and other algorithms is to compare their time steps.

In other algorithms, the number of time steps corresponds to the number of flips.

In our ERA case, we recorded the movements of all agents where one movement

may possibly cause multiple flips simultaneously.

4.1.2. Performance

In what follows, we will examine the performance of the ERA method in finding an

“approximate” solution to SAT. We know that, for a SAT problem, there is only

three possible answers: “satisfiable”, “unsatisfiable” and “unknown”, no matter we

use which algorithm to solve it, i.e. there is no “approximate” solution. But, here,

we employ the term “approximate” to mean how many clauses will be satisfied

under a complete assignment to all variables. To some extent, it is like the MAX-

SAT problem. Through the following experiments, we will see that ERA is efficient

in finding an “approximate” solution in first three steps.

Experiment 3. Test-sets are five subsets of Uniform Random-3-SAT problems:

{uf50, uf100, uf150, uf200, uf250}. The five test-sets include 1000, 1000, 100, 100,

and 100 instances, respectively. The number of variables is from 50 to 250, and the

Table 2. Satisfied clauses number and its ratio to the number of clauses in
the first three steps on benchmark test-sets of SAT: Uniform Random-3-SAT.
Note: S−C−N is Satisfied Clauses Number. Ratio is the ratio between S−C−N
and Clauses Number. The same is true for Tables 3 and 4.

Step 1 2 3

Test-set S−C−N Ration S−C−N Ration S−C−N Ration

Uf50 208 0.954 212 0.972 213 0.977
Uf100 410 0.953 418 0.972 420 0.977
Uf150 615 0.953 628 0.974 630 0.977
Uf200 820 0.953 836 0.972 840 0.976
Uf250 1016 0.953 1036 0.972 1040 0.977
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Table 3. Satisfied clauses number and its ratio to the number of clauses in

the first three steps on benchmark test-sets of SAT: Flat Graph Coloring.

Step 1 2 3

Test-set S−C−N Ration S−C−N Ration S-C-N Ration

Flat50 208 0.941 534 0.980 536 0.983
Flat100 410 0.941 1093 0.980 1097 0.982
Flat150 615 0.941 1644 0.979 1650 0.982

Flat200 820 0.940 2189 0.979 2197 0.982

Table 4. Satisfied clauses number and its ratio to the number of clauses in the
first three steps on benchmark test-sets of SAT: Uniform Random-3-SAT.

Step 1 2 3

Test-set S−C−N Ration S−C−N Ration S−C−N Ration

Uuf50 208 0.954 211 0.968 212 0.972
Uuf100 410 0.951 417 0.970 419 0.974
Uuf150 615 0.952 626 0.970 629 0.975
Uuf200 820 0.952 835 0.971 838 0.974
Uuf250 1016 0.952 1034 0.971 1038 0.975

corresponding number of clauses from 218 to 1065. We give each instance 10 runs,

and at the same time, we calculate the mean value for the number of satisfied

clauses of each time step at the first three time steps. (see Table 2.)

Experiment 4. Test-sets are four subsets of Flat Graph Coloring problems:

{flat50, f lat100, f lat200, f lat250}. The first test-set includes 1000 instances. The

last three test-sets include 100 instances. The number of variables ranges from 150

to 600, and the number of clauses from 545 to 2237. We also give each instance

10 runs, and calculate the mean value for the number of satisfied clauses at each

time step of the first three time steps. (see Table 3.)

In Experiments 3 and 4, all instances are satisfiable. Let us see a special

situation, that is, all instances are unsatisfiable.

Experiment 5. In this experiment, like Experiment 3, test-sets are also from

Uniform Random-3-SAT problems: {uuf50, uuf100, uuf150, uuf200, uuf250}.
The other parameters are the same as Experiment 3 except that all instances in

this experiment are unsatisfiable. The results are shown in Table 4.

Observation 2. From Tables 2–4, we note that, using the ERA method,

1. We can get an approximate solution with about 94–95% satisfied clauses after

the first time step, no matter the instances are satisfiable or unsatisfiable.

2. After the second time step, the numbers of satisfied clauses will have quick

improvements. But, the lengths of improvements are different between the two

different test-set types. The improvements in the type of Flat Graph Coloring

are larger.
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3. After the third time step, the ratio of satisfied clause will go up to about 97–98%

no matter the instances are satisfiable or unsatisfiable.

4. Although there are few differences among test-sets, we can say that ERA is

stable and robust.

4.2. Discussions

In this subsection, we will discuss several important issues related to the ERA

approach.

4.2.1. The necessity of better-move strategy

Generally speaking, in other search algorithms, there are only two kinds of flips. One

is the greediest flip, i.e. flipping will cause the steepest hill-climbing, and another is

random flip. But in our ERA method, there are three moving strategies: least-move,

random-move and better-move. That is to say, ERA has a new moving strategy

better-move. Is it necessary?

From the aforesaid sections, we know that better-move and least-move are

similar: move to a position based on the violation number. But, they are different.

At each time step, it would be much easier for an agent using least-move to find

a better position to move to than for the one using better-move. This is because

least-move checks all the positions in its row, whereas better-move just randomly

selects and checks one position. If all agents use only random-move and better-

move strategies, the efficiency of the system will be low, since many agents cannot

find a better position to move to at each time step. But, on the other hand, the

time complexity of better-move is much less than that of least-move. So, we think

better-move must be necessary. And we guess if we can find an equilibrium point

between better-move and least-move, it will greatly improve the ERA method.

In order to balance the shortcomings and advantages of these two strategies, we

have found a way to combine them. At first, an agent uses a better-move to compute

its new position. If it succeeds, the agent will move to the new position. If it fails,

it will continue to perform several other better-moves until it finds a successful

better-move. If it fails all better-moves, it will perform a least-move without any

other choice. But, in this case, there is a very straightforward question: How many

better-moves before a least-move will be desirable?

It is obvious that, during the initialization step, many agents are not in a “good”

position, that is, they stay at the positions with large violation numbers. In this

case, the probability of using better-move to successfully find a position to move

to is high. But, as the process goes on, more and more agents will be at good

positions. At this time, there will be little chance for an agent to move by a better-

move strategy. Under this situation, intuitively, better-move seems to waste the

time of agents without further improvement. Is this guess right?

In order to answer the above questions, we have further conducted two experi-

ments. The experimental results show that: to the first question, the ERA algorithm
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will yield the best performance if there are two better-moves before a least-move.

More better-moves will increase the runtime complexity. And fewer better-moves

cannot create enough chance for agents to find a better position. To the second

question, we find that F2BLR moving strategy could obtain best performance.

Here, F2BLR means that at the first step, the ERA algorithm will probabilisti-

cally select a least-move or random-move strategy to move. If it chooses least-move

strategy to move, it will has two chances to select a better-move before performing

a least-move. But, it is the case only for the first step.

4.2.2. How to set the probabilities?

Among three elementary moving strategies in the ERA method, we know that

least-move and better-move play important roles in performance of ERA to find a

solution. However, random-move is still necessary, because if there is no random-

move, i.e. random−p = 0, the system may get stuck in a local optimum and cannot

find a solution. Therefore, all three moving strategies are necessary in ERA.

Now, there is a further question: How to set the probabilities for the three

strategies in order to have the best performance of ERA? From Sec. 4.2.1, we can

see that better-move occurs as a prologue of best-move in the best moving strategy

of F2BLR. In this case, the combination of better-move and least-move will have the

same probability with a single least-move. Therefore, the probabilities we mostly

care about are least-p and random-p. It is the ratio of least-p to random-p that

plays an important role in the system. Our experimental results show that when

the ratio of least-p to random-p is about 1.5u for SAT problems, the performance

of ERA algorithm will be the best.

4.2.3. About variable grouping

In the ERA model, we divide variables into groups. In the experiments given in

Sec. 4.1, we equally divided variable into groups, i.e. four or five variables are

grouped together in a SAT problem. Through experiments, we note that how to

partition variables is a very important factor influencing the performance of the

ERA algorithm. In fact, in the case of equally dividing variables into groups, the

above configurations for the size of a variable group are the best ones we have

found. But what is more interesting is that equally dividing variables into groups

may not be the best way to partition variables. We have observed from some other

experiments that which variables should be placed into a group is a more important

aspect than the size of a variable group. But, to date, how to partition the variables

in an optimal way still remains unsolved. This is one of the questions we will study

in the future.

4.2.4. What are the real values of ERA?

In the above subsections, we have discussed several important issues about the ERA

method. But what are the real values of ERA? In Sec. 4.1, we have shown that the
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ERA method can generate comparable result in solving SATs. Also in this section,

we have seen that the performance of ERA in finding an approximate solution is

very efficient. After only the first three time steps, there will be about 97–98%

clauses that are satisfied in SAT problems. This property is quite important if a

solution response is required with a hard deadline. Here, we also want to emphasize

some other features and advantages of ERA:

1. The ERA method is quite open and flexible: we may easily add new moving strate-

gies to it or combine present moving strategies into a complex one. In addition,

we may give each agent different parameter settings. Further, we may modify the

way of agent-environment interaction for different problems.

2. The ERA system is a self-organizing system. All agents in it are autonomous in

governing their actions. The process of solving SATs by ERA is entirely deter-

mined by the locality and parallelism of individual agents. The ERA system has

no centralized control and global evaluation policy.

3. All agents in the ERA system move asynchronously. The movement of an agent

may affect the whole environment. The change of environment will in turn affect

moves of other agents. In other words, the interaction among agents is indirectly

carried out through the medium of their environment. In this sense, we may

regard that the agents can cooperate among them in finding a solution without

the cost of the explicit communication. On the contrary, in Multi-DB, all agents

must communicate with explicit message sending and receiving policies.

Because of the above features and advantages, we believe that both ERA and

Multi-DB are well suited to the situations that are of a distributed nature and

can be translated into a SAT form. But, if the situations do not allow explicit

communication or the communication is too costly, our ERA approach will become

the only choice.

5. Conclusion and Future Work

In this paper, we have extended and modified the ERA approach in Ref. 13 to

solving Satisfiability Problems (SATs). The key ideas behind this approach rest

on three notions: Environment, Reactive rules and Agents (ERA). In ERA, each

agent can only sense its local environment and apply some behavioral rules for

governing its movements. The environment records and updates the local values

that are computed and affected according to the movements of individual agents.

In solving a SAT with the ERA method, we first divide variables into several

groups, and then represent each variable group with an agent whose positions

correspond to elements of Cartesian product of variable domains. The environ-

ment for the whole multiagent system contains all the possible domain values for

the problem, and at the same time, it also records the violation numbers for all the

positions.
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An agent can move within its row, which represents its domain. So far, we

have introduced three elementary moving strategies: random-move, least-move and

better-move. Using these moving strategies, we can constitute other complex moving

strategies, such as F2BLR. The movement of an agent will affect the violation

numbers of lattices in the environment. It may add or reduce the violation num-

ber of a position. After being randomly initialized, the ERA system will keep on

dispatching agents, according to a random or predefined order, to choose their

movements until an exact solution or approximate solution is found.

While describing the ERA method, we also presented some experimental results

on benchmark SAT test-sets: Uniform Random-3-SAT and Flat Graph Coloring,

which can be found from the SATLIB26 website. Our experimental results have

shown that the ERA method can be applied to SAT problems, and we can obtain

comparable and more stable results than other popular algorithms. Besides this,

we have noticed that our new ERA approach is well suited to the SAT related

situations where explicit communication is not allowed or the communication is

too costly.

From our experiments, we have identified that with respect to ERA used

in solving SAT, there are some aspects we should study further: first, we have

mentioned in the previous section that how to partition variables significantly

influences the performance of the ERA algorithm. Second, there may be other

moving strategies for agents. We have seen that, although ERA can find a very

good “approximate” solution to a SAT problem in the first three steps, it spent

many steps in finding an exact solution. That is because present moving strategies

cannot most efficiently lead agents to escape from local optima.
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