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Introduction Motivation

Potential Applications: A New Era of Discovery and
Opportunity

� Business: To predict market share of a new product through
large-scale simulations of consumer behavior;

� Life and material sciences: To develop amorphous
computational particles (e.g., bio-robot agents to kill cancer cells
or smart paints to fill cracks);

� Environmental sciences: To deploy wireless, mobile sensor
networks to monitor wild vegetation (e.g., tracking);

� Robotics: To coordinate exploratory robots for collective tasks.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 6 / 297



Introduction Motivation

Common Characteristic: A New Computing Paradigm

� The task of computing is seamlessly carried out in a variety of
physical embodiments;

� There is no single multi-purpose or dedicated machine;
� The key to success in such applications lies in a large-scale

deployment of computational agents − capable of autonomously
making their localized decisions and achieving their collective
goals.
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Introduction The Goals of Autonomy Oriented Computing (AOC)

� A methodology for solving computationally hard problems (e.g.,
conventional constraint or optimization problems) or computing
problems that involve large-scale, distributed, locally-interacting
entities.

� To develop models of computational autonomy;
� To solve computationally hard problems, e.g., large-scale

computation, distributed constraint satisfaction, and decentralized
optimization, that are dynamically evolving and highly complex in
terms of interaction and dimensionality.

� A generic framework for handling modeling and characterization
of complex systems, such as ecological, social, economical,
mathematical, physical;

� To characterize complex phenomena or emergent behavior in
natural and artificial systems that involve a large number of
self-organizing, interacting entities;

� To discover laws and mechanisms underlying complex phenomena
or emergent behavior.
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Introduction A Survey of Early Work on AOC

� Our first systematic study on AOC originated in 1996.
� J. Liu, Y. Y. Tang, and Y. Cao. An Evolutionary Autonomous Agents

Approach to Image Feature Extraction. IEEE Trans. on
Evolutionary Computation, 1(2):141-158, 1997.

� J. Liu, H. Zhou, and Y. Y. Tang. Evolutionary Cellular Automata for
Emergent Image Features. In Shun-ichi Amari et al., editors,
Progress in Neural Information Processing, Springer, pages
458-463, 1996.

� The notion of AOC first appeared in 2001.
� J. Liu. Autonomous Agents and Multi-Agent Systems: Explorations

in Learning, Self-Organization, and Adaptive Computation, World
Scientific Publishing, 2001.

� The First International Workshop on AOC was organized and held
in Montreal in 2001.
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Introduction A Survey of Early Work on AOC

� J. Liu, K. C. Tsui, and J. Wu. Introducing Autonomy Oriented
Computation (AOC). In Proceedings of the First International
Workshop on Autonomy Oriented Computation (AOC 2001),
Montreal, May 29, 2001, pages 1-11.

� Earlier projects at the AOC Lab included:
� Constraint satisfaction problem solving

� Ideas of cellular automaton-like computational entities in solving
constraint satisfaction problems (CSP):

� J. Liu, J. Han, and Y. Y. Tang. Multi-Agent Oriented Constraint
Satisfaction Artificial Intelligence, 136(1):101-144, 2002.

� J. Han, J. Liu, and Q. Cai. From ALife Agents to a Kingdom of N
Queens. In J. Liu and N. Zhong, editors, Intelligent Agent Technology:
Systems, Methodologies, and Tools, World Scientific Publishing,
pages 110-120, 1999.

� Formal notions of computational complexity for AOC in distributed
problem solving:
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Introduction A Survey of Early Work on AOC

� X. Jin and J. Liu. Agent Networks: Topological and Clustering
Characterization. In N. Zhong and J. Liu, editors, Intelligent
Technologies for Information Analysis, Springer, pages 285-304,
2004.

� Mathematical programming
� J. Liu and J. Yin. Multi-Agent Integer Programming. In Lecture Notes

in Computer Science, Vol. 1983, Springer, pages 301-307, 2000.

� Optimization
� Solving benchmark functional optimization problems:
� K. C. Tsui and J. Liu. Evolutionary Multi-Agent Diffusion Approach to

Optimization. International Journal of Pattern Recognition and
Artificial Intelligence, World Scientific Publishing, 16(6):715-733,
2002.

� K. C. Tsui and J. Liu. Evolutionary Diffusion Optimization, Part I:
Description of the Algorithm. Also Part II: Performance Assessment.
In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC 2002), Honolulu, Hawaii, May 12-17, 2002.

� Image processing
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Introduction A Survey of Early Work on AOC

� J. Liu and Y. Zhao. On Adaptive Agentlets for Distributed
Divide-and-Conquer: A Dynamical Systems Approach. IEEE Trans.
on Systems, Man, and Cybernetics, Part A: Systems and Humans,
32(2):214-227, 2002.

� J. Liu and Y. Y. Tang. Adaptive Segmentation with Distributed
Behavior Based Agents. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(6):544-551, 1999.

� Data mining
� J. Liu. Autonomy Oriented Computing (AOC): A New Paradigm in

Data Mining and Modeling, Invited Talk, Workshop on Data Mining
and Modeling, June 27-28, 2002, Hong Kong.

� These AOC projects differ from traditional AI and agent studies in
that here we pay special attention to the role of self-organization

� It is a powerful methodology as demonstrated in nature and well
suited to the problems that involve large-scale, distributed, locally
interacting, and sometimes rational entities;

� Also demonstrated in the earlier work on

� Collective problem solving with a group of autonomous robots:
� J. Liu and J. Wu. Multi-Agent Robotic Systems, CRC Press, 2001.
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Introduction A Survey of Early Work on AOC

� J. Liu and J. Wu. Evolutionary Group Robots for Collective World
Modeling. In Proceedings of the Third International Conference on
Autonomous Agents (AGENTS’99), Seattle, WA, May 1-5, 1999.

� Behavioral self-organization:
� J. Liu, H. Qin, Y. Y. Tang, and Y. Wu. Adaptation and Learning in

Animated Creatures. In Proceedings of the First International
Conference on Autonomous Agents (AGENTS’97), Marina del Rey,
California, Feb. 5-8, 1997.

� J. Liu and H. Qin. Behavioral Self-Organization in Synthetic Agents.
Autonomous Agents and Multi-Agent Systems, Kluwer Academic
Publishers, 5(4):397-428, 2002.
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Introduction Recent Work on AOC

� AOC approaches to characterizing observed or desired
regularities in real-world complex systems, as a white-box
alternative to the traditional top-down or statistical modeling:

� Self-organized Web regularities:
� J. Liu, S. Zhang, and J. Yang. Characterizing Web Usage

Regularities with Information Foraging Agents. IEEE Transactions
on Knowledge and Data Engineering, 16(5):566-584, 2004.

� J. Liu and S. Zhang. Unveiling the Origins of Internet Use Patterns.
In Proceedings of INET 2001, The Internet Global Summit,
Stockholmsmssan, Stockholm, Sweden, June 5-8, 2001.

� HIV infection dynamics:
� S. Zhang and J. Liu. A Massively Multi-Agent System for

Discovering HIV-Immune Interaction Dynamics. In Proceedings of
the First International Workshop on Massively Multi-Agent Systems
(MMAS’04), Kyoto, Japan, Dec. 10-11, 2004.

� AOC applications to the Internet
� The Wisdom Web:
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Introduction Recent Work on AOC

� J. Liu. Web Intelligence (WI): What Makes Wisdom Web? In
Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03), Acapulco, Mexico, Aug. 9-15,
2003, pages 1596-1601, Morgan Kaufmann Publishers.

� J. Liu. Web Intelligence (WI): Some Research Challenges, Invited
Talk, the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Aug. 9-15, 2003, Acapulco, Mexico.

� Web Intelligence (WI) capabilities (e.g., autonomous service
planning; distributed resource discovery and optimization):

� Y. Wang and J. Liu. Macroscopic Model of Agent Based Load
Balancing on Grids. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2003), Melbourne, Australia, July 14-18, 2003.

� K. C. Tsui, J. Liu, and M. J. Kaiser. Self-Organized Load Balancing
in Proxy Servers. Journal of Intelligent Information Systems, Kluwer
Academic Publishers, 20(1):31-50, 2003.
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Introduction Related Disciplines

AOC is related to a broad range of disciplines, such as:

� Artificial life (ALife) − simulation of life in a computer setting. It falls
short of its use as a computational approach to problem solving.
AOC does not necessarily need to exactly reproduce lifelike
behavior, as natural phenomena are usually abstracted and
simplified.

� Agent-based simulation (ABS) − finding explanations to observed
phenomena. There is no computational problem to be solved in
ABS.

� Self-organized criticality (SOC) [Jensen, 1998] − combining
concepts of self-organization and critical behavior to explain
complex phenomena (e.g., avalanches, sand pile, rice pile, droplet
formation, earthquakes, and evolution.)

� Studies on multi-agent systems for distributed decision
making [Durfee, 1999, Sandholm, 1999] − handling computational
tasks by delegating responsibilities to groups of agents.
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Introduction Related Disciplines

� Ecology of computation
[Hogg and Huberman, 1993, Huberman, 1988] − individual
problem solvers tackling a problem with different methods.

� Distributed constraint satisfaction problem (distributed
CSP) [Yokoo et al., 2001, Yokoo et al., 1998,
Yokoo and Hirayama, 2000] − to solve CSPs in a distributed
manner by employing direct communications to coordinate the
assignments to their respective variables.

� Generally speaking, direct communication in a large-scale
multi-agent system is time-consuming. Hence, in an AOC system,
autonomous entities utilize indirect communication through their
environment.

� Furthermore, AOC is inspired by complex systems where numerous
entities self-organize themselves through nonlinear interactions and
aggregations, and gradually emerge certain complex behaviors.
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Introduction Related Disciplines

� Swarm intelligence
[Bonabeau et al., 1999, Bonabeau et al., 2000] − a social insect
metaphor in problem solving. Unlike AOC, this study does not
address the issues of discovering problem solvers or explaining
complex systems behavior.
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Introduction Related Disciplines

Other Related Disciplines I

� Agent-Based Problem Solving;
� Amorphous Computing;
� Artificial Intelligence;
� Autonomous Agents and Multi-Agent Systems;
� Complex Adaptive Systems;
� Computational Biology;
� Computational Finance and Economics;
� Data Fusion and Exploration;
� Emergent Computation;
� Image Processing and Computer Vision;
� Intelligent Systems;
� Modeling and Simulation;
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Introduction Related Disciplines

Other Related Disciplines II

� Nature Inspired Computation;
� Operations Research;
� Optimization;
� Programming Paradigms;
� Robotics and Automation;
� Self-Organization.
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Two Emphases in this Presentation

Two Emphases in this Presentation

1. A general overview of the AOC modeling methodology;

2. Some representative case studies on how to implement the
general approaches to AOC.
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From Autonomy to AOC Complex Systems Modeling

Complex Multi-Entity Systems

� Some researchers want to understand the working mechanism of
a complex system concerned.

� Immunologists, for example, want to know the way in which the
human immune system reacts to antigens [Louzoun et al., 2000].

� Economists want to know the factors contributing to the ups and
downs in share prices.

� Others studying complex systems behavior want to simulate the
observed complex behavior and formulate problem solving
strategies for hard computational problems, such as global
optimization.

� Computer scientists and mathematicians have formulated various
algorithms based on natural evolution to solve their problems at
hand. In general, one wants to be able to explain, predict,
reconstruct, and deploy a complex system.
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From Autonomy to AOC Complex Systems Modeling

How to Build a Complex Systems Model? I

� Top-down approaches start from the high-level characterization
of a system and use various tools, such as ordinary differential
equations.
These approaches generally treat every part of a complex system
homogeneously and tend to model average cases well, where the
behavioral difference of the individuals is minimal and can be
ignored [Casti, 1997].

� Bottom-up approaches are characterized as:
� Autonomous: System entities are rational individuals that act

independently. In other words, a central controller for directing and
coordinating individual entities is absent.

� Emergent: They exhibit complex behavior that is not present or
predefined in the behavior of the autonomous entities.
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From Autonomy to AOC Complex Systems Modeling

How to Build a Complex Systems Model? II

� Adaptive: They often change their behavior in response to
changes in the environment in which they are situated.

� Self-organized: They are able to organize themselves to achieve
the above.
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From Autonomy to AOC Complex Systems Modeling

Complex Systems Modeling Using a Bottom-up
Approach

� It centers around the external behavior and internal behavior of
individual entities.

� Trickiest part: How to define the relationship between these two
types of behavior?

� AOC adds a new dimension to the modeling process, i.e.,
modeling and deploying autonomy.
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From Autonomy to AOC Basic Concepts and Taxonomies

� Autonomy − an attribute of entities in a complex system;
� Autonomous entity − the building block of an AOC system.
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From Autonomy to AOC Basic Concepts and Taxonomies

Types of Behavior

Entities in a complex system can perform certain primitive behavior as
well as three types of complex behavior: emergent behavior,
purposeful behavior, and emergent purposeful behavior.

� Primitive behavior − the behavior governed by a set of
predefined rules.
These rules dictate how the states of the entity are updated.
They are triggered by some internal or external stimuli.

� Emergent behavior − the behavior not inherent in the primitive
behavior of an entity.
It is achieved through nonlinear interactions among individual
entities.
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From Autonomy to AOC Basic Concepts and Taxonomies

Emergent behavior may not be the same as collective behavior as it
may not involve sharing of power or division of labor among individual
entities.

� Purposeful behavior − the behavior that leads to certain desired
states (i.e., goals) of entities;

� Emergent purposeful behavior − the emergent behavior that
directs entities towards certain goals.

� If the entities of a complex system are able to adapt, the primitive
behavior of entities is bound to be different over time. As a result,
different types of complex behavior may be emerged.

� Emergent behavior may not arise only through interactions among
individual entities. It can also arise through interactions among
groups of entities.
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From Autonomy to AOC Basic Concepts and Taxonomies

Ant Colony as an Example I

� Food foraging is an individual task as well as a group task
[Goss et al., 1990].

� Purposeful behavior − wandering around of ants.
� Emergent behavior − their convergence on a certain food source.

� Ants start off with some kind of random walk in the absence of any
information about a food source.

� While wandering, ants lay some quantities of pheromone along
their paths.

� Emergent purposeful behavior − Once a food source is found,
more ants will gradually follow the path between the food source
and the nest, and consequently more pheromone will be laid
along this path.

� More pheromone will in turn recruit more ants. This process acts as
a positive feedback loop, until the food source is exhausted and the
pheromone evaporates.
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From Autonomy to AOC Basic Concepts and Taxonomies

Autonomy Defined

� Entity autonomy: Condition/quality of being self-governed,
self-determined, and self-directed − to make decisions for
themselves, subject to information availability and self-imposed
constraints.
Example: The primitive behavior of an entity is free from the
explicit control of other entities (except indirect influence).

� Synthetic autonomy: An abstracted equivalent of the autonomy
of an entity in a natural complex system.
AOC aims at building computational systems where entities are
equipped with synthetic autonomy − An AOC system exhibits
emergent (purposeful) behavior.

� Emergent autonomy: An observable, self-induced condition or
quality of an AOC system is composed of entities with synthetic
autonomy.
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From Autonomy to AOC Basic Concepts and Taxonomies

Levels of Abstraction

If a human society is to be modeled as a computational system,
abstraction can possibly occur at several levels: population, individual,
biological system, cell, molecule, and atom.

� Entity autonomy, synthetic autonomy, and emergent autonomy are
present at all these levels.

� The autonomy obtained at a lower level, say, the cell level, is the
foundation of the autonomy at a higher level, say, the biological
system level.

� This multi-level view of autonomy encompasses Brooks’
subsumption architecture [Brooks, 1991].
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From Autonomy to AOC Basic Concepts and Taxonomies

Computational System Autonomy

Autonomy in a computational system, built from computational
entities with synthetic autonomy, refers to conditions/qualities of having
self-governed, self-determined, and self-directed computational
entities that exhibit emergent autonomy.
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From Autonomy to AOC General AOC Approaches

Three AOC Approaches

AOC systems are classified based on:

� How much human involvement is necessary?
� How sophisticated a model of computational autonomy is?

� AOC-by-fabrication
� AOC-by-prototyping
� AOC-by-self-discovery
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From Autonomy to AOC General AOC Approaches

AOC-by-Fabrication

� It aims at replicating and utilizing certain self-organized collective
behavior from the real world to form a general purpose problem
solver.

� The working mechanism is more or less known and may be
simplified during the modeling process.

� Examples: Nature inspired techniques, such as the genetic
algorithm (GA), entity-based image feature extraction, artificial
creature animation, and ant colony optimization.

� Research in artificial life is related to this AOC approach up to the
behavior replication stage.
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From Autonomy to AOC General AOC Approaches

AOC-by-Prototyping

� It attempts to understand the working mechanism underlying a
complex system by modeling and simulating autonomous entities.

� A manual trial-and-error process is employed to achieve an
artificial system as vivid as possible.

� Examples: Internet ecology, traffic jams, Web regularities based
on self-adaptive information foraging entities.
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From Autonomy to AOC General AOC Approaches

AOC-by-Self-Discovery

� It automatically fine-tunes the parameters of autonomous
behaviors in solving and modeling certain problems.

� The difference measure between the desired emergent behavior
and the current emergent behavior of the system in question
becomes part of the feedback that affects the primitive behavior of
an entity.

� Examples: Autonomous entities to adaptively solve a large-scale,
distributed optimization problem in real time (e.g., evolutionary
algorithms that exhibit self-adaptive capabilities).
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From Autonomy to AOC AOC as a New Computing Paradigm

Key Features of AOC

� AOC focuses on modeling and developing systems with
autonomous entities, in an attempt to solve hard computational
problems and to characterize complex systems behavior.

� The basic element is an autonomous entity.
� Entities locally determine their behavior by themselves, and no

global control mechanism exists.
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From Autonomy to AOC AOC as a New Computing Paradigm

A Comparison of OOP, AOP, and AOC

A comparison among object oriented programming (OOP), agent oriented programming (AOP) [Shoham, 1993], and autonomy
oriented computing (AOC).

Object Oriented Agent Oriented Autonomy Oriented
Programming Programming Computing

(OOP) (AOP) (AOC)
Basic element object agent autonomous entity and environ-

ment
Characterization of a
basic element

member variables and
member functions

beliefs, decisions, capabili-
ties, and obligations

states, evaluation function,
goals, primitive behavior, and
behavioral rules

Interaction inheritance and message
passing among objects

messages among agents,
including inform, request,
offer, promise, decline, etc.

(1) interaction between enti-
ties and their environment and
(2) direct or indirect interaction
among entities

Computation message passing and re-
sponse methods

message passing and re-
sponse methods

(1) aggregation of behavior
and interaction and (2) self-
organization in autonomous
entities

Suitability (1) systems modeling and
(2) computation based on
reusable codes

(1) developing distributed
systems and (2) solv-
ing distributed prob-
lems [Kuhnel, 1997]

(1) solving hard computational
problems and (2) characterizing
complex systems behavior

Implementation of
functionality

member functions mental state transitions primitive behaviors
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AOC at a Glance Autonomy Oriented Search

Autonomy Oriented Modeling I

� An environment contains a homogeneous region with the same
physical feature (i.e., a goal region).

� The feature of the goal can be evaluated based on some
measurements (e.g., grey level intensity of an image).

� The task of autonomous entities is to search the feature locations
of the goal region.

� Entities can recognize and distinguish feature locations, if
encountered, and then decide and execute their reactive behavior.

Image Processing:

� Autonomous entities are deployed to the two-dimensional
representation of an image.
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AOC at a Glance Autonomy Oriented Search

Autonomy Oriented Modeling II

� Each entity is equipped with an ability to assess the homogeneity
of a region within a predefined locality.

� Homogeneity is defined by the relative contrast, regional mean,
and region standard deviation of the grey level intensity.

� When an autonomous entity locates a homogeneous region within
the range of the pixel at which it presently resides, it breeds a
certain number of offspring entities and delivers them to its local
region in different directions.

� On the other hand, when a heterogeneous region is found, an
entity will diffuse to another pixel in a certain direction within its
local region.
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AOC at a Glance Autonomy Oriented Search

An Illustration of Autonomous Entities

As an entity, which is marked as a solid circle, moves to a new
location, it senses its neighboring locations, marked by dotted circles
in this example. Specifically, it counts the number of locations at which
the grey level intensity is close to that of the entity’s current location.
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AOC at a Glance Autonomy Oriented Search

An Illustration of Autonomous Entities

When the count reaches a certain value, it is said that a triggering
condition has been satisfied. This is in fact the case in our illustrative
example, as the location of the entity is right next to the border of a
shaded region. Thus, the entity will asexually self-reproduce some
offspring entities within its local region.
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AOC at a Glance Autonomy Oriented Search

An Illustration of Autonomous Entities

At the following steps, the offspring will diffuse to new locations. By
doing so, some of them will encounter new border feature locations as
well and thereafter self-reproduce more entities. On the other hand,
the entities that cannot find any border feature locations after a given
number of diffusion steps will be automatically turned off [Liu, 2001].
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AOC at a Glance Autonomy Oriented Search

Image Segmentation Problem

Segmenting a landscape image that contains three complex-shaped
homogeneous regions. 1,500 entities, evenly divided into three
classes, are randomly distributed over the given image.

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 5 (e) t = 10 (f) t = 50
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AOC at a Glance Autonomy Oriented Search

Computational Steps

In the AOC-based image segmentation, the computational steps
required can be estimated by counting active entities over time (i.e.,
the entities whose ages do not exceed a given life span).
The total number of active entities (i.e., computational steps) involved
in extracting a homogeneous region is less than the size of the given
image, 526× 197 = 103, 622.

Class # of active entities used
(time step = 1 ∼ 50)

Class-1 47,037
Class-2 75,473
Class-3 48,837
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AOC at a Glance Autonomy Oriented Learning

� Collective world modeling with a group of mobile robots in an
unknown, less structured environment [Liu and Wu, 2001].

� The goal is to enable mobile robots to cooperatively perform a
map building task with fewer sensory measurement steps, to
construct a potential field map as efficiently as possible.
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AOC at a Glance Autonomy Oriented Learning

Self-Organization I

Suppose that a robot moves to position p0.

� measure its distances to the surrounding obstacles of its
environment in several directions (n).

� record measurements in a sensing vector,
S0 =

[
d0

1 , d0
2 , · · · , d0

i , · · · , d0
n

]
, with respect to position p0

where d0
i = distance between position p0 and an obstacle sensed

in the i th direction.
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AOC at a Glance Autonomy Oriented Learning

Self-Organization II

� associate this information to its adjacent positions. The estimated
proximity of any position pj inside the neighboring region of p0 to a

sensed obstacle = d̂ j
i = d0

i − ρj · cosβ (i = 1, 2, · · · , n),

where β = α
(i)
0 − αj . α

(i)
0 and αj= polar angles of the sensing

direction and of position pj . d̂ j
i = estimate for pj based on the i th

direction sensing value. d 0
i = current measurement taken from p0

in the i th direction.
Estimated proximity values for position pj can be written as

Ŝj =
[
d̂ j

1, d̂ j
2, · · · , d̂ j

i , · · · , d̂ j
n

]
.
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AOC at a Glance Autonomy Oriented Learning

The Distance Association Scheme [Liu, 2001]

p
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p
jj

di
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^
d

j
i
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~

Edge of a sensed
         object

Imaginary edge
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AOC at a Glance Autonomy Oriented Learning

Potential Field Estimate I

� A confidence weight for each element of Ŝj = wj = e−ηρ2
j ,

where ρj = distance between the robot and position pj .
� Potential field estimate at position pj :

Ût
j =

n∑
i=1

e−λd̂ j
i , (1)
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AOC at a Glance Autonomy Oriented Learning

Potential Field Estimate II

� At time t , a set of potential field estimates,
Ωj

t = {Ût1
j , Ût2

j , · · · , Ûti
j , · · · , Ûtk

j }, can be derived by k robots with
respect to position pj ,

Ωj
t ←− Ωj

t−1

⋃
Q, (2)

where Ωj
t−1 denotes a set of potential field estimates for position

pj at time t − 1, and Q = Ûtk
j , where subscript k indicates that the

potential value is estimated based on the measurement of the k th
robot.

� Ωj
t is associated with a confidence weight set:

W j
t = {wt1

j , wt2
j , · · · , wti

j , · · · , wtk
j }.
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AOC at a Glance Autonomy Oriented Learning

Acceptable Potential Field Value

Ut
j =

{
Ûti

j , ∃i ∈ [1, k ] , wti
j = 1,∑k

i=1 Ûti
j · w̄ ti

j , otherwise,
(3)

where w̄ ti
j denotes a normalized weight component of W j

t , i.e.,

w̄ ti
j =

wti
j∑k

n=1 wtn
j

. (4)
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AOC at a Glance Autonomy Oriented Learning

Adaptation

� The efficiency of the self-organization based collective world
modeling can be optimized.

� It is possible to define an adaptation mechanism for distributed
autonomous robots to dynamically generate/modify their group
cooperative behavior based on some group performance criteria.

� The selected (i.e., high fitness) cooperative behavior is used to
control autonomous robots in their interactions with the
environment.
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Design and Engineering Issues

Functional Modules in an Autonomous Entity

� Autonomous entities need to modify their behavioral rules over
time in order to adapt to a dynamically changing environment.

� This is the learning capability of autonomous entities.
� Randomness in the decision making process enables an entity to

explore uncharted territories or to resolve conflicts.
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Design and Engineering Issues Major Phases in Developing AOC Systems

� There are a collection of autonomous entities. The right level of
abstraction has to be chosen so that autonomous entities can be
identified.
This does not exclude the repeated application of this technique to
suit the need of the specific problem that can be best modeled by
multiple levels of abstraction.

� There are some relationships between autonomous entities in the
form of constraints, such as limitations on the position inhabitable
by a queen in an n-queen problem.

� A performance measurement is available to assess the quality of
any solution.
It can be used in AOC as a guideline to direct the behavior of
autonomous entities.
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Design and Engineering Issues Major Phases in Developing AOC Systems

The Major Phases in Developing an AOC System

AOC can be viewed as a methodology for engineering a computing
system to solve hard computational problems or model complex
systems.
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Design and Engineering Issues Engineering Issues

Varying Degrees of Human Involvement

From an engineering point of view, AOC systems differ in at least five
aspects:

1. Knowledge of working mechanism: Analogies are drawn from
the natural or physical world.

2. Designer’s involvement: More knowledge means more
involvement in the implementation.

3. Uncertainty in results: It varies according to the knowledge of
the actual working mechanism.

4. Computational cost: Computational cost refers to the time and
space complexity of an algorithm.

5. Time in process modeling: It hitches on the complexity of the
problem to be solved or the system to be modeled as well as the
degree of understanding.
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Design and Engineering Issues Engineering Issues

Ranking AOC based on Engineering Requirements

(1 being the easiest and 3 the hardest)
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Design and Engineering Issues Features and Characteristics of AOC Systems

Homogeneity Individuals may differ only in the parameters for
characterizing their goals, behaviors, and behavioral
rules, but not in their structures.
In the AOC-based image segmentation, although entities
are classified into three different classes, they are
homogeneous in that they differ only in the parameters for
describing their goals.

Simplicity The behavior model of each autonomous entity is simple.

Locality The interactions among autonomous entities are strictly
local although the notion of locality can be physical as
well as logical.

Implicity Another form of interaction comes from the implicit
knowledge sharing among autonomous entities via their
common environment.
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Design and Engineering Issues Features and Characteristics of AOC Systems

Uncertainty Behavior is not purely deterministic.

Amplification Desirable behavior is amplified while undesirable
behavior is eliminated via mechanisms, such as birth and
death − positive feedback.

Recursion Emergent autonomy results from the aggregation of
primitive autonomy of entities through iterations.
A system exhibiting such emergent autonomy can serve
as the basic element of a more complex system that may
show its own emergent autonomy.

Scalability AOC envisions an environment able to scale up or down
according to the ever changing needs of a dynamical
complex system.

Openness New types of autonomous entity can be accommodated
seamlessly into an AOC system.
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Design and Engineering Issues Performance Considerations

� Generality measures the applicability of an algorithm to different
problem domains.

� Robustness concerns the sensitivity of an algorithm in terms of its
parameter settings.

� Completeness of an algorithm assesses its ability to search the
whole solution space.

� Efficiency measures the effectiveness of an algorithm to find an
optimal solution and how quickly such a solution is found (usually
reflected in the computational cost of an algorithm).

� Computational cost refers to the requirements on computational
cycles and memory space in the process of finding a solution.
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Design and Engineering Issues Performance Considerations

Other Factors affecting AOC Performance

� Randomness is an important factor in any self-organizing system,
such as those formulated according to the AOC principles.

� Emergence is a property of AOC that is not pre-programmable.
� The complexity of AOC can have a direct implication on whether

or not a problem is solvable.
� The evolvability of AOC [Nehaniv, 2000] refers to its ability to

evolve an optimal solution.
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A Formal Framework of AOC Elements of an AOC System

Autonomy Oriented Computing (AOC) System

An AOC system is a tuple 〈{e1, e2, · · · , ei , · · · , eN}, E, 〉,
where {e1, e2, · · · , ei , · · · , eN} = group of autonomous entities; E =
environment in which entities reside; = system objective function,
which is usually a nonlinear function of entity states.
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A Formal Framework of AOC Elements of an AOC System

Environment

� An environment plays its communication medium role through its
state changes as caused by the primitive behavior.

� Environment E is characterized by a set
ES = {es1, es2, · · · , esi , · · · , esNES},
where each esi ∈ Desi = static or dynamical attribute; NES = the
number of attributes. At each moment, ES = current state of
environment E.

� The state space of E =
DES = Des1 × Des2 × · · · × Desi × · · · × DesNES .
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A Formal Framework of AOC Elements of an AOC System

Autonomous Entities

� An autonomous entity e is a tuple 〈S,F , G,B,R〉,
where S = current state of entity e; F = evaluation function; G =
goal set of entity e; B and R = primitive behaviors and behavioral
rules.

� Based on the differences in S,F ,G,B, and R, entities in an AOC
system can be categorized into different classes.
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A Formal Framework of AOC Elements of an AOC System

Neighbors

� The neighbors of entity e are a group of entities Le = {le1 , le2 , · · · ,
lei , · · · , leNL},
where NL = the number of neighbors.

� The relationship (e.g., distance) between each neighbor l e
i and

entity e satisfies certain application-dependent constraint(s).
� In different AOC systems, the neighbors of an entity can be fixed

or dynamically changed.
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A Formal Framework of AOC Elements of an AOC System

State

� State S of autonomous entity e is characterized by a set of static
or dynamical attributes, i.e., S = {s1, s2, · · · , si , · · · , sNS}, where
si ∈ Dsi and NS denotes the number of attributes.

� DS = Ds1 × Ds2 × · · · × Dsi × · · · × DsNS corresponds to the state
space of entity e.
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A Formal Framework of AOC Elements of an AOC System

Evaluation

Before an entity fires its behavioral rules to select its primitive behavior,
it assessed its current condition (i.e., its own internal state and/or
those of its neighbors and environment).
Evaluation function Autonomous entity e assesses its conditions
using one of the following evaluation functions:

� Internal state:
F : D̂S −→ R, (5)

� State of environment:

F : D̂ES −→ R, (6)

� States of neighbors:

F :
∏

lei ∈Le

(D̂S le
i
) −→ R, (7)
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A Formal Framework of AOC Elements of an AOC System

� Internal state and that of environment:

F : D̂S × D̂ES −→ R, or (8)

� Internal state and those of neighbors:

F : D̂S ×
∏

lei ∈Le

(D̂S lei
) −→ R, (9)

where R = range of function F (e.g., the set of real numbers or
integers). D̂S = Cartesian product of elements in a subset of {Dsi}, i.e.,
D̂S ⊆ DS .
Similarly, D̂ES = Cartesian product, D̂ES ⊆ DES . lei = i th neighbor of
entity e. S lei and DS le

i
= the current state and the state space of entity

lei . D̂S le
i
⊆ DS le

i
.
∏

= Cartesian product operator.
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A Formal Framework of AOC Elements of an AOC System

Goal

Generally speaking, the primitive behavior of entities in AOC systems
is goal directed.

� An entity, e, can be engaged in a set of goals over time, as
denoted by G = {g1, g2, · · · , gi , · · · , gNG}, where NG denotes the
number of goals.

� Each goal gi is to achieve a certain state S ′ such that evaluation
function F takes a certain predefined value α, i.e.,
gi = {S ′|F(·) = α}, where α is a constant.
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A Formal Framework of AOC Elements of an AOC System

Primitive Behavior

An entity, e, can perform a set of primitive behaviors,
B = {b1, b2, · · · , bi , · · · , bNB}, where NB denotes the number of
primitive behaviors.
Each primitive behavior bi is a mapping in one of the following forms:

� Self-reproduce:
bi : e −→ em, (10)

which is a reproduction-like behavior. It denotes that entity e
replicates itself m times (i.e., breed m offspring);

� Die:
bi : e −→ ø, (11)

which denotes that entity e vanishes from the environment;
� Change internal state:

bi : D̂S −→ D̂S , (12)
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A Formal Framework of AOC Elements of an AOC System

� Change state of environment:

bi : D̂ES −→ D̂ES , (13)

� Change internal state and that of environment:

bi : D̂S × D̂ES −→ D̂S × D̂ES , or (14)

� Change internal state and those of neighbors:

bi : D̂S ×
∏

lei ∈Le

(D̂S le
i
) −→ D̂S ×

∏
lei ∈Le

(D̂S le
i
), (15)
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A Formal Framework of AOC Elements of an AOC System

Behavioral Rule

The behavioral rule set for entity e is R = {r1, r2, · · · , ri , · · · , rNR},
where NR denotes the number of rules. Each behavioral rule ri is to
select one or more primitive behaviors to perform. Behavioral rules can
be classified into two types:

� Evaluation-based rules:

ri : Ran(F) −→ {B̂}, (16)

where Ran(F) denotes the range of evaluation function F . B̂ ⊆ B.
{B̂} ⊆ 2B.

� Probability-based rules:

ri : [0, 1] −→ {B̂}, (17)

where each subset B̂ is assigned a probability, pB̂, which may be
fixed or dynamically changed over time. This type of rule
probabilistically selects a set of primitive behaviors from B.
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A Formal Framework of AOC Elements of an AOC System

System Objective Function

� As a global measurement for the performance of an AOC system,
system objective function guides the system to evolve towards
certain desired states or patterns.

� is defined as a function of the states of some entities and can be
categorized into two types.
Let {ei} be a group of entities.

� State-oriented function:

:
∏

ek∈{ei}
D̂Sek −→ Rm, (18)

where D̂Sek is a subset of the state space, DSek , of entity ek , R is
the set of real numbers or integers, and m denotes the
dimensionality of the space of .

� Process-oriented function:

:
{ ∏

ek∈{ei}
D̂Sek

}Π

−→ Rm, (19)
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A Formal Framework of AOC Interactions in an AOC System

Interactions between Entities and their Environment

The interactions between entity e and its environment E are modeled
as a sequence of mappings {IeE}, where IeE has one of the following
forms:

IeE : D̂ES −→bi
D̂ES , or (20)

IeE : D̂S × D̂ES −→bi
D̂S × D̂ES , (21)

where ‘−→bi
’ indicates that IeE is in fact a primitive behavior, bi , of

entity e, by performing which entity e can change the state of its
environment.
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A Formal Framework of AOC Interactions in an AOC System

Interactions (i.e., the dashed lines) between two entities eA and eB and
their environment E, which are caused by primitive behavior (i.e., b(t)).
The solid lines denote the state changes in entities and their
environment.
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A Formal Framework of AOC Interactions in an AOC System

Interactions among Entities

The direct interactions between entities eA and eB are modeled as a
sequence of mapping tuples {〈IAB,IBA〉},

IAB : D̂SA × D̂SB −→bA D̂SA × D̂SB , (22)

and
IBA : D̂SB × D̂SA −→bB D̂SB × D̂SA , (23)

where ‘−→bA ’ and ‘−→bB ’ denote that IAB and IBA are two primitive
behaviors of entities eA and eB, respectively, which are related to the
states of neighboring entities. Here, if we take eA and eB as neighbors
of each other, we can regard that ‘−→bA ’ and ‘−→bB ’ are originated
from the equations above. D̂SA and D̂SB are subsets of the state
spaces of entities eA and eB, respectively.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 77 / 297



A Formal Framework of AOC Interactions in an AOC System

Direct interactions (i.e., the dashed lines) between entity e and its two
neighbors, namely, entities l1 and l2. The solid lines denote the state
changes in the three entities as caused by their primitive behaviors.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 78 / 297



A Formal Framework of AOC Interactions in an AOC System

The indirect interactions between entities eA and eB are modeled as a
sequence of mapping tuples {〈IAE ,IBE〉}, where interaction IAE

between entity eA and environment E occurs before interaction IBE

between entity eB and environment E. That is,
� At time t :

IAE : D̂ES −→bA D̂ES , or (24)

IAE : D̂SA × D̂ES −→bA D̂SA × D̂ES ; (25)

� At time t ′:
IBE : D̂ES −→bB D̂ES , or (26)

IBE : D̂SB × D̂ES −→bB D̂SB × D̂ES , (27)

where t < t ′; ‘−→bA ’ and ‘−→bB ’ denote that IAB and IBA are two
primitive behaviors of entities eA and eB, respectively; D̂SA ⊆ DSA and
D̂SB ⊆ DSB , where DSA and DSB are the state spaces of entities eA and
eB, respectively.
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A Formal Framework of AOC Self-Organization in AOC

What is Self-Organization?

� The term “self-organization” was first introduced by Ashby in 1947
[Ashby, 1947, Ashby, 1966].

� The phenomenon of self-organization exists in a variety of natural
systems, such as galaxies, planets, compounds, cells, organisms,
stock markets, and societies
[Bak, 1996, Ünsal, 1993, Lucas, 1997]. It is involved in many
disciplines, including biology, chemistry, computer science,
geology, sociology, and economics
[Liu, 2001, Bak, 1996, Kauffman, 1993].

� Several theories have been developed to describe self-organizing
systems. They include the dissipative structure theory of Prigogine
[Nicolis and Prigogine, 1977, Prigogine, 1980] and the synergetics
theory of Haken [Haken, 1983a, Haken, 1983b, Haken, 1988].
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A Formal Framework of AOC Self-Organization in AOC

The behavior of entities in a self-organizing system can be generalized
into three steps [Ünsal, 1993].

� Entities sense the environment or receive signals from other
entities.

� Based on the information received, entities make rational
decisions on what to do next.

� Entities behave according to their decisions. Their behavior will in
turn affect the environment and the behavior of other entities. By
following these three steps, an entity carries out its interaction with
its environment or other entities.
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A Formal Framework of AOC Self-Organization in AOC

How Does an AOC System Self-Organize?

Let us take the AOC-based search as an example.
� An entity tries to find a pixel that belongs to a certain

homogeneous region. At such a pixel, its evaluation value will be
better than those at other pixels.

� When an entity finds a desired pixel, it will reproduce some
offspring within its local environment, where the offspring will most
probably find other desired pixels − successful behavior is
aggregated and amplified.

� If an entity cannot find a desired pixel after predefined steps, i.e.,
its lifespan, it will be deactivated − those entities with poor
performance are eliminated.

� As the search progresses, more entities which are either
reproduced or diffusing are able to locate pixels of a
homogeneous region that has been found − a nonlinear process
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A Formal Framework of AOC Self-Organization in AOC

Self-Organization in an AOC System
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A Formal Framework of AOC Self-Organization in AOC

The process of self-organization of entities {ei} in an AOC system is a
sequence(s) of state transitions

{{Sei
t }|t = 0, · · · , T

}
, which is subject

to the following two constraints:

� Locally, for each entity ei ,

Pr
(
F(Sei

t+1)−F(Sei
t ) 	 0

)
> 0, (28)

where F(Sei
t ) returns the evaluation value of entity ei ’s state at

time t ; Pr(·) returns a probability; F(Sei
t+1)−F(Sei

t ) 	 0, i.e.,
F(Sei

t+1) 	 F(Sei
t ), denotes that the new state of entity ei at time

t + 1 is ‘better’ than the one at time t .
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A Formal Framework of AOC Self-Organization in AOC

� Globally, for the whole system,

Pr
(

Xt+1 − Xt 	 0
)

> 0, (29)

where Xt and Xt+1 denote the value vectors of system objective
function X at time t and t + 1, respectively. Xt+1 − Xt 	 0 means
that the system evolves to a better state at time t + 1.
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A Formal Framework of AOC Self-Organization in AOC

Autonomy Oriented Computing

Step 1. Initially, design an AOC system 〈{e1, e2, · · · , ei , · · · , eN}, E, X〉,
including (i) environment states ES; (ii) entity states S; (iii) evaluation
function F ; (iv) goals G; (v) behavior set B; (vi) behavioral rule set R;
(vii) system objective function X.

Step 2. Determine the desired ‘value’ X∗ of X.

Step 3. Execute the AOC system, and then evaluate the current ‘value’ X
′
.

Step 4. Define an optimization function Y = |X′ − X∗| as a guidance for
autonomy oriented computing.

Step 5. If Y is not optimized, update the parameters of entities or the
environment according to Y (note: in problem solving, ‘optimized’
means the system can successfully and efficiently find a solution to
the problem. In system modeling, ‘optimized’ means the prototyping
system can actually simulate the system to be modeled).

Step 6. Repeat the above steps until Y is optimized.
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A Formal Framework of AOC Summary

� Autonomous entities and an environment are the key elements in
AOC.

� Interactions between entities and their environment are the force
that drives an AOC system to evolve towards certain desired
states.

� Self-organization is the essential process of its working
mechanism.

Based on the framework, we know:
1. How to formally characterize autonomous entities?
2. How to design and characterize an environment based on a task

at hand?
3. How to design the interactions between autonomous entities and

their environment To facilitate the aggregation of behavioral effects
of entities?

4. How to design the primitive behaviors and behavioral rules of
entities in order to achieve the self-organization of entities and
emerge certain desired states or patterns?
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AOC in Constraint Satisfaction

� Many problems in Artificial Intelligence (AI) as well as in other
areas of computer science and engineering can be formulated into
CSPs or SATs.

� Examples: spatial and temporal planning, qualitative and symbolic
reasoning, decision support, computational linguistics, scheduling,
resource allocation and planning, graph problems, hardware
design and verification, configuration, real time systems, robot
planning, block world planning, circuit diagnosis, vision
interpretation, and theorem proving.

� Problem solving is a domain with which many multi-agent
applications are concerned. These applications are aimed at
tackling computational problems in a distributed setting. In many
cases, the problems to be solved are inherently distributed in
nature [Ferber, 1999]. One way to formulate such problems is to
treat them as distributed CSPs.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 88 / 297



AOC in Constraint Satisfaction

e-Learning

� Goal: To provide learning and training contents to learners via
some electronic means, such as computers, Intranet, and Internet.

� Modules: Contents are usually structured into different modules,
called learning objects, at different granularities, such as
fragments (e.g., picture, figure, table, text), lessons, topics, units,
courses, and curricula
[Loser et al., 2002, IEEE, 2001, IEEE, 2002]. Several smaller
granular objects can constitute a bigger granular object.
The reason for doing so is to increase the interoperability and
scalability of an e-learning service environment
[Loser et al., 2002].

� Characteristics: Learning objects are located on different, usually
geographically distributed, computers.
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AOC in Constraint Satisfaction

e-Learning Constraints

� Content constraints (i.e., relationship among learning
objects [Loser et al., 2002]): (1) content relations for the semantic
interdependency among modules, (2) ordering/sequence relations
for accessing modules.

� System constraints (i.e., hardware and software of the service
environment): Although a learning object in an e-learning
environment can be accessed by one or more learners each time,
the number of learners is limited because of some specific factors,
such as hardware bandwidth.
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AOC in Constraint Satisfaction

An e-Learning Service Scenario

� Four learners, A, B, C, and D are accessing the e-learning service
via clients connected to the service environment.

� The learners need to learn three knowledge modules, i.e., m1, m2,
and m3, provided by three geographically distributed computers.
The constraints in the environment are:

1. Content constraint: To learn modules m2 and m3, module m2 must
be learned before module m3.

2. System constraint: One module can serve at most two learners at
any time.

� To successfully provide services, the distributed clients should
collaborate with one another to determine a service sequence for
each learner.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 91 / 297



AOC in Constraint Satisfaction

Four learners need to learn three modules, where module m1 is independent,
while modules m2 and m3 are dependent: Module m2 has to be learned
before module m3. At any time, each module can only be accessed by at
most two learners.
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AOC in Constraint Satisfaction

The Collaborative Service

� For each learner L ∈ {A, B, C, D}, its client should coordinate with
those of other learners to generate a combination {S 1

L , S2
L , S3

L} of
{1, 2, 3} (∀i , Si

L ∈ {1, 2, 3}), which will be used as the sequence in
which learner L accesses the knowledge modules.

� For example, if learner A is assigned a combination {2, 3, 1}, it
means learner A should access the three modules in a sequence
of 2, 3, and 1.
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AOC in Constraint Satisfaction

Constraint Formulation

� Constraints:
1. ∀L ∈ {A, B, C, D}, Si

L ∈ {1, 2, 3}, and for i �= j , Si
L �= Sj

L.
2. Content constraint: ∀L ∈ {A, B, C, D}, if Si

L = 2 and Sj
L = 3, then it

should guarantee i < j .
3. System constraint: ∀i , j ∈ {1, 2, 3}, ∑L∈{A,B,C,D} T (Si

L = j) ≤ 2,
where T (·) is a Boolean function to test whether or not an input
proposition is true.

� The collaborative service: A distributed CSP, where distributed
clients are responsible for assigning values to the variables of their
learners.
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CSP and SAT

� Constraint satisfaction problem (CSP) and satisfiability problem
(SAT) are two types of classical NP-hard problem.

� Constraint satisfaction (CSP): A constraint satisfaction problem
(CSP), P, consists of:

1. A finite set of variables, X = {x1, x2, · · · , xi , · · · , xn}.
2. A domain set, containing a finite number of discrete domains for

variables in X: D = {D1, D2, · · · , Di , · · · , Dn}, ∀i ∈ [1, n], xi ∈ Di .
3. A constraint set, C = {C(R1), C(R2), · · · , C(Ri ), · · · , C(Rm)}, where

each Ri is an ordered subset of the variables, and each constraint
C(Ri) is a set of tuples indicating the mutually consistent values of
the variables in Ri .
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AOC in Constraint Satisfaction Objectives

CSP Solution

A solution, S, to a CSP is an assignment to all variables such that the
assignment satisfies all given constraints. Specifically,

1. S is an ordered set, S = 〈v1, v2, · · · , vi , · · · , vn〉,
S ∈ D1 × D2 × · · ·Di × · · · × Dn.

2. ∀i ∈ [1, m], Si is an ordered value set corresponding to variables
in Ri , and Si ⊆ S, Si ∈ C(Ri).
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AOC in Constraint Satisfaction Objectives

n-Queen Problem: A Classical CSP Example

� It is regarded as a good benchmark for testing algorithms and has
attracted attention in the CSP community [Sosic and Gu, 1994].

� This problem requires one to place n queens on an n× n
chessboard, so that no two queens are in the same row, the same
column, or the same diagonal.

� There exist solutions to n-queen problems with n ≥ 4
[Bitner and Reingold, 1975, Sosic and Gu, 1994].
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The Equivalent CSP

X = { x1, x2, · · · , xi , · · · , xn}.
D = { D1, D2, · · · , Di , · · · , Dn}, ∀i , Di = [1, n].

C = { C(Ru)|∀i , j ∈ [1, n], C(Ru) =
{〈b, c〉|b ∈ Di , c ∈

Dj , b �= c, i − j �= b − c, i − j �= c − b}}.
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SAT Problems

� An SAT is to test whether there is (at least) one solution for a
given propositional formula.

� A satisfiability problem (SAT), P, consists of:
1. A finite set of propositional variables, X = {x1, x2, · · · , xi , · · · , xn}.
2. A domain set, D = {D1, D2, · · · , Di , · · · , Dn}, ∀i ∈ [1, n], xi ∈ Di and

Di ={True, False}.
3. A clause set, CL = {Cl(R1), Cl(R2), · · · , Cl(Ri ), · · · , Cl(Rm)}, where

each Ri is a subset of X, and each clause Cl(Ri ) is a disjunction of
the literals corresponding to the variables in Ri .
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SAT Solution

A solution, S, to an SAT is an assignment to all variables such that,
under this assignment, the truth values of all given clauses are true,
i.e.,

1. S is an ordered set, S = 〈v1, v2, · · · , vi , · · · , vn〉, ∀i ∈ [1, n],
vi ∈ {True, False}, S ∈ D1 × D2 × · · ·Di × · · · × Dn.

2. ∀i ∈ [1, m], T (Cl(Ri)) = True, where T (·) is a function that returns
the truth value of a clause.
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AOC in Constraint Satisfaction AOC-Based Methods

The General Characteristics of AOC-Based Methods

� The domain of a CSP or its variant is represented into a
multi-entity environment.

� The problem of finding a solution to a CSP is reduced to that of
how a group of entities find a certain desired state by performing
their primitive behaviors in such an environment.

� Like other AOC-based methods, ERE exhibits several unique
characteristics as well as advantages in tackling problems that
involve large-scale, highly distributed, locally interacting, and
sometimes unreliable entities.
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AOC in Constraint Satisfaction AOC-Based Methods

The ERE System

ERE Entity
An entity, a, in an ERE system is a virtual entity that represents one or
more variables in a given problem. It essentially has the following
abilities:

1. An ability to reside and behave (i.e., move around) according to a
probability-based behavioral rule in a local environment as
specified by the domains of the variable(s) it represents;

2. An ability to interact with its local environment;

3. An ability to be driven by certain goals.
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AOC in Constraint Satisfaction AOC-Based Methods

ERE system
An ERE system is a system that contains the following elements:

1. An environment, E, as specified by the solution space of a
problem at hand, in which entities reside;

2. A set of reactive rules (including primitive behaviors and
behavioral rules), R, governing the behaviors of entities and the
interactions among entities and their environment. Essentially,
they govern entities to assign values to their respective variables.
In this sense, they are the laws of the entity universe;

3. A set of ERE entities, E = {a1, a2, · · · , ai , · · · , an}, which represent
all variable of the problem.
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AOC in Constraint Satisfaction AOC-Based Methods

General Ideas

� How can exact or approximate solutions to CSPs be
self-organized by a multi-entity system consisting of E, R, and E.

� In other words, it will illustrate:

Environment + Reactive rules + Entities =⇒ Problem solving

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 104 / 297



AOC in Constraint Satisfaction AOC-Based Methods

Basic Formulation

� We divide variables into groups. Each group contains one or more
variables. A set of entities are employed to represent variable
groups.

� The Cartesian products of the domains corresponding to all
variable groups constitute an environment where entities reside.
Each position of an entity indicates a value combination of the
variables that it represents.

� An entity can move freely within a row and has its own primitive
behaviors and behavioral rules.

� It tries to move to a position where the number of constraint
violation is zero. The primitive behavior will locally determine how
an entity moves and how the environment is updated.

� A solution state in ERE is reached when all entities (variable
groups) can move to their zero-positions (consistent value
combinations).
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AOC in Constraint Satisfaction AOC-Based Methods

A CSP Example

X ={ x1, x2, x3}, n = 3.

D ={ D1, D2, D3 }, D1 = {1, 2, 3, 4, 5, 6}, D2 = {1, 2, 3, 4},
D3 = {1, 2, 3, 4, 5}.
C ={ x1 �= x2, x1 > x3}.
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An Illustration of the Entity Model in the CSP Example
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AOC in Constraint Satisfaction AOC-Based Methods

An SAT – a Special CSP

X ={x1, x2, x3, x4}, n = 4.

D ={D1, D2, D3, D4}, D1 = D2 = D3 = D4 = {True, False}.
C ={

T (x1 ∨ ¬x2 ∨ x3) = True,
T (x1 ∨ x2 ∨ ¬x3) = True,
T (x2 ∨ x3 ∨ ¬x4) = True,
T (¬x2 ∨ ¬x3 ∨ x4) = True,
T (x1 ∨ x3 ∨ ¬x4) = True,
T (x1 ∨ x3 ∨ x4) = True,
T (¬x1 ∨ x2 ∨ ¬x3) = True,
T (¬x1 ∨ ¬x2 ∨ x3) = True,
T (¬x1 ∨ ¬x2 ∨ ¬x3) = True

}.
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An Illustration of the Entity Model in the SAT Example
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AOC in Constraint Satisfaction AOC-Based Methods

An Illustration of the ERE method in the CSP Example

(a) The position of an entity; (b) the representation of domain values; (c)-(d)
violation values marked in the environment.

(h) (i) (j)

(k)
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AOC in Constraint Satisfaction AOC-Based Methods

An Illustration of the ERE method in the SAT Example

(a) The representation of domain values; (b) violation values if entity a1 is
placed on (1, 1); (c) violation values of the whole environment.

(l) (m)

(n)
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AOC in Constraint Satisfaction ERE Entities

Primitive Behaviors

Least-move

� An entity moves to a minimum-position with a probability of
least-p.

� If there exists more than one minimum-position, the entity
chooses the first one on the left of the row.

Ψ(j , i) = Φ(i). (30)

In this function, the result has nothing to do with the current
position j , and the maximum number of computational operations
to find the position for each i is |Di1 × Di2 × · · · × Dik |. We use a
special symbol to represent this movement:

Ψ−l(j , i) = Φ(i). (31)

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 112 / 297



AOC in Constraint Satisfaction ERE Entities

Primitive Behaviors

Better-move

� An entity moves to a position, which has a smaller violation value
than its current position, with a probability of better-p.

� It will randomly select a position (using Random(k) that complies
with the uniform distribution to get a random number between 1
and k) and compare its violation value with that of its current
position, and then decide whether or not to move to this new
position.

� A better-move behavior can be defined using function Ψ−b:

Ψ−b(j , i) =

{
j , if e(r , i).violation ≥ e(j , i).violation,
r , if e(r , i).violation < e(j , i).violation,

(32)

where r = Random(|Di1 ×Di2 × · · · × Dik |).
� The computational cost required for this primitive behavior is less

than that of least-move.
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AOC in Constraint Satisfaction ERE Entities

Primitive Behaviors

Random-move

� An entity moves randomly with a probability of random-p.
� random-p will be relatively smaller than the probabilities of

selecting least-move and better-move behaviors.
� It is somewhat like random walk in local search (to avoid getting

stuck in, or to escape from, local optima).
� A random-move behavior can be defined using function Ψ−r :

Ψ−r (j , i) = Random(|Di1 × Di2 × · · · × Dik |). (33)
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AOC in Constraint Satisfaction ERE Entities

How to Update the Environment?

The violation values will be updated with:

� Updating-rule 1: Remove-From (j1, i):
For (∀i ′ ∈ [1, u])(∀j ′ ∈ [1, |Di ′1 × Di ′2 × · · · × Di ′k |]):
If there are v constraints: (1) they are based on variables included
in rowi and rowi ′ and (2) their values are changed from false to
true
Then e(j ′, i ′).violation← e(j ′, i ′).violation − v .

� Updating-rule 2: Add-To (j2, i):
For (∀i ′ ∈ [1, u])(∀j ′ ∈ [1, |Di ′1 × Di ′2 × · · · × Di ′k |]):
If there are v constraints: (1) they are based on variables included
in rowi and rowi ′ and (2) their values are changed from true to
false
Then e(j ′, i ′).violation← e(j ′, i ′).violation + v .
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AOC in Constraint Satisfaction ERE Entities

The ERE Algorithm I

step = 0;
Initialize positions and behavior probabilities of entities;
Initialize domain values and violation values of environment;
while true do

for all ai ∈ A do
Probabilistically determine a primitive behavior, b, to perform;
Perform primitive behavior b;
New position (j ′′, i) = (Ψ(ai .j , i), i);
if current position (ai .j , i) = (j ′′, i) then

Stay;
else

ai .j = j ′′;
end if

end for

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 116 / 297



AOC in Constraint Satisfaction ERE Entities

The ERE Algorithm II

Update violation values of environment;
if current state satisfies predefined stopping criterion then

Output variable values corresponding to entity positions;
break;

end if
step + +;

end while
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An Illustrative SAT Example

X ={x1, x2, x3, x4, x5}, n = 5.

D ={D1, D2, D3, D4, D5}, D1 = D2 = D3 = D4 = D5 = {True, False}.

C= {
T (x3 ∨ x4 ∨ ¬x5) = True,
T (x2 ∨ ¬x3 ∨ ¬x5) = True,
T (¬x1 ∨ ¬x2 ∨ x3) = True,
T (¬x1 ∨ ¬x2 ∨ x4) = True,
T (¬x3 ∨ x4 ∨ x5) = True,
T (x1 ∨ ¬x2 ∨ ¬x3) = True,
T (¬x2 ∨ x4 ∨ x5) = True,
T (¬x1 ∨ ¬x3 ∨ ¬x5) = True,
T (x2 ∨ ¬x3 ∨ x4) = True,
T (¬x1 ∨ x4 ∨ ¬x5) = True,
T (x2 ∨ x3 ∨ x5) = True,
T (x1 ∨ x2 ∨ ¬x4) = True,
T (¬x1 ∨ x2 ∨ ¬x5) = True,
T (¬x1 ∨ x3 ∨ x4) = True,
T (x1 ∨ ¬x4 ∨ ¬x5) = True

}.
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AOC in Constraint Satisfaction ERE Entities

An Illustration of the ERE method in the SAT Example

(a) Domain values; (b) an initialized state; (c) violation values.

(o) (p) (q)
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AOC in Constraint Satisfaction ERE Entities

a1, a2, and a3 perform least-move, least-move, and random-move
behaviors, respectively.

(a) (b)
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AOC in Constraint Satisfaction ERE Entities

a1 selects a better-move behavior, but fails to move. a2 performs a
least-move. a3 also selects a least-move behavior, but fails to move.

(a) (b)

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 121 / 297



AOC in Constraint Satisfaction ERE Entities

Characteristics of ERE

� ERE is very efficient in finding an approximate solution.
� After the first three steps, about n− 7 queens are at zero-positions

in n-queen problems, and about 97-98% clauses are satisfied in
SAT problems.

� Other characteristics of ERE:
1. Self-organizing: The process of solving CSPs by ERE is entirely

determined by the locality and parallelism of individual entities.
2. Indirectly interacting: One entity may affect the whole

environment. And, the change in the environment will in turn affect
the movements of other entities.

3. Open and flexible: New primitive behaviors or combinations of
primitive behaviors can readily be created.
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Conventional Methods

� The generate-and-test (GT) method generates each possible
combination of variables systematically and then checks whether it
satisfies all constraints, i.e., whether it is a solution − less efficient.

� The backtracking (BT) method assigns values to variables
sequentially and then checks constraints for each variable
assignment. If a partial assignment does not satisfy any of the
constraints, it will backtrack to the most recently assigned variable
and repeat the process again − exponential complexity.
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Improved Methods I

� To avoid thrashing in BT [Gaschnig, 1979, Kumar, 1992],
consistency techniques (Arc Consistency and k-Consistency)
have been developed by some researchers
[Cooper, 1989, Han and Lee, 1988, Kumar, 1992,
Mackworth, 1977, Mohr and Henderson, 1986].

� To avoid both thrashing and redundant work in BT [Kumar, 1992],
a dependency directed scheme and its improvements have been
proposed [Bruynooghe, 1981, Kumar, 1992, Rossi et al., 1990,
Stallman and Sussman, 1977].

� Some examples of systematic search for SATs are POSIT,
TABLEAU, GRASP, SATZ, and REL SAT
[Hoos and Stützle, 1999], all of which are based on the
Davis-Putnam (DP) algorithm [Davis et al., 1962].
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Improved Methods II

� Stochastic and heuristic algorithms perform local search
[Selman et al., 1992, Gu, 1992] − better results than a complete,
or even incomplete, systematic BT method.
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Local Search

� start with a complete and randomly initialized assignment, then
check whether it satisfies all clauses.

� if not, heuristically or randomly select a variable to flip (i.e.,
change its value).

� repeat this process until a solution is found.

A local search method contains three key concepts [Barták, 1998]:

1. Configuration: one possible assignment to all variables, not
required to be a solution;

2. Evaluation value: the number of satisfied constraints (in a CSP) or
clauses (in an SAT);

3. Neighbor: a configuration obtained by flipping the assignment of a
variable in the current configuration.
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Improved Local Search

There are two main streams

� GSAT [Gu, 1992, Selman et al., 1992] and WalkSAT
[Selman et al., 1994].

� They all have many variants,
� GWSAT [Selman et al., 1994], GSAT/Tabu

[Mazure et al., 1997, Steinmann et al., 1997], HSAT
[Gent and Walsh, 1993], and HWSAT [Gent and Walsh, 1995]
following GSAT, and

� WalkSAT/Tabu [McAllester et al., 1997], Novelty
[McAllester et al., 1997], and R-Novelty [McAllester et al., 1997]
following WalkSAT.
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Self-Organization Based Methods

� Liu and Han developed an artificial life model for solving
large-scale n-queen problems [Liu and Han, 2001].

� Other related examples of self-organizing systems: cellular
automata [Gutowitz, 1991, Liu et al., 1997] and Swarm
[Swarm, 1994].

� Cellular automata are dynamical systems that operate in discrete
space and time. The state of the cell is locally specified according
to a set of behavioral rules [Liu et al., 1997, Shanahan, 1994].

� Swarm is a system for simulating distributed multi-entity systems.
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ERE vs. other Methods I

� Entities in ERE can synchronously behave according to their
behavioral rules, whereas local search is sequential.

� Each entity follows its local behavioral rules, and as a result, the
system gradually evolves towards a solution state.

� ERE may be regarded as an extended GT algorithm, somewhat
like local search.

� ERE evaluates not the number of dissatisfied constraints for the
whole assignment as in local search, but the number of
dissatisfied constraints for every value combination.

� The values of evaluation are stored in the environment.
� In ERE, the neighbors of an assignment can be different in the

values of more than one variable.
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ERE vs. other Methods II

� Other methods: Yokoo et al. have proposed several algorithms
(i.e., asynchronous backtracking, asynchronous
weak-commitment search, and multi-agent real-time-A* algorithm
with selection) for solving distributed CSPs
[Yokoo, 1995, Yokoo et al., 1998, Yokoo and Hirayama, 1998,
Yokoo and Hirayama, 2000, Yokoo and Kitamura, 1996]. Later,
Silaghi et al. improved the work of Yokoo et al. by introducing a
mechanism to check whether the message an agent receives is
legal
[Silaghi et al., 2001a, Silaghi et al., 2001b, Silaghi et al., 2001c].
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Entity Network

� In multi-entity systems for problem solving, entities will implicitly or
explicitly form an entity network that connects all interacting
entities.

� As an entity may or may not cooperate, coordinate, or compete
with other entities, the resulting entity network may not be fully
connected.

� An entity network is a virtual graph corresponding to a
multi-entity system, where vertices are entities, and edges (also
called links) are the implicit or explicit relationships of cooperation,
coordination, or competition among entities.

� Issues:
� What is the topology of a network formed by entities?
� How does the resulting entity network reflect the computational

complexity of a given problem?
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Entity Network Topology

� It is the geometrical property of the network that reflects the
connectivity of the vertices and edges.

� Different topologies based on different representations:
� constraint-based representation where entities represent

constraints, and
� variable-based representation where entities represent variables.

� ERE utilizes a variable-based representation.
� Which representation is better based on some benchmark SAT

problems?
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Clause Based Representation

� An entity represents a clause in a given SAT problem.
� To satisfy a clause, an entity needs to assign values to the

variables in this clause such that at least one literal is true.
� Because a variable can appear in multiple clauses simultaneously,

the entities that have common variables should cooperate and find
consistent values to the variables.

� If two entities have a common variable, we regard it as an edge
between the corresponding entity vertices.
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AOC in Constraint Satisfaction Entity Network for Complexity Analysis

Representing three clauses into an entity network, where each vertex
denotes an entity, and each edge denotes a common variable shared by two
corresponding entities. ai :Cli denotes that entity ai represents clause Cli .

a : Cl
3 3

B v ~F v ~G

a : Cl
1 1

~A v B v ~C

a : Cl
2 2

~A v D v E
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Characterization [Watts and Strogatz, 1998]

Given an entity network, G = 〈V , R〉, where V = {v1, v2, · · · , vn} is a
set of entities and R = {r1, r2, · · · , rm} is a set of edges between
entities in V .

1. Characteristic path length:

LG =
2

n · (n − 1)

∑
i ,j∈{1,··· ,n},i �=j

di ,j , (34)

where di ,j is the shortest distance between entities ai and aj .
2. Clustering coefficient:

CG =
1
n

n∑
i=1

cai , (35)

where cai is the clustering ratio (also called clustering in short) of
entity ai .

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 135 / 297



AOC in Constraint Satisfaction Entity Network for Complexity Analysis

� Assume d(ai) is the degree of ai (i.e., the number of neighboring
entities of ai ), and b(ai) is the number of existing edges between
the neighbors of ai . Therefore,

cai =
b(ai)

(d(ai )+1)·d(ai )
2

=
2 · b(ai)

(d(ai) + 1) · d(ai)
. (36)

� In general, LG is a global property of entity network G that
indicates the connectivity of G.

� CG is a local property that reflects the average connectivity of
cliques in G. In essence, CG denotes the possibility that two
entities, which have a common neighboring entity, are neighbors.
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Related Work on Small World Topology

� Milgram first proposed the notion of small world [Milgram, 1967].
� Later, Watts and Strogatz mathematically formulated a small world

topology based on the means of characteristic path length and
clustering coefficient [Watts and Strogatz, 1998].

� Small world phenomena have been extensively found in natural
systems (e.g., human society [Milgram, 1967], food Web in
ecology [Montoya and Sole, 2000]) as well as in man-made
systems (e.g., the World Wide Web [Adamic, 1999]).

� Walsh observed such phenomena in search problems, such as
graph coloring, time tabling, and quasigroup problems
[Walsh, 1999]. He further experimentally showed that the small
world topology could make a search process very difficult.
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� Watts and Strogatz qualitatively defined that a graph G with n
vertices and m edges has a small world topology if and only if:

LG ≈ Lrandom and CG � Crandom, (37)

where Lrandom and Crandom are the average characteristic path
length and clustering coefficient of random graphs with the same
size as G (i.e., n vertices and m edges). Here, G must be
connected, i.e., k � ln(n), where k = 2m

n is the average degree of
vertices in G [Watts and Strogatz, 1998].

� Walsh provided a quantitative measurement, i.e., proximity ratio, µ
[Walsh, 1999]:

µ =

CG
LG

Crandom
Lrandom

=
CG · Lrandom

Crandom · LG
. (38)

A small world topology requires µ� 1. The larger the µ, the more
“small worldy” the graph (i.e., the graph has more clusters).
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Complexities under Different Representations

� In [Walsh, 1999], Walsh empirically verified that a small world
topology increases the computational complexity of a search
algorithm that involves certain heuristics.

� This is because heuristics normally guide a search process
locally. But in a small world network, based on local information an
algorithm cannot well predict global properties of the problem at
hand.

� Using the same SAT problems, we have examined a clause-based
representation as opposed to a variable-based representation as
used in ERE.

� Our experimental results suggest that with such a clause-based
representation, it is normally hard (in term of entity movements) to
solve a problem, which is however relatively easier to solve by
ERE with a variable-based representation.
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Variable Based Representation

� In order to satisfy a clause, the related variables should be
assigned compatible values to guarantee that at least one literal is
true − clauses act as constraints among variables.

� ERE represents variable groups with entities; the constraints
among variables are implicitly transformed into constraints among
entities. To satisfy a constraint (i.e., a clause), entities that
represent the variables in the constraint will restrain each other.

� If each entity represents only one variable: A vertex denotes an
entity. An edge exists between two entities if and only if the
corresponding variables appear in a certain clause simultaneously.
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Representing a clause into an entity network, where each entity corresponds
to one variable. ai :X denotes that entity ai represents variable X .

1
a : A

3
a : C

2
a : B

Clause: ~A v B v ~C
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Variable-Based Representation for Benchmark SATs

Uniform-3-SAT and Flat Graph Coloring. In these experiments, we randomly
selected 10% of the instances from each testset, and calculated average LG,
CG, and µ of the selected instances. For each instance, we generated 10
random entity networks with the same number of vertices and edges.

Testset Vertices Edges LG Lrandom CG Crandom µ
Uf50 50 507 1.693 1.587 0.501 0.469 1.140
Uf75 75 831 1.758 1.702 0.403 0.360 1.154
Uf100 100 1,131 1.821 1.776 0.335 0.294 1.168
Uf125 125 1,457 1.862 1.822 0.297 0.255 1.190
Uf150 150 1,780 1.900 1.860 0.271 0.227 1.219
Uf175 175 2,095 1.939 1.895 0.250 0.207 1.238
Uf200 200 2,414 1.968 1.925 0.237 0.191 1.267
Uf225 225 2,727 2.001 1.957 0.223 0.179 1.276
Uf250 250 3,037 2.031 1.987 0.214 0.169 1.297
Flat30 90 270 3.662 2.677 0.387 0.334 1.585
Flat50 150 495 3.935 2.836 0.350 0.296 1.641
Flat75 225 765 4.186 3.025 0.337 0.279 1.671
Flat100 300 1,017 4.375 3.179 0.330 0.274 1.659
Flat125 375 1,278 4.532 3.290 0.332 0.269 1.697
Flat150 450 1,530 4.647 3.390 0.327 0.268 1.676
Flat175 525 1,776 4.735 3.479 0.329 0.267 1.674
Flat200 600 2,037 4.849 3.539 0.325 0.265 1.681
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Observation: Non-Small-World Topology I

� For all testsets of Uniform-3-SAT, LG ≈ Lrandom, CG ≈ Crandom, and
1.1 < µ < 1.3.

� For all testsets of Flat Graph Coloring, LG �≈ Lrandom,
CG �≈ Crandom, and µ is around 1.65.

� Thus, we can conjecture that with a variable-based representation,
the resulting network does not have a small world topology.

� If an entity represents several variables: Two entities will be
connected by an edge if and only if two variables, respectively
represented by these two entities, appear in an identical clause.

� The resulting entity network can be derived from the entity
network where each entity represents one variable by merging
some of the original entities into a single one.
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Observation: Non-Small-World Topology II

� The former network is denser than the latter one. Since the latter
entity network does not have a small world topology, the former
will not either (A small world topology normally exists in a
connected, but ‘sparse’, network). This has been demonstrated in
other experiments, where µ is still less than 2.0.
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Balanced Complexities in Intra- and Inter-Entity
Computations I

� Experiments have suggested that as the number of variables
represented by an entity in ERE increases, the resulting entity
networks will be less ‘small worldy’, because the networks
become smaller and denser.

� In an extreme case, the network becomes to an isolated vertex. Is
this the best situation?

� If an entity represents multiple variables, the entity should assign
values to all its variables. Because the variables of an entity are
usually not independent, as the number of variables represented
by the entity increases, the intra-entity computational complexity
to assign values to its variables increases, too.
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Balanced Complexities in Intra- and Inter-Entity
Computations II

� A good design should balance the intra- and inter-entity
computational complexities to achieve the lowest total
computational cost.

� Experiments have suggested that when an entity represents four
or five variables, the total computational cost, in terms of entity
movements and variable flips, becomes the lowest.
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Remarks on AOC by Fabrication

The AOC-by-fabrication approach is intended to build a mapping between a
real problem and a natural phenomenon or system.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 147 / 297



AOC in Constraint Satisfaction Entity Network for Complexity Analysis

Common Characteristics of AOC by Fabrication I

1. Each of autonomous entities is characterized by sets of goals,
states, behaviors, and behavioral rules (e.g., G, B, S, F , and R).

2. Entities may be homogeneous or heterogeneous. Even in the
homogeneous case, entities may differ in some detailed
parameters.

3. The composition of the entity group may change over time,
through the process analogous to birth (amplification of the
desired behavior) and death (elimination of the undesired
behavior).

4. The interactions between autonomous entities are local; neither
global information nor central executive control is needed.
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Common Characteristics of AOC by Fabrication II

5. The environment is dynamical and records the information related
to the current status of the problem. It serves as a medium for
information sharing.

6. The local goals of autonomous entities drive the selection of their
primitive behaviors at each step.

7. The goal of the whole AOC system is represented by a universal
fitness function that measures the progress of the computation.
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Web Regularities

� Self-organized regularities from the World Wide Web, ranging
from the structure and growth of the Web to the access patterns in
Web surfing.

� Many identified interesting regularities are best represented by
characteristic distributions following either a Zipf-like law
[Zipf, 1949] or a power law. That is, the probability P of a variant
taking value k is proportional to k−α, where α is from 0 to 2. A
distribution presents a heavy tail if its upper tail declines like a
power law [Crovella and Taqqu, 1999].
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The Empirical Regularities on the Web I

Zipf-like or power-law distributions are found in:

1. The popularity of requested and transferred pages across servers
and proxy caches [Barford et al., 1999, Breslau et al., 1998,
Cuhna et al., 1995, Glassman, 1994].

2. The popularity of websites or requests to servers, ranging from
Web user groups to fixed user communities, such as within a
proxy or a server [Adamic and Huberman, 2000,
Breslau et al., 1998, Maurer and Huberman, 2000].

3. The request inter-arrivals and Web latencies
[Barford and Crovella, 1998, Helbing et al., 2000, Yan et al., 1996].

4. The distribution of document sizes either across the Web or
limited to pages requested in a proxy or a certain user community
[Arlitt and Williamson, 1996, Barford et al., 1999,
Barford and Crovella, 1998, Cuhna et al., 1995].
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The Empirical Regularities on the Web II

5. The number of pages either across all websites or within a certain
domain of the Web [Huberman and Adamic, 1999].

6. The trace length of users within a proxy or a website, or across the
Web [Adar and Huberman, 2000, Huberman et al., 1997,
Levene et al., 2001, Lukose and Huberman, 1998].

7. The dynamical response of the Web to a Dirac-like perturbation
[Johansen and Sornette, 2000].

8. The distribution of links (both incoming and outgoing) among
websites or pages [Adamic and Huberman, 1999,
Albert et al., 1999, Barabasi and Albert, 1999,
Barabasi et al., 2000, Broder et al., 2000].
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Web Regularity Characterization I

� Viewing the Web as a large directed graph of nodes (i.e., Web
pages) connected with links (i.e., hyperlinks), Huberman et al.
proposed a random-walk model to simulate certain regularities in
user navigation behavior and suggested that the probability
distribution of surfing depth (steps) follows a two-parameter
inverse Gaussian distribution [Huberman et al., 1997].

� They conjectured that the probability of finding a group surfing at a
given level scales inversely in proportion to its depth, i.e.,
P(L) ∼ L−3/2, where L is depth.
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Web Regularity Characterization II

� The random-walk model
[Huberman et al., 1997, Lukose and Huberman, 1998] and the
Markov chain model
[Levene et al., 2001, Levene and Loizou, 1999] do not relate the
emergent regularities to the dynamical interactions between users
and the Web, nor do they reflect the inter-relationships between
user behavior and the contents or structure of the Web −
black-box methods.
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Objectives

� How to explain user behavior underlying observed Web usage
regularities?

� By experimenting with the entity-based decision model of Web
surfing, we aim to further characterize user navigation regularities
as well as to understand the effects of user interests, motivation,
and content organization on user behavior.

� The information foraging entity based model that takes into
account the interest profiles, motivation aggregation, and
navigation strategies of users.
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Specific Issues I

1. Is it possible to experimentally observe regularities similar to
empirical Web regularities if we formulate the aggregation of user
motivation? In other words, is it possible to account for empirical
regularities from the point of view of motivation aggregation?

2. Are there any navigation strategies or decision making processes
involved that determine the emergence of Web regularities, such
as the distributions of user navigation depth?

3. If the above is validated, will different navigation strategies or
decision making processes lead to different emergent regularities?
In other words, when we observe different power-law distributions,
can we tell what are dominant underlying navigation strategies or
decision making processes that have been used by users?
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Specific Issues II

4. What is the distribution of user interest profiles underlying
emergent regularities?

5. Will the distribution of Web contents as well as page structure
affect emergent regularities?

6. If we separately record users who can successfully find relevant
information and those who fail to do so, will we observe different
regularities?
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Artificial Web Space

� The Web space is a collection of websites connected by
hyperlinks.

� Each website contains certain information contents, and each
hyperlink between two websites signifies certain content similarity
between them.

� The contents contained in a website can be characterized using a
multi-dimensional content vector where each component
corresponds to the relative information weight on a certain topic.

� To build the artificial Web space that characterizes the topologies
as well as connectivities of the real-world Web, we introduce the
notion of an artificial website that may cover contents related to
several topics and each topic may include a certain number of
Web pages.

� Such a website may also be linked to other websites of similar or
different topics through URLs.
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Web Space and Content Vector Representations

� We consider the Web space as a graph consisting of nodes and
links, as suggested in [Broder et al., 2000].

� The nodes correspond to websites or pages, whereas the links
correspond to hyperlinks between them.

� The information contents in a certain node are represented using
the weights of a content vector as follows:

Cn = [cw1
n , cw2

n , . . . , cwi
n, . . . , cwM

n ], (39)

where
Cn: content vector for node n (i.e., website or page);

cwi
n: relative content information weight on topic i ;
M: number of topics.
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� To determine the content similarity between two nodes, we will
make use of the following distance function:

d(Ci ,Cj) =

(
M∑

k=1

(cwk
i − cwk

j )2

)1/2

, (40)

where d(Ci ,Cj) denotes the Euclidean distance between the
content vectors of nodes i and j .

� When two nodes are linked through a hyperlink, it is reasonable to
assume that the contents contained in the two nodes is somewhat
related, that is to say, their content vector distance is below a
certain positive threshold.
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Modeling Content Distributions

� Normal distribution: The content weight cw i
n with respect to

topic j in node n is initialized as follows:

cwi
n =

{
T+ | Xc |, if i = j ,
| Xc |, otherwise,

(41)

fXc ∼ normal(0, σp), (42)

T ∼ normal(µt , σt), (43)
fXc : probability distribution of weight Xc;

normal(0, σp): normal distribution with mean 0 and variance σ
T: content (increment) offset on a topic;
µt : mean of normally distributed offset T;
σt : variance of normally distributed offset T.

� All content weights on a topic are nonnegative.
� We can adjust σt and µt to get various topic distributions in Web

pages; the smaller σt is or the larger µt is, the more focused the
node will be on the topic.
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Modeling Content Distributions

� Power-law distribution: The content weight of node n on topic j ,
cwi

n, will follow a power law:

cwi
n =

{
T+ | Xc |, if i = j ,
| Xc |, otherwise,

(44)

fXc ∼ αp(Xc + 1)−(αp+1), Xc > 0, αp > 0, (45)

fXc : probability distribution of weight Xc;
αp: shape parameter of a power-law distribution;
T: content (increment) offset on a topic.

� We can adjust αp to generate different forms of a power-law
distribution.
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� How to construct an artificial Web?

1. Create groups of nodes where each group focuses on a certain
topic. The distribution of the contents in the nodes follows a specific
model as given above. An information entity starts its foraging from
a Web homepage that contains links to the nodes of several topics.
We assign this homepage an equal distance to individual topics.

2. Build links between the nodes We build a link between two
nodes only if the content vector distance between them is below a
positive distance threshold, r .

3. Increasing r (degree-of-coupling of websites) leads to increasing
the number of links in a website (i.e., different degrees of
connectivity).

� Assumption: When there is a link between two nodes, the
information contents of the nodes should be related.
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Algorithm for Constructing the Artificial Web Space

for each topic k do
Create a node group and content vectors;

end for
for each node i in the group do

Initialize the link list of node i ;
for each node j (j �= i) in the group do

if d(Ci ,Cj) < r then
Add node j to the link list of node i ;
Add d(Ci ,Cj) to the link list of node i ;

end if
end for

end for
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Foraging Entities

� Each entity forages in the Web space with different interests in
mind.

� The interest profile of an entity will determine its behavior in Web
surfing.

� How to model the interest profile of an entity using a
multi-dimensional preference vector that specifies the interests of
the entity in various topics?

� How to define the interest entropy that characterizes whether or
not an entity has a balanced interest profile?
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Interest Profiles

We define the preference vector of an entity as follows:

Pm = [pw1
m, pw2

m, . . . , pwi
m, . . . , pwM

m], (46)

pmi =
pwi

m∑M
j=1 pwj

m

, (47)

Hm = −
M∑

i=1

pmi log(pmi), (48)

Pm: preference vector of entity m;
pwi

m: preference weight of entity m on topic i ;
Hm: interest entropy of entity m.
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� Hm indicates the breadth and balance of an entity’s interests in
different topics.

� The larger Hm is, the more evenly distributed the entity’s interests
will be. As a result, the entity is more likely to have multiple goals
and jump from one topic to another in its surfing.

� When the entity has equal interests in all topics, the value of Hm

will be the largest, i.e.,

Hmax = −
M∑

i=1

1
M

log
(

1
M

)
= log(M). (49)

� The quantity of interest entropy will affect the decision of an entity
on which Web page it will select among several others.
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Modeling Interest Distributions

1. Normal distribution: The weight of a preference vector, pw i
m, for

entity m on topic i is defined as follows:

pwi
m = Xp, (50)

fXp ∼ normal(0, σu), (51)

where normal(0, σu) denotes the normal distribution with mean 0
and variance σu.

2. Power-law distribution: The probability distribution pw i
m:

pwi
m = Xp, (52)

fXp ∼ αu(Xp + 1)−αu+1, Xp > 0, αu > 0, (53)

where αu denotes the shape parameter of a power-law
distribution.
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Motivational Support

� St serves as the driving force for an entity to forage further. When
an entity has found some useful information, it will get rewarded,
and thus the support value will be increased.

� As the support value exceeds a certain threshold, which implies
that the entity has obtained a sufficient amount of useful
information, the entity will stop foraging.

� If the support value is too low, the entity will lose its motivation to
forage further and thus leave the Web space.
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Support Aggregation

St+1 = St + θ ·∆Mt + φ ·∆Rt , (54)

St : support value at step t ;
∆Mt : motivational loss at step t ;
∆Rt : reward received at step t ;
θ, φ: coefficients of motivation and reward terms, respectively.

rcl init supportm =
1
2

M∑
i=1

pwi
m, (55)

max supportm =
M∑

i=1

pwi
m, (56)

min supportm = 0, (57)

where pw i
m denotes the preference weight of entity m with respect to

topic i .
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Random Entities

� Random entities have no strong interests in any specific topics.
They wander from one page to another.

� The probability, pk , of reaching node k at the next step:

pk =
1
h

, k = 1, . . . , h. (58)
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Rational Entities

� When rational entities reach a new website, they will try to decide
whether or not the content sufficiently meets their interests and, if
not, predict the next-level page based on the anchor texts.

� How to compute the probability, pk , of reaching the next-level node
k given the interest entropy, Hm, of entity m?

d∗(Pm,Ck ) =

{
d(Pm,Ck ), if k ∈ h1,

Hm
Hmax

d(Pm,Ck ), if k ∈ h2,
(59)

where d ∗(Pm,Ck ) denotes the weighted distance between the
preferences of entity m and the contents of node k given the
entity’s interest entropy Hm.
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Qj = d∗(Pm,Cj)−mean∀l∈[1,h](d
∗(Pm,Cl)), j = 1, . . . , h, (60)

Uj =

{
Qj , if Qj < 0,
0, if Qj ≥ 0,

(61)

pk =
Uk∑h
j=1 Uj

, (62)
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Recurrent Entities

� Recurrent entities are familiar with the Web structure. Each time
when they decide to forage further, they know exactly the
whereabouts of the pages that closely match their interest profiles.

� The probability of reaching node k at the next step:

pk =

{
1, if d∗(Pm,Ck ) = min(d∗(Pm,Cj)), j = 1, . . . , h,
0, otherwise.

(63)
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Preference Updating

� An entity updates its preference weights in the interest profile over
time, depending on how much information on interesting topics it
has found and how much it has absorbed such information.

� When entity m reaches and finishes reading page n, it will update
its interest according to the content vector of page n:

Pm(τ) = Pm(τ − 1)− λ · Cn, (64)

pwi
m(τ) = 0, for pwi

m(τ) < 0, i = 1, . . . ,M, (65)

where λ denotes an absorbing factor in [0,1] that implies how
much information is accepted by an entity on average. Pm(τ) and
Pm(τ − 1) denote the preference vectors of an entity after and
before accessing information on page n, respectively.
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Motivation Function

∆Mt (motivational or patience loss) changes along with the latency, i.e.,
the time to find information.

∆Mt = −(∆Mc
t + ∆Mv

t ), (66)

where ∆Mc
t denotes the constant decrement in ∆Mt at each step, and

∆Mv
t denotes the variable factor that dynamically changes at each step.
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∆Mv
t Models

1. A log-normal function:

flog(∆Mv
t ) ∼ normal(µm, σm), (67)

where µm and σm denote the mean and variance of the log-normal
distribution of ∆Mv

t , respectively.

2. An exponential function:

∆Mv
t = αmeγm·step, (68)

where αm and γm denote the coefficient and rate of an exponential
function, respectively. step denotes the number of pages or nodes
that an entity has continuously visited.
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AOC in Complex Systems Modeling Navigation Strategies

Reward Function

� ∆Rt corresponds to the reward received by an entity at each step
as a function proportional to the relevant information that the entity
has absorbed.

� The change in the preference weights of an entity reflects the
information that the entity has gained:

∆Rt =
M∑

i=1

(pwi
m(τ − 1)− pwi

m(τ)). (69)

� ∆Rt (≥ 0) provides the entity with the energy to forage on the
Web. ∆Mt (≤ 0) prevents the entity to forage further. The total
support for an entity at the current step can be aggregated based
on the support received at the previous steps and the changes in
motivational loss and reward.
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AOC in Complex Systems Modeling Navigation Strategies

The Foraging Algorithm I

Initialize nodes and links in artificial Web space;
Initialize information foraging entities and their interest profiles;
for each entity m do

while support S < max supportm and S > min supportm do
Find hyperlinks inside node n where entity m is visiting;
Select, based on pk , a hyperlink connected to a next-level page;
Forage to the selected page;
Update preference weights in the entity’s interest profile;
Update the support function of entity m;

end while
if support S > max supportm then

Entity m is satisfied with the contents and leaves the Web
space;

else
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AOC in Complex Systems Modeling Navigation Strategies

The Foraging Algorithm II

Entity m is dissatisfied and leaves the Web space;
end if

end for
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AOC in Complex Systems Modeling Experiments

� 5, 000 entities foraging according to the above given motivational
support and decision models for three categories of foraging
entities.

� We assume that
� the interest profiles of the entities follow a power-law distribution

and
� the contents of Web pages on various topics follow a normal-like

distribution.

We are interested in studying the distributions of entity foraging
depth and link-click-frequency.
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AOC in Complex Systems Modeling Experiments

Cumulative Distribution of Foraging Depth (Steps)

Recurrent entities: The tail of the distribution follows a power-law distribution
with power βc = −1.843 and the residual of linear regression σ = 0.011. δ

denotes entities’ satisfaction rate (i.e., the ratio of the number of satisfied
entities to the total number of entities what have surfed on the Web).
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AOC in Complex Systems Modeling Experiments

Distribution of Link-Click-Frequency

Recurrent entities: The tail follows a power-law distribution with power
βl = −1.396.
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AOC in Complex Systems Modeling Experiments

Cumulative Distribution of Foraging Depth (Steps)

Rational entities: The tail of the distribution follows a power-law distribution
with power βc = −2.179 and the regression residual σ = 0.02. δ denotes
entities’ satisfaction rate.
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AOC in Complex Systems Modeling Experiments

Distribution of Link-Click-Frequency

Rational entities: The distribution follows a power-law distribution with power
βl = −1.987.
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AOC in Complex Systems Modeling Experiments

Cumulative Distribution of User Surfing Steps − NASA
Web Log Data

The distribution follows a heavy tail with the tail’s scale of βc = −2.669. The
linear regression residual s is about 1.174.
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AOC in Complex Systems Modeling Experiments

Link-Click-Frequency − NASA Web Log Data

It agrees well with a power law of power βl = −1.620.
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AOC in Complex Systems Modeling Experiments

Cumulative Distribution of Foraging Depth in
Accessing Domains

Recurrent entities: The distribution follows an exponential function with
exponent βd = −0.892 and residual σ = 0.084.
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AOC in Complex Systems Modeling Experiments

Cumulative Distribution of Foraging Depth in
Accessing Domains

Rational entities: The distribution follows an exponential function with a
smaller exponent βd = −0.357 and residual σ = 0.021.
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AOC in Complex Systems Modeling Experiments

Surfing Steps in Accessing Domains − Microsoft Web
Log Data

The distribution follows an exponential function with βd = −0.141 and
residual σ = 0.137.
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AOC in Complex Systems Modeling Experiments

Influence of Different Content Distribution Models

Recurrent entity foraging depth in accessing Web pages where the content
distribution follows a power law. The obtained distribution follows a power law
with power βc = −1.532 and residual σ = 0.015.
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AOC in Complex Systems Modeling Experiments

Rational entities: The distribution follows a power law with power
β = −1.638 and residual σ = 0.013.
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AOC in Complex Systems Modeling Experiments

Interest Profiles Following a Normal-Distribution

Cumulative distribution of foraging depth by recurrent entities. The obtained
distribution follows an exponential function with exponent βc = −0.181 and
residual σ = 0.08.
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AOC in Complex Systems Modeling Experiments

Cumulative distribution of foraging depth by rational entities. The distribution
follows an exponential function with exponent β = −0.133 and residual
σ = 0.166.
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AOC in Complex Systems Modeling Experiments

Distribution of link-click-frequency with recurrent entities. The distribution tail
is approximately a power law with power βl = −1.832.
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AOC in Complex Systems Modeling Experiments

Distribution of link-click-frequency with rational entities. The distribution is
approximately a power law with power βl = −1.372.
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AOC in Complex Systems Modeling Experiments

Distribution of link-click-frequency with recurrent entities. The distribution tail
is approximately a power law with power βl = −1.641.
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AOC in Complex Systems Modeling Experiments

Distribution of link-click-frequency with rational entities. The distribution is
approximately a power law with power βl = −1.427.
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AOC in Complex Systems Modeling Experiments

Link-Click-Frequency with Random Entities
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AOC in Complex Systems Modeling Experiments

Link-Click-Frequency with Random Entities

(content: power-law)
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AOC in Complex Systems Modeling Degree of Coupling, r

The Average Number of Links
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AOC in Complex Systems Modeling Degree of Coupling, r

Power Values βc in Power-Law Distributions of
Foraging Depth
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AOC in Complex Systems Modeling Degree of Coupling, r

Average Foraging Steps

‘◦’ corresponds to rational entities and ‘�’ corresponds to recurrent entities.
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AOC in Complex Systems Modeling Degree of Coupling, r

Satisfaction Rate

‘◦’ corresponds to rational entities and ‘�’ corresponds to recurrent entities.
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AOC in Complex Systems Modeling Degree of Coupling, r

Combined Measure of Entity Foraging Depth and
Satisfaction Rate

‘◦’ corresponds to rational entities and ‘�’ corresponds to recurrent entities.
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AOC in Complex Systems Modeling Mixed Entity Population

Number of Entities in Each Group = 5, 000

Cumulative distribution of foraging depth.
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AOC in Complex Systems Modeling Mixed Entity Population

Cumulative distribution of foraging depth in accessing domains.
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AOC in Complex Systems Modeling Mixed Entity Population

Distribution of link-click-frequency.
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AOC in Complex Systems Modeling Satisfaction vs. Unsatisfaction

Difference in Foraging-Depth Distributions

Cumulative distribution of foraging depth with recurrent entities. r=0.7. ‘◦’
corresponds to unsatisfied entities and ‘�’ corresponds to satisfied entities.
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AOC in Complex Systems Modeling Satisfaction vs. Unsatisfaction

Cumulative distribution of foraging depth with rational entities. r=0.7. ‘◦’
corresponds to unsatisfied entities and ‘�’ corresponds to satisfied entities.
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AOC in Complex Systems Modeling Satisfaction vs. Unsatisfaction

Satisfaction Rate
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AOC in Complex Systems Modeling Satisfaction vs. Unsatisfaction

Average Steps in Accessing Domains
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AOC in Complex Systems Modeling Summary

Remarks on Regularity Characterization

� Our goal is to characterize the underlying user behavior from the
obtained data.

� We have shown a white-box, AOC model that takes into account
the interest profiles, motivational support, and navigation
strategies of users.

� We can experimentally obtain strong regularities in Web surfing
and link-click-frequency distributions.

� We can further examine the effects on emergent regularities after
certain aspects of the Web space or the foraging behavior are
changed.

� Implications: It is useful for us to develop and structure Web
contents, and at the same time, to analyze emergent user
behavioral patterns.
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AOC in Complex Systems Modeling Summary

Remarks on AOC by Prototyping

� It is commonly applied to uncover the working mechanism behind
an observed, complex phenomenon or system.

� It starts with a step of hypothesizing and formulating a
computational model of autonomous entities involved in the
system, based on our prior knowledge and observations.

� It makes a transformation from the hypothesized model to an
implemented prototype to characterize its natural counterpart.

� By observing the difference between the natural phenomenon or
system and the synthetic prototype, we will manually fine-tune the
prototype, especially the parameters in the behavior and
interactions of autonomous entities.

1. States, evaluation functions, goals, behaviors, and behavioral rules
of an entity can be changed from one prototype to the next.

2. The definition of the environment can also be changed from one
version to the next. Even the model can be modified completely.
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AOC in Complex Systems Modeling Summary

The AOC-by-Prototyping Approach

The trial-and-error process, i.e., iterative fine-tune and compare steps, is
manually performed.
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AOC in Optimization Optimization

Example: Telecommunication Network Design

� A telecommunication network connects base stations on different
positions together where the communication equipment, such as
host computers, concentrators, routers, and terminals, is located.

� Designing a telecommunication network is to find the most
efficient way to connect the base stations.

� This problem is sometimes called a minimum spanning tree
problem.
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AOC in Optimization Optimization

Formulation

Given a group of base stations, V = {1, 2, · · · , n}, and the cost, cij , for
connecting two stations i and j , the problem is actually to determine a graph
G = 〈V , E〉, where E = {〈i , j〉 | i , j ∈ V}:

min
∑n−1

i=1

∑n
j=2 cijxij ,

s.t.,
∑n−1

i=1

∑n
j=2 xij = n − 1,∑n

j=1 xij < di , i ∈ V ,

xij = 0 or 1, i , j ∈ V ,

where di is the upper bound of the number of links connected to base station
i , and

xij =

{
1, iflink〈i , j〉isselectedinaspanningtree,

0, otherwise.
(70)
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AOC in Optimization Optimization

Objectives

� Consider the goal being written as a function F (x) where
x = {x1, x2, · · · , xn}T is an n-dimensional vector representing the
parameters of function F . The optimal solution is represented by
F (x∗) such that

∀ x, F (x∗) ≤ F (x). (71)

The search for x∗ can be viewed as the minimization of function F
(Turning the sign in Equation 71 around makes the search for x ∗ a
maximization task) − global optimization
tasks [Torn and Zilinskas, 1989].

� To solve the minimum spanning tree problem by a
population-based algorithm, it is appropriate to encode the tree
structure within an autonomous entity.

� Possible autonomous behaviors include pruning one’s own tree or
exchanging a partial tree with another autonomous entity.
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AOC in Optimization Optimization

Challenges

� The landscape of the function to be optimized is unknown.
� There is usually no linear relationship between changes made to

the function variables and the corresponding change in the
function value.

� Search algorithms do not normally jump directly to the optimal
solution, but make incremental changes in small steps instead.

� A population-based search algorithm needs to maintain a
sufficient diversity during the whole course of the search so that
the search space is adequately sampled.
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AOC in Optimization Optimization

Related Work

� Many algorithms have been developed over the years to tackle the
challenging task of global optimization
[Horst and Pardalos, 1995, Horst and Tuy, 1990, Mockus, 1989].

� In the absence of prior knowledge about the search landscape,
stochastic methods, such as simulated annealing
[Kirkpatrick et al., 1983] and population-based incremental
learning [Baluja, 1994, Baluja and Caruana, 1995], have been
proven to be effective. They attempt to locate the optimal solution
by generating sampling points probabilistically.

� Methods inspired by nature that are equally successful include
evolutionary algorithms [Bäck et al., 1997], bacterial chemotaxis
[Müller et al., 2002], and differential evolution
[Storn and Price, 1997].
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AOC in Optimization EDO: An AOC-Based Method

� Objectives:
1. To tackle the task of optimizing multi-dimensional functions.
2. To learn the search landscape by group efforts and information

sharing (to facilitate the small step exploration);
3. To maintain a high population diversity;
4. To automatically adjust search step sizes.

� Principle: Diffusion in nature and the successful application of
the diffusion models to image segmentation have inspired the
evolutionary diffusion optimization (EDO) algorithm.
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AOC in Optimization The EDO Model

The EDO Algorithm I

while (the number of entities > 0) and (the number of iterations <
limit) do

Evaluate an entity;
if the entity performs better than its parent then

Get positive feedback;
Reproduce;
Its parent becomes inactive;

else
Get negative feedback;
Diffuse;
Age;

end if
end while

Procedure Diffuse
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AOC in Optimization The EDO Model

The EDO Algorithm II

if rand() > Prand move then
Random-move;

else
for each variable do

Select its step direction and size;
end for

end if

Procedure Reproduce
quota← f (fitness);
Create a new probability matrix;
for each offspring do

Copy variables and point to the new probability matrix;
Diffuse;

end for
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AOC in Optimization The EDO Model

The EDO Algorithm III

Procedure Age
age← age +1;
if (its fitness < its parent’s fitness × threshold) or
((age > lifespan) and (its fitness < the average value)) then

Remove;
end if
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AOC in Optimization The EDO Model

Diffusion

A diffusion behavior is an operation through which an entity modifies
its object vector, which is a set of values corresponding to the variables
of the function to be optimized.

V = {v1, v2, . . . , vn}, ∀ i , vi = [LB, UB], (72)

where LB and UB are the lower and upper bounds, respectively. All
function variables can take values within these bounds.
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AOC in Optimization The EDO Model

Types of Diffusion Behavior

� Rational-move chooses the number of steps to take, according to
a probability matrix. The actual amount of change is the product of
the current step size and the number of steps chosen:

∀ i , vi = vi + δvi ·∆, (73)

δvi = min{k | rand() <

k∑
j=−y

pi ,j , k ≤ y}, (74)

where vi is the i th function variable, δvi is the number of steps to
be taken, ∆ is the step size, y is the maximum number of
allowable steps towards either end of the bounds in the search
space, and pi ,j is the probability of vi making j step(s).
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AOC in Optimization The EDO Model

Types of Diffusion Behavior

� Random-move is performed with an increasing probability:

Prm = exp
[
− Θ− a

α

]
, (75)

where α is a scaling factor that decides the degree to which the
random-move is to be exercised, Θ is the maximum lifespan of an entity,
and a is the age of an entity.

∀ i , vi = vi + rand() · (r<l> − vi), (76)

l = min{k | rand() <

k∑
j=1

bj , k ≤ 3}, (77)

r = {LB, vi , UB}, ∀ j , sj = 1/3, (78)

where r is the set of boundaries between which a new value will be
chosen for object variable vi , and s is the set of probabilities for choosing
the entries in r .
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AOC in Optimization The EDO Model

Reproduction

� At the end of an iteration in EDO, the fitness values of all active
entities are compared with those of their parents.

� All entities with higher fitness values will perform reproduction.
� Fitness, f , measures an entity’s degree of success in the course of

the search for the optimal solution. It is also used as a basis to
determine various primitive behaviors.

� For simplicity, the objective function value is used as fitness in
EDO if the task is minimization (The reciprocal of the function
value can be used as fitness if EDO is used in a maximization
task).
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AOC in Optimization The EDO Model

Reproduction Quota

� The number of offspring entities to be reproduced, i.e., quota q, is
governed by the entity’s fitness and two system-wide parameters:
maximum offspring, Ω, and maximum population size, Π.

� Two rules are applied in succession:
� Differentiation Rule: An entity is given the full quota to reproduce,

only if its fitness is significantly above the population average and
will gradually decrease as the fitness decreases.
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AOC in Optimization The EDO Model

Therefore, the quota for an entity e having fitness f is:

qx =

⎧⎪⎨
⎪⎩

Ω, if fe
f
≤ ω1,

Ω− 1, if ω1 < fe
f
≤ ω2,

Ω− 2, otherwise,

(79)

where f is the population average fitness, and ω1 and ω2 are the
intervals in the step function.
Population Size Rule: The reproduction quota is subjected to a
further restriction to avoid overcrowding:

qx = �qx ∗ (Π− Σ)

Π
�, (80)

where Σ is the size of the entity population, and Π is the maximum
population size.
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AOC in Optimization The EDO Model

Rejuvenation

� An inactive entity will be allowed to perform a primitive behavior to
spawn new offspring if the following two conditions are satisfied:

� All its offspring entities are dead.
� Its fitness is better than the population average.

� Main idea: An inactive entity has been receiving positive or
negative reinforcement signals from its offspring , its probability
matrix contains the latest information regarding the neighborhood
landscape. It would be a waste if this potentially useful information
is discarded.

� A rejuvenated parent will be given the full quota, Ω, and then
subjected to the population size rule (Equation 80) to reproduce
its offspring.
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AOC in Optimization The EDO Model

Aging

� EDO keeps track of the unproductive moves throughout the
search.

� The age, a, of an entity in EDO is the number of iterations for
which this entity has survived since its birth.

� Once an entity becomes a parent, the age does not need to be
updated any more.

� All entities in EDO will only be allowed to perform search for a
certain number of iterations, because we do not want to have too
many non-contributing entities in the system.

� The global lifespan information, Θ, is the maximum number of
allowable iterations for which any entity can survive.
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AOC in Optimization The EDO Model

� Extended life: The lifespan limit of an entity is extended by one
iteration when it expires, if its fitness is higher than the population
average.

� Sudden death: An unsuccessful entity will be eliminated, if its
fitness is less than a certain percentage of the fitness of its parent.
The threshold is set at 80% in the experiments reported later.
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AOC in Optimization The EDO Model

Feedback

� Each entity in EDO performs an information-passing behavior to
pass information back to its parent, if it has moved to a better or
worse position.

� This information allows the parent to update its probability matrix,
which is shared among its offspring.

� A probability matrix, p, contains the likelihood estimate of
success with respect to the direction of a move.

� Note that it is an n×m matrix representing n function variables to
be optimized and m possible steps (including y = (m − 1)/2 steps
towards the upper bound and the lower bound, respectively, and
the current position).
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AOC in Optimization The EDO Model

A global step size parameter, ∆, governs the unit of change in all
function variables. The product of ∆ and the number of steps becomes
the final modification to affect on V. Formally,

p = {p1, p2, . . . , pn}, (81)

pi = {pi ,−y , . . . , pi ,0, . . . , pi ,y}, 0 ≤ pi ,j ≤ 1, (82)

∀ i ,
y∑

j=−y

pi ,j = 1. (83)
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AOC in Optimization The EDO Model

Information Sharing I

All offspring entities of the same parent use the same probability
matrix − note that a trend is a kind of local information, it will become
irrelevant to places further away from a parent.

� Positive feedback: To bias the future moves of an entity’s siblings
to its own successful move (i.e., with a gain in fitness), we update
the probabilities in the parent’s probability matrix (which
correspond to the changes in the successful entity’s object vector):

pi ,j =
pi ,j + β

1 + β
, (84)

where pi ,j is the probability that relates to the ith function variable
and jth step size, and β is the learning rate.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 236 / 297



AOC in Optimization The EDO Model

Information Sharing II

� Negative feedback: To steer the siblings of an entity away from a
non-optimal area in the search space, an entity will update the
probability matrix of its parent after each unsuccessful move:

pi ,j = pi ,j · (1− β), (85)

where β is the same learning rate as used in positive feedback.
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AOC in Optimization The EDO Model

EDO Summary

� An entity, e, in the population, P, maintained by EDO is a tuple
(V, p, a, f ), where

� V is the object vector,
� p is the probability matrix,
� a and f are scalars representing the age and fitness of entity e,

respectively.

� While V contains the values of the potential solution, p, a, and f
are crucial to the search process of EDO.
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AOC in Optimization Benchmark Optimization Problems

Four benchmark functions are chosen to test the EDO algorithm
[Yao and Liu, 1997, Yao et al., 1999]. f1 and f2 are unimodal functions,
while f3 and f4 are multimodal functions:

f1(x) =
n∑

i=1

x2
i , (86)

f2(x) =
n∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

, (87)

f3(x) =
n∑

i=1

[x2
i − 10cos(2πxi) + 10)], (88)

f4(x) =

⎡
⎣ 1

500
+

25∑
j=1

1

j +
∑2

i=1(xi − aij)6

⎤
⎦
−1

, (89)

where

aij =

( −32 −16 0 16 32 −32 · · · 0 16 32
−32 −32 −32 −32 −32 −16 · · · 32 32 32

)
(90)
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AOC in Optimization Performance of EDO

The best and average values for a solution to unimodal function f1. (a) basic
EDO; (b) adaptive step size; (c) random-move; (d) rejuvenation.
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AOC in Optimization Performance of EDO

(a) Combination of step size adaptation and solution rejuvenation; (b)
random-move and step size adaptation; (c) random-move and solution
rejuvenation; (d) all three strategies together.
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AOC in Optimization Performance of EDO

Basic EDO with More Features

Clustering around the Optimal Solution: The two-dimensional version of f1.
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AOC in Optimization Performance of EDO

The multimodal function f4.
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AOC in Optimization Performance of EDO

Entity distribution in the search space for two-dimensional unimodal function
f1 (iteration =0-50).
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AOC in Optimization Performance of EDO

Entity distribution in the search space for two-dimensional unimodal function
f1 (iteration =60-110). As the search progresses towards the end, the number
of entities remaining around the suboptimal solutions decreases.
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AOC in Optimization Performance of EDO

Entity distribution in the search space for multimodal function f4
(iteration=0-90).
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AOC in Optimization Performance of EDO

Entity distribution in the search space for multimodal function f4
(iteration=110-200).
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AOC in Optimization Performance of EDO

Observations

� Adaptive step size achieves the best solution followed by
random-move, if the function value is chosen as the evaluation
criterion for the features.

� When more than one feature are considered, all three features
together have a slight advantage over adaptive step size alone.

� Step size adaptation helps exploit existing solutions, while
random-move behavior is useful for exploring new areas in the
solution space.

� Entities will tend to spread randomly across the search space. But
once a suboptimal solution is found, they will be reluctant to leave
there.

� The random-move behavior then helps push the entities out of the
suboptimal region.
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AOC in Optimization Summary

� Evolutionary diffusion optimization (EDO) usually involves a large
number of distributed autonomous entities.

� Through local and nonlinear interactions among entities, the
behavioral results of entities will be self-aggregated and
consequently certain complex patterns or behaviors emerge.

� EDO utilizes this mechanism and relates the resulting emergent
complex patterns or behaviors to the solutions to an optimization
problem at hand.

� EDO is well suited for solving the type of optimization problems
that are characterized as being large-scale, highly distributed.
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AOC in Optimization Summary

Remarks on EDO Algorithm

� Each entity is equipped with the primitive behaviors to diffuse to its
local neighborhood and reproduce.

� It can also choose to perform random-move behaviors.
� Decisions on the course of behaviors are made by an entity based

on the common information shared with its parent and its siblings.
� The common information contains the likelihood estimates of

finding a good solution in a certain direction, and is updated by
every member of the family – reinforcing positively the good
moves and negatively the bad moves.

� EDO also has a mechanism to adapt its step size during the
search.
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AOC in Optimization Summary

Remarks on EDO Performance

� EDO performance shows that it can maintain a high diversity in
the population of entities throughout the search – a crucial feature
to avoid premature convergence.

� Our experiments reveal that EDO is able to automatically maintain
a good balance between exploration and exploitation − through
probabilistically performing random-move behaviors that help
maintain the population diversity.

� At the same time, the ability to automatically adapt the search
step size has been proven to be very useful.
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AOC in Optimization Summary

Remarks on AOC by Self-Discovery

� The process of trial-and-error in AOC-by-self-discovery is
automated by having one autonomous entity to control or
fine-tune the parameters of other autonomous entities.

� Systems parameters are self-adapted according to some
performance feedback.

� The EDO example described shows that AOC-by-self-discovery is
a viable approach.
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AOC in Optimization Summary

The AOC-by-Self-Discovery Approach
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Challenges and Opportunities Lessons Learned

The Indiscernible Ingredients of AOC

� A population of autonomous entities;
� A behavior model for the autonomous entities;
� A model of local interactions between entities and their

environment;
� A definition of roles and responsibilities of the environment;
� A set of criteria for measuring and self-organizing the nonlinear

behavior of AOC problem solving.
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Challenges and Opportunities Lessons Learned

Autonomous Behavior is Local

Primitive behaviors based on some limited amount of information
observable from the limited range surroundings are sufficient for
solving a global constraint problem.
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Challenges and Opportunities Lessons Learned

Primitive Behavior is Neighbor-Driven

Controlling the direction of entity propagation can help nonlinearly
amplify a desirable pixel labeling behavior and produce more entities
of this locally successful entity type. The behavior of an autonomous
entity does not need to be driven by some global information in order
to produce a desirable global behavior.
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Challenges and Opportunities Lessons Learned

Autonomous Behavior is Self-Directed

The Web foraging entities have two measures associated with them:
motivational support and interest profile. The values of these two
measures directly affect how an entity picks its next move.
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Challenges and Opportunities Lessons Learned

Stochastic Behavior is Beneficial

� All the AOC algorithms described in this book share a common
feature – the presence of stochastic behavior.

� For example, the ERE model has a random-move behavior, which
randomly chooses a new position (for n-queen problems) or a new
variable value (for SAT problems).

� Similarly, the entity in EDO has a choice to select a random-move
behavior when it has not been making progress for some time.

� Stochastic behaviors enable an autonomous entity to get out of
local minima. As a result, an AOC algorithm will have a better
chance of locating a potentially better solution in the search space.
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Challenges and Opportunities Lessons Learned

Some Behaviors can be Self-Reinforcing

� A search algorithm must find an appropriate step size in order to
perform the search efficiently. However, a one-for-all step size is
bound to err as the search landscape varies drastically among
different sites.

� The step size adaptation behavior is, therefore, implemented and
it considers the degree of success in locating a locally better
solution as an indication of whether a bigger or smaller step size is
required.

� By including such a behavior adaptation strategy, one can take a
lot of guess work away from the trial-and-error process that is
normally required in an AOC-by-prototyping method.
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Challenges and Opportunities Lessons Learned

Separating the Good from the Poor Solutions is
Required

� Population explosion is probably one of the most troublesome
problems in an AOC algorithm.

� While better solutions are always welcome and seen as stepping
stones to an even better solution, it is not advisable to keep
replicating them indiscriminately.
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Challenges and Opportunities Lessons Learned

Exchange of Information is Important but can be
Minimal

� While information sharing is crucial to the success of the EDO
algorithm, the amount of information flow can be minimal. In the
presence of spatially distributed computing resources, this feature
becomes very important.

� Autonomous entities in EDO limit their communications indirectly
to those that share the same starting point (or parent). While the
parent uses all the information fed by its offspring entities to bias
its choice of behavior, the entities communicate with their
respective parent to obtain the current best solution.

� In other words, all the autonomous entities in the search space
are affecting each other indirectly.
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Challenges and Opportunities Lessons Learned

Self-Organization is the Key to Success

� The centerpiece of an AOC algorithm is the notion of
self-organization.

� When autonomous entities with self-directed behaviors are
allowed to aggregate and react to the information and stimulation
of other autonomous entities, a desired global behavior emerges
as a result.

� The success in building a model with such an emergent behavior
helps researchers explain Web surfing behavior. Similar complex
systems modeling methods can be adopted in other studies, such
as stock investor behavior or car driving behavior analysis.
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Challenges and Opportunities Theoretical Challenges

� New approaches to systems dynamics and performance
measurements are particularly needed so that clearer guidelines
can be developed to help practitioners gain better insights into
AOC, and AOC-by-self-discovery in particular.

� The measurements of emergence, evolvability, self-organization,
tractability, and scalability in AOC are useful for tracking the
progress of AOC.

� Theories on the formation of roles and social structures in a
community of autonomous entities would expand the capability of
an AOC system.

� Benchmark AOC problems should be identified for the purpose of
comparing with other multi-entity paradigms.

J. Liu (Hong Kong Baptist University) Presentation Slides for the AOC Book May 10, 2005 263 / 297



Challenges and Opportunities Practical Challenges

� To foster and encourage the adoption of AOC for problem solving
and complex systems modeling, more real-world applications as
well as the characterization of potential areas need to be
identified.

� More guidelines and tools for developing AOC are needed so that
people can readily benefit from this new computing paradigm.

� The requirements for simulation environments, languages, and
data structures in AOC need to be studied so that a more efficient
implementation of AOC can result.

� Other implementation issues that need to be addressed include:
architecture, visualization of activities, and the design of local and
global nonlinear interaction rules.
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Challenges and Opportunities Practical Challenges

Hardware and Software Environments

� AOC usually involves a large number of autonomous entities and
static or dynamical environments.

� Implementing an AOC system in a single processor machine
requires the support of virtual parallelism.

� Modern operating systems and programming languages support
multi-thread technique. This allows slicing up CPU cycles and
allocates them to the individual processes that represent
components in the system.
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Challenges and Opportunities Practical Challenges

� When multiple processors are available, individual components
can be allocated to different processors on the same machine or
across the network of processors with the support of some
facilities, such as parallel virtual machine
(PVM) [Geist et al., 1994, PVM, 1989] and message passing
interface (MPI) [Snir et al., 1996, MPI, 1996]. However, it requires
a central control program to coordinate task allocation and result
consolidation.

� This makes parallel implementation of, for example, genetic
algorithms possible without requiring expensive parallel machines.

� With peer-to-peer and grid computing networks, mobile entities
can be sent to run on any machines over the Internet, provided
that permission is granted by the host. Running simulated
evolution in this way has been attempted [Smith and Taylor, 1998].
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Challenges and Opportunities Practical Challenges

Update Schedule

� An individual entity changes its state at each step based on its
current state and its neighboring environment.

� In a synchronous update scenario, the current state of all
individuals is frozen to allow all individuals to obtain state
information and change states, if appropriate.

� In a parallel implementation, synchronization may become an
overhead too big to handle.

� Alternatively, asynchronous updates that allow processes on each
processor to proceed independently may be implemented.

� The choice of an update schedule and the choice of a hardware
platform are related. If a multi-process hardware environment is
chosen, synchronous updates would slow the simulation down as
all processes have to start and stop at the same time.
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Challenges and Opportunities Practical Challenges

Management Services

� With the vast number of autonomous entities in an AOC system,
AOC needs to keep track of the creation and deletion of objects.

� Moreover, a messaging mechanism is needed to facilitate
message passing between objects.

� A central clock is also required to help the autonomous entities
manage their state updates, no matter if it is synchronous or
asynchronous.

� Some centralized whiteboards may also be needed if the
autonomous entities are to share information in an implicit way
and to contain a global view of the system’s status.

� The whiteboards may also be used to simulate a dynamical
environment in such systems as the ant
system [Dorigo et al., 1996].
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Challenges and Opportunities Practical Challenges

Visualization

� Visualization is a good way for people running simulations to ‘see’
what is going on with the experiment.

� Items of interest that are related to individual autonomous entities
include actual movements, states, actions taken, fitness, ages,
etc.

� Some global information (such as population size, best fitness,
and average fitness) and some progress measurements (such as
measurements of emergence, evolvability, diversity, and
convergence) are also of interest to modelers.

� The visual display of such information will be of tremendous help
to modelers to obtain a quick view of the system.
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Summary

� We have presented a new computing paradigm, called autonomy
oriented computing (AOC), based on the notions of autonomy and
self-organization in entities.

� AOC is intended to meet the demands of real-world computing
that is naturally embodied in large-scale, highly distributed, locally
interacting entities, as in sensor networks, grid computing, and
amorphous computing.

� Nevertheless, as we have demonstrated through examples, AOC
is also applicable to tackling conventional computing problems.
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Summary

Three Approaches

1. AOC-by-fabrication: some more or less known complex systems
phenomena are abstracted and replicated in problem solving or
system modeling.

2. AOC-by-prototyping: a trial-and-error approach to finding
explanations to some complex behavior observations via
autonomy oriented systems prototyping.

3. AOC-by-self-discovery: an autonomous problem solving approach
that can fine-tune its own settings to suit the problem at hand.
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