Face Biometric: Algorithms,

 Performance \& Applications

 Performance \& Applications}

Stan Z. Li

Center for Biometrics and Security Research (CBSR) \&
National Lab of Pattern Recognition (NLPR)
Institute of Automation, Chinese Academy of Sciences

Outline

- Introduction
- Subspace Analysis
- Linear Methods
- Nonlinear Methods
- Face Grand Challenges from Subspace Viewpoint
- Face Analysis Methods
- Face Detection
- Face Alignment
- Face Recognition
- Face Recognition Using Near Infrared Images
- Applications

Face Recognition Process

Face Detection
Face Tracking
Face Alignment
Face Recognition

History (60-70's):

Geometric Feature Based Approach

Eg. Kanade 1972

- In traditional AJ-CV framework
- Image features pre-specified
- Features=\{type, locations, distances\}

Table 1: The 30 -dimensional feature vector.

History (90 's -):

Learning-Based, Subspace Analysis Approach

Linear Subspace Methods: Eigenface (PCA) and Others

- Face Representation: Kirby \& Sirovich. 1990
- Face Recognition: Turk \& Pentland. 1991.

Different from the AJ-CV approach

- Example-based
- Features Learned
- Dimension reduction
- Linear mapping from high-dim to low-dim spaces
- Nonlinear Methods
- (More contemporary work)

1990s -2004

- Hardware:
- Visible light imaging
- Algorithms:

Appearance Based + Statistical Learning

- Local Features + Little Learning

2002: EyeCU Systen ait MSR Techrest

2005: AuthenMetric System

- Illumination I nvariant
\lrcorner Accurate and Fast
- Real Applications
- Passport Control at China-Hong Kong/Macau Boarders
- Access-control in Many Places

Algorithms

Subspace Modeling Dimension Reduction Feature Extraction

Eg: I mages of size 64×64
Dimensionality of image space: $64 \times 64=4096$ (pixels)

- Pixel values in $\{0, \ldots, 255\}$
$-256^{\wedge} 4096>10^{\wedge} 9864$ possible configurations in 4096-dim hypercube
- Face pattern living in low dim subspace

Dimension reduction (features = projected coordinates)

PCA, VQ, NMF, and LNMF

$$
\mathrm{X} \approx \mathrm{BH}
$$

Method	Constraints
PCA	b orthonormal vectors
VQ	h unary vectors
ICA	h independent
NMF	b,h non-negative vectors
LNMF	b,h non-negative $+h$ sparse \rightarrow b reallypart-based

PCA Representation

Basis vectors $=$ Principal eigenfaces

- Face as linear combination of eigenfaces

Independent Component Analysis

$$
X \approx B H, \quad X=\left(x_{1}, \ldots, x_{N}\right), H=\left(h_{1}, \ldots, h_{N}\right)
$$

H components as independent as possible

Non-negative Matrix Factorization

- Papers:

Lee and Seung, Nature , 1999

- Lee and Seung, N/PS, 2001.
- Non-negative Matrix Factorization $\mathrm{X} \approx \mathrm{BH}$ $\min D\left(X|\mid B H)\right.$, s.t. $B, H>=0$ and $\sum_{i} b_{i j}$ for all j

Basis Components learned by diffierent methods

NMF

PCA

Problems with NMF

NMF Results Learned From:

Lee-Seung's Data
ORL Data

Learned components not really localized, part-based Face recognition not very good

Local Non-negative Matrix Factorization

Additional constraints imposed on NMF
for spatially localized, part-based representation

Comparative results learned from ORL data:

LNMF

NMF

PCA

Nonlinear Subspace Analysis

Face Detection and Recognition - From Manifold Viewpoint

Recognition

Challenges in Face Recognition

Complexity of nonlinear face manifolds
Problem in Generalizing

- Limited Training Data

When lighting changes

- When pose changes
- Daily changes and aging
- When Camera property change

Euclidean Geometry I nappropriate in image space

Scaled Faces

in PCA Subspace

Translated Faces

in PCA Subspace

Manifolds are Folding and Interweaving

PCA Subspace of "Re-Lighted" Faces

Subspaces in Detection and Recognition

Detection

Recognition

Non-Euclidean Geometry

Euclidean Geometry
Inappropriate

- Need to model
manifolds in
Non-Euclidean
Space
- Geodesic distance

Separability in I mage and Feature Spaces

\lrcorner Individual faces Separable in image space

- Complex, but separable

Difficult to separate in feature space
Overlapping in feature space due to information loss.

Dim

Feature Space

Towards Accurate Face Recognition

Rid of Extrinsic Variations, and Use only Intrinsic Info

- Option 1: Face Normalization
- Geometric \& Photometric Alignment
- Option 2: Special Purpose Imaging System

Near Infrared Imaging
\square Others

- Make a Powerful Classifier
- Able to deal with nonlinear variations
- Framework: Local Features + Boosting Learning

Face Detection

Face Detection: Approach

\lrcorner Scan the image with subwindows of varying size and location
\lrcorner Classify a subwindow x into face/nonface

- Need a "strong classifier" for accurate classification
」 Post-processing: Merge multiple detects

State-of-the-Art Methods: Local Features + Boosting

」 Viola \& J ones, 2001

- Haar Features + AdaBoost + Cascade
\lrcorner Schneiderman \& Kanade, 2000
- Wavelet Histograms
- Li, et al, 2002
- Extended Haar Features + FloatBoost + Pyramid

」 Haizhou Ai, et al, 2003-2005

- Omni-view face detection, Haar feature + Boosting + More advanced architecture

AdaBoost Method (Viola \& Jones)

Simple Haar features

 (Viola \& J ones)

3 rectangular features types:

- two-rectangle feature type (horizontal/vertical)
- three-rectangle feature type
- four-rectangle feature type

These rectangular features, as opposed to more expressive steerable fillters, can be computed very efficiently using integral images.

Using 24×24 windows $\rightarrow 49,396$ features.

Integral I mages

AdaBoost Learning

- Proposed by Freund et al 1997, 1998

Task: Given $\left\{\left(x_{i}, y_{i}\right)\right\}$, learns $H_{\mu}(x)$ so that $y_{i}=\operatorname{sign}\left(H_{M}(x)\right)$
Learns and combines a sequence of weak classifiers $h_{m}(x)$ into a strong classifier

$$
H_{M}(x)=\sum_{m=1}^{M} \alpha_{m} h_{m}(x)
$$

$h_{m}(x)$ are learned in stages to minimize error bound (see later)

$$
J\left(H_{M}(x)\right)=\sum_{i} \mathrm{e}^{-y_{i} H_{M}\left(x_{i}\right)}
$$

Associate $\left(x_{i}, y_{i}\right)$ with weight w_{j} and reweight after each iteration (see formula later)

Weak Classifiers

\lrcorner One WC for a scalar Haar feature

- WC outputs face/nonface by comparing the scalar value with a threshold
- Best threshold obtained by examining the weighted histogram

Learning Weak Classifiers Based on Weighted Histogram

Best Features Learned

\lrcorner First features selected by AdaBoost are meaningful and have high dliscriminative power
By varying the threshold of the final classifier one can construct a two-feature classifier which has a detection rate of 1 and a false positive rate of 0,4 .

Speed-up through Cascade

- Simple, boosted classifiers can reject many of negative sub-windows while detecting all positive instances.
- Series of such simple classifiers can achieve good detection performance while eliminating the need for further processing of negative sub-windows.

All Sub-windows

> Reject Sub-window

Face Alignment

I Input:

- Face detection/tracking output (location, scale, and pose)
- Output:
- Accurate localization of facial outline and components
- Purpose:
- For accurate facial feature extraction

Active Shape Models (ASM)

ـ Developed by Cootes, Taylor, et all,

- The solution space is constrained by PDM, namely the global shape space.
- Local appearance models derived at the landmarks converge to the local image evidence.

Formulation of ASM

Global Shape Model: $S=\bar{S}+U s$

- Local Appearance Models:

$$
(x, y)=\underset{(x, y) \in N\left(x_{i}^{n}, y_{i}^{n}\right)}{\arg \min }\left\|g_{i}(x, y)-\bar{g}_{i}\right\|_{\Sigma_{i}^{q}}^{2}
$$

Where \bar{g}_{i} is the average profile around the j-th landmark, and Σ_{i}^{q} is the covariance matrix of the sample profilles for the i-th landmark.

Formulation of ASM

In each iteration, $S_{\text {Im }}$ is obtained from the refinement of the local appearance models, the solution shape s is derived by maximizing the likelihood probability:

$$
s=\arg \max _{s} p\left(S_{l m} \mid s\right)=\arg \min _{s} \operatorname{Eng}\left(S_{l m} ; s\right)
$$

where

$$
\operatorname{Eng}\left(S_{l m} ; s\right)=\lambda\left\|S_{l m}-S_{l m}^{\prime}\right\|^{2}+\left\|s-s_{l m}\right\|_{\Lambda}^{2}
$$

Active Appearance Models(AAM)

\lrcorner Cootes proposed and developed the Active Appearance Model (AAM)

- Built based on PDM.
- Shape and texture are combined for the appearance modeling.
- Alignment is guided by minimizing the texture difference between model and ground truth.

Formulation of AAM

Shape Model: $\quad S=\bar{S}+$ Us
\lrcorner Texture Model: $\quad T=\bar{T}+V t$

- Appearance Model:

$$
A=\binom{\Lambda s}{t} \quad A=W a
$$

The search strategies are based on the linear regression assumptions:

$$
\delta a=A_{a} \delta T \quad \delta p=A_{p} \delta T
$$

AAM/DAM

Framework

- Local Features

Eg: Haar, Gabor, LBP, Ordinal, etc

- Having good properties
- Form a High-Dím Space
\lrcorner Intra vs Extra Representation for Multi-class Problem
- Statistical Learning
- 2-Class Classification
- Training on pos and neg samples
- Nonlinear classifier: Eg AdaBoos, SVM
- Learning for
- Dim reduction (feature selction)

Classifier construction

Working in Good Feature Space

- Map input image to a higher dim local feature space
- Learning to select good features

Intra vs Extra Representation: N Class \rightarrow Two Class

(Baback Moghaddam)

N persons

Compare 2 templates

Intro- and Extra- personal Variations in Image Space

(Baback Moghaddam)

Differences of Ordinal Maps

As Result of AdaBoost Learning

Effective features are selected
\lrcorner A weak classififer is constructed for each feature
\lrcorner The weak classififers are combined into a strong one
\lrcorner Fusion at both feature and decision levels

Face Recognition Using NIR I mages

I maging Models

\lrcorner Face is a 3D

- Physical I maging Model
$I(x, y)=\rho(x, y) n^{T}(x, y) s$
(Lambertian Model)

$$
\frac{2}{2}=\begin{gathered}
2 \\
-2
\end{gathered}
$$

I Imaging Factors

- Shape $n(x, y)$ - intrinsic factor
- Albedo $\rho(x, y)$ - intrinsic factor
- Illumination $\mathrm{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right)$ - extrinsic factor

NIR imaging Hardware

$$
\begin{aligned}
I(x, y) & =\rho(x, y) n^{T}(x, y) s \quad \text { with } \mathrm{s}=(0,0,1) \\
& =\rho(x, y) n_{z}(x, y)
\end{aligned}
$$

VL vs, NIR Images Under Various Lighting

Advantages

\lrcorner Working in invisible spectrum. VL can be filltered out
Invisible to human eyes: non-intrusive way of active lighting

Visible Light vs, NIR Images

Correlation Coefficients

Active NIR I mage

$$
\begin{aligned}
I(x, y)= & \rho(x, y) n^{T}(x, y) s \quad \text { with } \mathrm{s}=(0,0,1) \\
= & \rho(x, y) n_{z}(x, y) \\
& I(x, y) \propto \kappa \rho(x, y) \cos \theta(x, y) \\
& I(x, y)=\kappa \rho(x, y) n_{z}(x, y)
\end{aligned}
$$

\lrcorner It is subject to an unknown constant k, or a Monotonic Transform, only

- DOF overcome by use of LBP

Local Binary Pattern (LBP) (University of Oulu)

Local Window
Thresholded
Weights

18	15	8
21	18	6
27	23	22

1	0	0
1		0
1	1	1

8	4	2
16		1
32	64	128

LBP String $=(0001111)$
LBP Code $=0+0+0+8+16+32+64+128=248$
\lrcorner LBP code of NIR images are invariant to environmental illumination changes

Classifier

\lrcorner LBP Features+ Boosting Learning

- LBP Feature Selection
- Classifier Learning

Performance

AuthenMetric System

- Assumptions
- For Cooperative Applications
- Applications: Access control, E-Passport, ATM, etc
- Features
- Hardware: Active NIR image capture device to minimizes influence of environmental lighting
- Recognition Enciine: Classifier learned using LBP features + AdaBoost
- Live Deno

Face Biometric Applications

Consumer products: Eg. Face Logon
Enterprise: Eg. Time attendance and access control

- Governmental

Self-Service Border-crossing (deployed)
\lrcorner ShenZhen - Hong Kong Boarder since June 2005
\lrcorner Zhuhai - Macau Boarder since April 2006

- Biometric E-Passport (on-goíng)

Biometric Border-Crossing: ShenZhen - HongKong

400,000 border-crossings every day
Two scenarios: Passengers \& Vehicle Drivers

- $100+$ gates deployed by now
- Two Modalities: Face \& Fingerprint
- 1,600,000 people enrolled
- Verification Speed: 6 sec / crossing
-35,000,000 crossings since J une 2005

