Face Biometric: Algorithms, Performance & Applications

Stan Z. Li

Center for Biometrics and Security Research (CBSR) & National Lab of Pattern Recognition (NLPR) Institute of Automation, Chinese Academy of Sciences

ASI-07, Hong Kong, 12 Jan, 2007

Face Recognition Process

- 1. Face Detection
- 2. Face Tracking
- 3. Face Alignment
- . Face Recognition

Subspace Modeling Dimension Reduction Feature Extraction

- Eg: Images of size 64x64
- Dimensionality of image space: 64x64=4096 (pixels)
- Pixel values in {0,...,255}
- 256^4096 > 10^9864 possible configurations in 4096-dim hypercube
- Face pattern living in low dim subspace
- Dimension reduction (features = projected coordinates)

PCA,	VQ, NMF, and LNMF	
	X ≈ BH	
Method	Constraints	
PCA	b orthonormal vectors	
VQ	h unary vectors	
ICA	h independent	
NMF	b,h non-negative vectors	
LNMF	b,h non-negative + h sparse	
	→ b <i>really</i> part-based	

Challenges in Face Recognition

- Complexity of nonlinear face manifolds
- Problem in Generalizing
 - Limited Training Data
 - When lighting changes
 - When pose changes
 - Daily changes and aging
 - When Camera property change
- Euclidean Geometry Inappropriate in image space

State-of-the-Art Methods: Local Features + Boosting

Viola & Jones, 2001

- Haar Features + AdaBoost + Cascade
- Schneiderman & Kanade, 2000
 - Wavelet Histograms
- Li, et al, 2002
 - Extended Haar Features + FloatBoost + Pyramid
- Haizhou Ai, et al, 2003-2005
 - Omni-view face detection, Haar feature + Boosting + More advanced architecture

AdaBoost Learning

- Proposed by Freund et al 1997, 1998
- Task: Given $\{(x_i, y_i)\}$, learns $H_M(x)$ so that $y_i = \text{sign}(H_M(x))$
- Learns and combines a sequence of weak classifiers h_m(x) into a strong classifier

$$H_{M}(x) = \sum_{m=1}^{M} \alpha_{m} h_{m}(x)$$

- $h_m(\mathbf{x})$ are learned in stages to minimize error bound (see later) $J(H_M(\mathbf{x})) = \sum_i e^{-y_i H_M(x_i)}$
- Associate (x_i, y_i) with weight w_i and reweight after each iteration (see formula later)

- One WC for a scalar Haar feature
- WC outputs face/nonface by comparing the scalar value with a threshold
- Best threshold obtained by examining the weighted histogram

Face Alignment

Input:

 Face detection/tracking output (location, scale, and pose)

• Output:

 Accurate localization of facial outline and components

Purpose:

• For accurate facial feature extraction

Active Shape Models (ASM)

- Developed by Cootes, Taylor, et al.
 - The solution space is constrained by PDM, namely the global shape space.
 - Local appearance models derived at the landmarks converge to the local image evidence.

Formulation of ASM

Global Shape Model: S = S + Us
 Local Appearance Models:

 $\overline{(x, y) = \min_{(x, y) \in N(x_i^n, y_i^n)} \|g_i(x, y) - g_i\|_{\Sigma_i^g}^2}$

Where g_i is the average profile around the i-th landmark, and Σ_i^g is the covariance matrix of the sample profiles for the i-th landmark.

In each iteration, S_{im} is obtained from the refinement of the local appearance models, the solution shape s is derived by maximizing the likelihood probability:

 $s = \arg \max p(S_{lm} | s) = \arg \min Eng(S_{lm}; s)$

where

 $Eng(S_{lm};s) = \lambda ||S_{lm} - S_{lm}||^2 + ||s - s_{lm}||^2_{\Lambda}$

Active Appearance Models(AAM)

- Cootes proposed and developed the Active Appearance Model (AAM)
 - Built based on PDM.
 - Shape and texture are combined for the appearance modeling.
 - Alignment is guided by minimizing the texture difference between model and ground truth.

As Result of AdaBoost Learning

- Effective features are selected
- A weak classifier is constructed for each feature
- The weak classifiers are combined into a strong one
- Fusion at both feature and decision levels

Advantages

- Working in invisible spectrum. VL can be filtered out
- Invisible to human eyes: non-intrusive way of active lighting

AuthenMetric System

Assumptions

- **For Cooperative Applications**
- Applications: Access control, E-Passport, ATM, etc
- Features
 - Hardware: Active NIR image capture device to minimizes influence of environmental lighting
 - <u>Recognition Engine</u>: Classifier learned using LBP features + AdaBoost

Live Demo

- Consumer products: Eg. Face Logon
- Enterprise: Eg. Time attendance and access control
- Governmental
 - Self-Service Border-crossing (deployed)
 ShenZhen Hong Kong Boarder since June 2005
 Zhuhai Macau Boarder since April 2006
 - Biometric E-Passport (on-going)

Fa	iceLogon	
Wind	lows Steve	
6	Jenny	
	2 Phang 2 Fn / · · · · · · · · · · · · · · · · · ·	
美用计算机	雅奈后,空可以远加城夷改体户。诸林到"拉制面切" 并来面"南户来户"。	. 888

Thank You

Contact: Prof. Stan Z. Li Center for Biometrics and Security Research Institute of Automation, Chinese Academy of Sciences szli@cbsr.ia.ac.cn