Biometric Recognition: Overview and Recent Advances

Anil K. Jain

Dept. of Computer Science and Engineering Michigan State University

http://biometrics.cse.msu.edu

Security Risks

Increased concerns/awareness at three levels

- National
 - Secure the borders
- Organizational/Enterprise
 - Identity and access management
- Personal
 - Preventing impersonation (ID theft)

Securing National Borders

The nineteen 9/11 terrorist-hijackers had a total of 63 valid driver licenses

Enterprise Security

Physical Access

Logical Access

Surveillance

Personal Data Stolen

May 22, 2006 (Reuters) -- Personal data on 26.5 million U.S. veterans was stolen. The data included names, Social Security numbers and dates of birth for the military veterans and some

SPOUSES. Computerworld

300% annual growth rate in ID theft IEEE Spectrum, July 2006

The Secret PIN!

Copyright © 2002 United Feature Syndicate, Inc.

Protecting Passwords

- 30% of customers write their PIN number on the back of ATM cards
- "A recent survey in London found 70% of those asked said that they would reveal their computer passwords for a bar of chocolate. Sweet!" Technology Review, March 2005, p. 78

Too Many Passwords!

Copyright 1996 Randy Glasbergen. www.glasbergen.com

"Sorry about the odor. I have all my passwords tattooed between my toes."

The most common pw is the word "password" (2002 NTA Monitor Password Survey)

© Scott Adams, Inc./Dist. by UFS, Inc.

"Fungible" Credentials

Two counterfeit driver's licenses for the same person. Both identities are fictitious A satellite image of the Topweed neighborhood. Note absence of apartment buildings

Source: Comm. of ACM, Dec. 2006

How Do I know Who You Are?

Surrogate representations of identity based on "what you know" (PINS, Passwords) or "what you have" (keys, cards) cannot be trusted

Biometric Recognition

Person recognition based on "who you are"

Recognition of a person by his body, then linking that body to an externally established "identity", is being adopted for identity management

Why Biometrics?

- Discourages fraud
- Enhances security
- Cannot be transferred, forgotten, lost or (easily) copied
- Eliminates repudiation claims
- Imparts convenience to users

Biometric Milestones

Courtesy: John D. Woodward, RAND corporation

Biometric Traits

New Biometric Traits?

Which Biometric is the Best?

- Universality (everyone should have this trait)
- Uniqueness (everyone has a different value)
- **Permanence** (should be invariant with time)
- **Collectability** (can be measured quantitatively)
- Performance (achievable recognition accuracy, resources required, operating environment)
- Acceptability (are people willing to accept it?)
- Circumvention (how easily can it be spoofed?)

Choice of a biometric trait is domain dependent

Biometric Applications

Forensic	Government	Business	
Corpse Identification	National ID Card E-passports	ATM Time/Attendance	
Criminal Investigation	Driver's License Voter Registration	Access Control Computer Login	
Parenthood Determination	Welfare Disbursement	Cellular Phone	
Missing Children	Border Crossing* US-VISIT program Guest Worker ID	E-commerce Internet Banking Smart Card	

* There are ~500 million border crossings/year in the U.S.

Live Scan Capture

Sensors based on optical, ultrasound, thermal, solid-state, multispectral technologies

Hong Kong Smart Identity Card

HK Smart ID Card

Templates of two thumbprints stored in the chip

- Security: prevent misuse of lost cards
- Convenience: e-Certificate
- Service: delivery of electronic government services
- Travel: Automated Passenger Clearance System

Brazilian Elections: Voting Machines

- Voting machines in 2008 will have fingerprint ID
- TSE (Tribunal Superior Eleitoral) has already purchased 25,000 new voting machines
- System will cover ~125 million Brazilian electors

http://idgnow.uol.com.br/seguranca/2006/08/30/idgnoticia.2006-08-29.2323285944/IDGNoticiaPrint_view

Disney World, Orlando

Throughput: 100K/day, 365 days/ year

Iris Recognition at Schiphol Airport (Netherlands)

Automatic border passage system:

- Iris image of the user is encoded on the chip in a smart card
- When user enters the country, his iris image is matched with template on the smart card
- Passengers from
 European Economic Area
 (EEA) are eligible to use
 the system

"In a list of the greatest scientific achievements over the past 50 years compiled by a panel of leading British scientists to mark Queen Elizabeth II's golden jubilee, the system at Schiphol was elected the innovation for the year 2002"

www.airport-technology.com/projects/schiphol

Hilton Waterfront Beach Resort

- Eliminates "buddy punching" (one employee clocks in for another)
- Tracks time and attendance for more than 330 employees
- Eliminates the need to carry a badge; employees can't lose or forget their hands, so it saves time and money

http://www.recognitionsystems.ingersollrand.com/news/pr.php?id=73

Iris on the Move

- Current commercial systems require:
 - close proximity of the sensor to the eye
 - significant cooperation from subjects
- Iris on the move
 - Subjects walk through a recognition portal at normal walking pace
 - Can identify up to 20 subjects per minute

http://www.sarnoff.com/products_services/government_solutions/homeland_security/iris.asp

Hype Cycle for Biometric Technologies¹

¹ Gartner Research Report, December 21, 2006, ID Number: G0014118

Hype Cycle for Biometric Technologies¹

	less than 2 years	2 to 5 years	5 to 10 years	more than 10 years
transformational				
high	Biometric Technologies for Preventing Multiple Enrollment Biometric Technologies for Time and Attendance			
moderate		Biometric Technologies for Border Control Biometric Technologies for Physical Access Control Systems Biometric Technologies for User Authentication to Networks Biometric Technologies for User Authentication to Portable Storage Devices	Biometric Technologies at Retail Point of Sale Biometric Technologies in Automated Teller Machines	
low		Biometric Technologies for Surveillance Biometric Technologies for User Authentication to Client Devices	Biometric Technologies in Identity Cards Biometric Technologies in Passports	

As of December 2006

¹ Gartner Research Report, December 21, 2006, ID Number: G0014118

Telltale Fingertips²

- With biometrics, how you type can allow websites to know who you are – or aren't
- Keystroke patterning was first employed by the military a century ago in its use of Morse code, which also allows senders to be identified by their typing rhythms

² Kathleen Kingsbury, "Telltale Fingertips", Time Bonus Section, page A10, January 2007

Customer pay by fingerprints; no need for cards/cash

Biometric Applications

Bank in Malawi uses fingerprint smart cards for microloans

Securing Wireless Devices

 AuthenTec has sold 10 million fingerprint sensors world-wide to provide secure authentication for mobile commerce and mobile banking

Biometric Market Growth

Biometric Recognition System

- False accept rate (FAR): Proportion of imposters accepted
- False reject rate (FRR): Proportion of genuine users rejected

Fingerprints

- Graphical flow like ridges present in human fingers; formation depends on the initial conditions of the embryonic development
- Different fingers have different ridge characteristics;
- Minute details are permanent
- Fingerprint evidence is acceptable in a court of law

Fingerprint on Palestinian lamp (400 A.D.)

Identical Twins
Representation

- Local ridge characteristics (minutiae): ridge ending and ridge bifurcation
- Singular points (core and delta): discontinuity in ridge orientation

Minutiae-based Matchers Find the number of corresponding minutiae in template and query

Match Scores

Match Score Distribution

ROC Curve

Challenges

- Invariant representation
- Segmentation
- Noisy data/Non-universality
- Robust matching
- Large Database
- Securing biometric system
- Protect user privacy

Representation

Variability in the facial image of a single person due to changes in pose, expression, lighting and glasses (large intraclass variability)

Identical twins (large interclass similarity)

Segmentation

Segmentation

Template Update

Image Deformation

Large intra-class variation

Alignment

Mayfield's fingerprints were mistakenly matched with those found on a bag at the bombing site in Spain

"State-of-the-art" Error Rates

	Test	Test Parameter	False Reject Rate	False Accept Rate
Fingerprint	FVC [2004]	Exaggerated distortion	2%	2%
	FpVTE [2003]	US govt. operational data	0.1%	1%
Face	FRVT [2002]	Varied lighting, outdoor/indoor	10%	1%
	FRGC [2006]	Time lapse, varied lighting/expression, outdoor/indoor	10%	0.1%
Iris	ITIRT [2005]	Indoor environment, multiple visits	0.99%	0.94%
Voice	NIST [2004]	Text independent, multi-lingual	5-10%	2-5%

Biometric System Attacks

Fake Biometrics

Research Directions

- Sensors
- Liveness detection
- Deformation Modeling
- Video Surveillance
- Image quality
- Individuality
- Multibiometrics
- Biometric cryptosystem

Touchless Fingerprint Sensor

Touchless 3D image

Courtesy: TBS North America, Inc.

Multispectral Fingerprint Imaging

Multiple wavelengths capture features at different depths (surface and subsurface) of the finger tissue

Multispectral Whole-Hand Imaging

Deformation-Based Spoof Detection

Live finger

http://www.cim.mcgill.ca/~vleves/homepage/

Gummy finger

Deformation Modeling

Lu and Jain, "Deformation Modeling for Robust 3D Face Matching," Proc. CVPR, June 2006.

Deformable Model

Examples of the deformable model with varying weights (α_i)

Video Surveillance

Face recognition in video

- Applications in covert surveillance system
- Video contains rich information (multiple frames) that can provide better face recognition performance
- Challenges
 - The same face in a video undergoes substantial variations in pose & illumination; frontal face recognition does not work
 - Raw videos frames in surveillance systems do not contain sufficient information for subject identification

Motivation

- 3D model reconstruction from video
 - Large pose & lighting variations can be compensated

Automatic Facial Landmark Detection

• 72 landmarks using Active Appearance Model (AAM) on a Video with 60 frames

Landmark detection without temporal coherency

Landmark detection with temporal coherency (estimated feature points at current frame are used as the initial state for the next frame)

SfM with Real Data

Example 2D images with feature points tracking

Reconstructed 3D model after texture mapping (from 60 images at about – 45° to +45° yaw)

Face Recognition

- 207 Subjects from FIA database are used
- FaceVACS from Cognitec is used to obtain the matching scores

Matching Results

- Six subjects in video (a) are not correctly matched with corresponding image in gallery (c)
- Using 3D face models (b), video frames are correctly matched

Example frames in the original video (Frontal views are not included)

Reconstructed 3D face model

gallery database

Quality Index = 0.96 False Minutiae = 0 Quality Index = 0.53 False Minutiae = 7 Quality Index = 0.04 False Minutiae = 27

Fingerprint Quality

• Partition the image into blocks and estimate local quality* (γ), $0 \le \gamma \le 1$

Note: Brighter pixels indicate better quality

* Y. Chen, S. Dass and A. Jain, "Fingerprint Quality Indices for Predicting Authentication Performance", *Proc. of AVBPA*, pp. 160-170, Rye Brook, NY, July 2005

Image Enhancement

Minutiae extraction before enhancement

Minutiae extraction after enhancement

Are Fingerprints Unique?

- "Two Like Fingerprints Would be Found Only Once Every 10⁴⁸ Years" Scientific American, 1911
- Given two fingerprints with m & n minutiae, what is the probability they will share q minutiae?

1. m=n=52, q=12PRC = 4.4 x 10⁻³ (Observed value = 3.5 x 10⁻³)

2.
$$m=n=52$$
, $q=26$
PRC = 3.4 x 10⁻¹

M = A/C=413 (NIST-4 database)

Multibiometrics

A. Ross, K. Nandakumar and A. K. Jain, Handbook of Multibiometrics, Springer, 2006

Match Score Fusion

- Score ranges are different; C: [-1,1], G: [0,100]
- Statistical distributions are different. In addition, they have continuous and discrete components
- Scores from the matchers are correlated

Match scores from the two face matchers in NIST-BSSR1 database

Likelihood Ratio Based Fusion

- Let $S = (S_1, S_2, ..., S_k)$ be the match scores for K modalities. Likelihood ratio test to minimize FRR for a given FAR (NP rule)
 - Decide "genuine" if

$$FS(S) = \frac{P(S \mid genuine)}{P(S \mid impostor)} \ge \eta$$

where $\boldsymbol{\eta}$ is determined by the given FAR

• For independent matchers, LR test reduces to product rule

$$PFS(S) = \prod_{k=1}^{K} \frac{P(S_k \mid genuine)}{P(S_k \mid impostor)} \ge \eta$$

S. Dass, K. Nandakumar and A. Jain, "A Principled Approach to Score Level Fusion in Multimodal Biometric Systems", *Proc. of AVBPA*, pp. 1049-1058, Rye Brook, NY, July 2005

Fusing Multiple Modalities

Quality-based Fusion

- Estimate joint density of match score and image quality to assign weights to individual matchers
- Let $Q = (Q_1, Q_2, ..., Q_K)$ be the quality vector associated with the K-dimensional match vector
- Quality-based fusion (QF) rule decides "genuine" if

$$QFS(S, Q) = \frac{P(S, Q \mid genuine)}{P(S, Q \mid impostor)} \ge \eta$$

• If K matchers are independent, the QF rule is simplified as

$$QPFS(\boldsymbol{S}, \boldsymbol{Q}) = \prod_{k=1}^{K} \frac{P(S_k, Q_k \mid genuine)}{P(S_k, Q_k \mid impostor)} \ge \eta$$

This decision rule is known as quality-based product fusion

Pair-wise Fingerprint Quality Pair-wise (template & query) is function of minutiae quality in the overlapping region and area of overlap

Fingerprint Quality Examples

Good quality pair (Q_{finger} =0.90)

Poor quality pair (Q_{finger}=0.28)

Pair-wise Iris Quality

- Iris local quality* is defined using 2-D wavelet transform in local windows
- Correlation of local quality vectors of template and query is defined as the quality of the pair

* Y. Chen, S. Dass and A. Jain, "Localized Iris Image Quality Using 2-D Wavelets", Proc. of ICB, pp. 373-381, Hong Kong, Jan. 2006

Fusion of Fingerprint and Iris

• WVU joint multimodal database; 320 subjects, 5 samples/modality/subject; 20-fold cross-validation

Soft Biometrics

Soft biometrics provide some information about the individual, but lack the distinctiveness and permanence to sufficiently differentiate them

Ethnicity, Skin Color, Hair color (Sub-Saharan African, Indian, Southern European, and Northwest European) http://anthro.palomar.edu/adapt/adapt_4.htm © Corel Corporation, Ottawa, Canada

Weight http://www.laurel-and-hardy.com/ goodies/home6.html © CCA

Height http://www.altonweb.com/history/wadlow/p2.html © Alton Museum of History and Art

Eye color http://ology.amnh.org/genetics/longdefinition/index3.html © American Museum of Natural History, 2001

Combining Face & Soft Biometrics

Biometric Cryptosystem

Secure an encryption key with fingerprint so only the authorized user can access the secret

Sample Size Requirements

Motivation: To validate the claimed performance of a biometric authentication system given by ROC_0 , say.

Biometric data: Collect biometric data from N users with K acquisitions per user. The challenge is that the K acquisitions per user are correlated. Validation techniques need to take into account this correlation.

Validation Tool: Construct 100(1-a)% confidence bands for ROC₀. Accept ROC₀ if

 $LB(p) \leq ROC_0(p) \leq UB(p)$ for all p in $[C_0, C_1]$;

Sample Size Requirements

Sample size needed to obtain a confidence interval at 95% level and 1% width (c = no. of fingers; d = no. of impressions/finger

	Values of c and d					
	c = 1, d = 2		c = 2, d = 2		c = 2, d = 3	
Correlations	n^*	n_{sb}^*	n^*	n_{sb}^*	n^*	n_{sb}^*
(ρ_1, ρ_2)	mean	mean	mean	mean	mean	mean
	(sd)	(sd)	(sd)	(sd)	(sd)	(sd)
(0,0)	11,443	48,674	5,809	24,201	1,967	8,143
	(246)	(600)	(148)	(373)	(31)	(136)
	22,885	97,350	23,235	96,810	11,801	48,860
	(492)	(1,200)	(590)	(1,493)	(190)	(814)
$(0, \hat{\rho}_2)$	20,439	90,725	10,476	46,209	9,505	43,500
	(790)	(315)	(279)	(837)	(263)	(455)
	40,877	181,450	41,905	184,840	57,028	261,000
	(1,581)	(630)	(1,115)	(3,346)	(1,580)	(2,729)
$(\hat{\rho}_1, \hat{\rho}_2)$	21,403	90,477	11,056	47,855	9,749	46,269
	(1,004)	(407)	(346)	(430)	(163)	(968)
	42,806	180,950	44,223	191,420	58,492	277,620
	(2,008)	(813)	(1,382)	(1,720)	(977)	(5,811)
$(0.6, \hat{\rho}_2)$	19,015	89,993	13,321	61,394	11,558	56,723
	(503)	(429)	(506)	(884)	(423)	(826)
	38,029	179,990	53,285	245,570	69,346	340,340
	(1,006)	(858)	(2,026)	(3,536)	(2,540)	(4,956)

As correlation increases, the required sample size increases

Summary

- Biometric technology provides a strong method of linking persons to identity records
- Biometric traits cannot be easily shared, misplaced, or forged offering better security and accountability
- Improves enterprise security and reduces fraud
- But these systems are not foolproof
- Government mandates mean that biometrics will have profound influence on our daily lives
- How will biometrics technology evolve? It will depend on performance, added value of technology, user acceptance & credibility of service provider

that identity is already here."