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Research Motivations

Applications: Immediate needs for
automated surveilllance systems;in
commercial, lawenfercement and
military applications.

Research: An active research area in
computer visionrand videe: precessing




Tiopics Overview,

Background modeling Face lracking

Object Tiracking Object Classification
= By Blob in Video
= By Mean-shifi Anomaly’ Detection

= By Active Contour Multi-Camera Fusion
Discriminative Feature

Learning

Background Modeling

Autematically moedel and update background in
video

For separating foreground: (moving ebjects)
from! background




Methoeds

Jlemporal average or median
Gaussian Mixture Viedel

Kemel Density Estimation

Subspace method: Eigenhackgrounds
Multilevellmethod

PDE based methoed

Challenges; in Background Maedeling

lluminatien changes
s Gradual (egl day-night chiange)
m  Suddeni (eg cloud)

Motion changes
s camera oscillation

n  High-freguency backgroeund ebjects (such as
swaying| vegetation,, rippling water andtflickering
MENItors))

Change in background geometry.
= New ebjects introduced
s Old objects removed




Mixture of Gaussians

Mixture of K Gaussians (u.2.®;) (Stauffer and
Grimson 1999)
K

P(xt) = Za)i X77(xt!/ui’2i)

i=1

1 -0 7 (x-a)

7](X,,U,Z) = ﬁe
(27)2 |Z|E
In thisiway, the moedel copes with multimedal
packground: distrbutions

Online Update Precedure

The number of modes is arbitrarily: pre-defined
(usually from: 3/t 5)

All'weights @; are updated!at every new: frame

At every new frame, some of the Gaussians
“match * the current value,: for them, 4% are
updated by running  average = u;

All distrilbutions; are ranked! according to their
and the first ones are chosen as “background”




Motion Segmentation; Vethods

Backgreund:subtraction
Optical flew
lemporal differencing

ax "

Objects Tracking — Bleh Metheds

Backgreund modeling
Fereground segmentation
Blel extraction

Datas asseciationi (lbased
on: distance; color,
velocity ete.)

(Yang et al., CVPR 2005 )




Bloh Tracking Resulis

Object Tracking — Mean-Shifit Method
(Comaniciu, CVPR 2000))

Start from the Search in the IR hesk
position' of the model’s r%ir:ijrlgiitiﬁ b);
model in the neighborhood similarit)?

current frame in next frame i
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Repeat the
same process
in the next pair

of frames
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Mean Shift Tracker

Mean Shift — A Viethod fer Mede: Seeking
frem date samples

Noen-parametric -
—— | Density Estimation
Discrete PDE Representation
Non:parametric

Density GRADIENT Estimation
(Mean Shift)

Kernell Density Estimation

Parzen Window: Method: Estimating A function ofi seme finite
number of data points x4...xn 1n d-dimensionall Euclidean

space R¢
]? X E K
( ) nhd (

Various Kernels:

« Epanechnikeoy Kernel fo(t-IxF)  Ixl=t
Ke(0 =

“ 0 otherwise

= Uniiorm Kemel oooof© st

| 0 otherwise

» Normall Kernel K,y () =c-exp( - 2" )




Estimation ofi Density: Gradient

Vi 09=2Y vK(x-x)

Using the . X=X,
Kernnel form: g2 ¢

We get : Profilel of Kernell ik
2 X0
i=1 —x

T ”[iz;gi}m izi:lgi

Computing The Mean Shiiit
Simple Mean Shift procedure (Comaniciu, CVPR 2000 )

« Compute mean shift vector
fa x-x. |
Exig[ £ ] 1
m(x) = 3 |
. X-X;
(S HIN

*Translate the Kernel window by m(x)

£x




Partial occlusion

( D. Comaniciu et al., CVPR 2000 )

Moving Camera Tracking

Tracking moving objects from a moving camera

Widely used method is combining appearance features (e.g.
color histograms) with mean shift tracker, which is resilient
to changes in object appearance due to non-rigidity and
viewpoint




Active. Camera Tracking

Active Contour Tracker

For extracting object boundaries in tracking

Minimizing an energy. defined based! oni the
shape and' lecation

From Julien Jomier 2002
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Snake Moedeling

Contour Is said to possess an energy Esnake
which Isidefined asi the sumj of three potential
terms

ES g Sl A L

snake interna externa constraint

-- E _snake= E(snake)

-- E_int: smoothness constraint on snake bending
-- E_ext: gradient, color, texture

-- E_con: Other constraints

Estimate snake model inithe current frame with
snake Ini previous frame: as initialization

Snakes, Detection and Tracking Results

( N. Paragios & R. Derriche, PAMI 2000 )
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Discriminative Feature Selection

A tracking| failurerdue te similarity oft colorsibetweeni ebject andibackground

(R.Collins et al., PAMI 2005 )

Fixed BG/EG features vs.
Dynamic Discriminative Features

Hypothesis: the image fieatures that best disciminate am
object from its background are the best features to use
for tracking

|deas

Tireating tiacking as a binary. classification: problem (FG
Vs BG)

Finding Discriminant Image; 1e' Optimal Combination| of:
RGB that Best Separate FG/GB

Finding features that maximize cross-class variance and
minimize within class variance

VR(p.q) = var((p+0q)/2)
var(p) + var(q)
p: foregreund class: distribution: (histegram)

g: background class distribution (histogram)
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Color Feature Candidates

Feature 1s a linear ofi combinations of R, G,
B, 16 FWIR+W2G+wW3B}

Restricting WiE{-2,-1,0,1,2} leads 16149
candidate combinations

Einding w_i to maximize VR(p,09)

Tracking

Online’ Eeature: Selection| using p;,a| of the
Previeus firame

Compute L [x,y]=p[1Cy)1/ all (. y)]
Tracking by Applying Mean-shift enilL [x,y]
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Weight Image Examples

(R.Collins et al., PAMI 2005 )

Tracking Hard-to-See Objects

(R.Collins et al., PAMI 2005 )
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Occlusion Handling

Feature Correspondence
= Color , texture, geometry, et al.
= Spatial-temporal information
Stochastic method
= Joint probabilistic data association
= Bayesian reasoning
Ensemble Method
= Discriminative feature selection
Multi camera methods
= 3D coordinates correspondence
= 2D methods (key point, principle axis correspondence)

Occlusion Handling

(T.Yangetal., CVPR2005) (H. Grabner & H. Bischof, CVPR 2006 )

(H.T. Nguyen et al., CVPR 2006 )  (S.M. Khan & M. Shah, ECCV 2006 )
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Face liracking

EXIsting Technigues

Detection based methods

m Skin color-Based methods

a Appearance-based methods

n Template matching-based methods

Tracking hased methods

u Skin color hasedl methods (Teyama,1998)

n Appearance model based methods (Birchiieldl,1998)
n Mean-Shifit Searchi based methods (Comaniciu;, 2000)
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Existing Work: Face Tracking

Teyama [1998] The Incrementall Focus ofi Attention) face  tracking
irameworks (Sensitive torlarge: head rotation)

Comaniciu[2000] Mean=shift face tracking:

(Mean' histogram based facer detection medellisinot rebust, and luminance
gradient basedl scale estimation’ may: fiail in: complex background)

L e~
. i I

Detection vs Tracking Based Metheds

Issties

Autoe Initialization _—
Scale changes (e AP TR D |
lluminatien: changes _—
Head Rotation IE P T, s
Partiall Occlusion _—

. and avoid
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Main ldeas

Tlake Advantages, and avoid disadvantages:
= Roebust and Fast Face Tracker =
Face Detector+ Face Tiracker + Adaptive Switcher

Multiview: Face: Detector [ILi, TRAMI, 2004]
n Initalizing tracker
= Updating Tracker parameter

Discriminant Based Face Tracker
= Discriminant lndex Map (DIM), learned online
m Mean shiiit perfiermed using DIV

Adaptive Switcher in System
m  Management of switching between detector and
tracker

Discriminant Index Map: (DIiVI)

I Mean shifit alg: Sampleweight Image

» Sample weight image = Foereground
confidence map

» Dynamic weight for each pixel

I thisiwerk: Discriminant Index Map:r (DIv)

» [0 discriminate fereground (face) frem
neighbering hackground

= [rack the most discriminative pixels within the
surreunding| region




Discriminative Color Feature Selection

Green colox
corresponds; to
Discriminant: Index

Features based on local color histograms of the tracked
face and surreunding - INsensitive to retation

Local windew, : Target (h=1.2w), Surreunding =
1. 7>target

Discriminant Index Histogram (DIH) - Equ.(5)

Use most discriminative bini of DIH as the feature for
tracking

Discriminant Index Histogram
(DIH)

gl and g, : local celor histegrams of the target and! its
surreunding background

Online learning oif DIH

P L max(af(n),e)
c max (g} (), )
Lmax(@(n),e) o o max(gf(n),e)

dg (n) =1 ¢ max(gy (n), &) max(qy (n), &)

otherwise
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Discriminative Mean-Shift

Most discriminative bins are those binsi () for which g,/

(n) =T/c

Discriminant lndex Map

W (YY) =a,£ (1x,)

Mean-shift tracking B .
performed using L= Zx; Wy (x.3)
Wa’k (X’y) (0)

updated target
info

\/ideo Demo

Single: Face Tracking: Large Rotation and
Jumping

MultiplerFaces Trackin% Large Roetation and
Occlusion

Active Camera EFace Tracking

20



Object Classification

110 classify moving okjects; in Video, a
standarnd pattern| recognition ISsue.

Challenges

» Appearance varnation due to changesi in
viewingl angle and scale
a real-time processing reguirement.

i 1

Features for Object Representation

Shape hased classification

n Image bloeh arealsize, compactness, apparent aspect ratio,
ete.

Motion based classification
a Direction of motion, speed ,and periodicity,
3D moedel based method

n 3D geometry andistructure. Practically difificult to
Implement

Other constraints: eg|x,y. coordinates
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Using Scene-Specific Features

02 04 06 08
X-position

(a)

Spatial distribution of vehicles and persons
= Left: in the x-y plane
= in the y-size plane

Booetstrapping for Scene Transfer

Train a low-performance baseline SVM classifier
using the identified scene-independent features,
on a’'set ofi labeled examples

Apply: this baseline classifier to a large unlabeled
data set U in a nevel urban scene. This preduces
Jabels’ (and asseciated confidence values) fior
Objects in the new. scene.

Treat the top 10 percent of the new: labels as
Jabeled” examples to) re-train: a new, scene-
Specific classifier, using both scene-independent
and dependent features.
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Vehicle classification

Vehicle type classification : All = cars vs.
minivans; Cars - sedans vs. taxies.

For fixed view angle.

Features: edge points and modified SIFT
descriptors.

Appearance Based Method

USing appearance infermation: to classiiy.
Olbjects In different camera Views

Categories: car, vanm, truck, person, hike
and groeup of pecple

Jlake advantage of errol correction
property: off Error Correcting Output Codes

(ECOC) method to further dealiwith the
challenge fromrlarge Intra-class variations.
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Multi-block Local Binary Pattern Feature for
object representation

+ #
o o o e 1.
LBP operator+ Describing+ o
o | o ENE
NENE .
SRR il
o
o
o

Binary: 01100110+ Image Structure-

The sum of the pixels
within rectangles+

Ce

MBLBP. Feature can capture more information about the
image structure than originall haar-like feature.

Apply: AdaBeost learning

Leaming effective features from a large
feature set;

Constructing weak: classifiersieach of;
Whichi s based oni ene: of the selected
features;

Boosting the weak: classifiers Inte a
Stronger classifier.
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Evaluation the advantage of Erroer correction
property off ECOC-based classifier

Testing Sample One-Vs-All ECOC-based

Cars 27729 86.2% 92.6%
Vans 3516 67.6% 76.0%
S 2662 66.1% 71.1%
Persons 4035 81.2% 85.2%
Bikes 7038 72.6% 78.8%
People 8058 71.6% 75.8%

Classification Results




Eusion off Multi-Camera Tiracking

Large Area Video Surveillance

Issues (comern) e @

= Sensor network

= Camera calibration
= Object handoff o o

- Switching _Classification | Classification_
= Occlusion reasoning
= Data fusion

Tracking Tracking

Multiple Camera Data
Fusion

Calibration

3-D calibration: Compute the parameters of a
camera by the relationship ofi 3D coordinates
and the Image coerdinates of some: knewn
pPoINtS

2-D calibration: Determine the transfermation
matrix and then such matrx Is, decomposed to
obtain| the extrinsic parameters of the camera
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Hand-offi between Cameras

Ability: tor Handle
= humans as wellfas vehicles

a overlapping cameras; asiwellfas nen-overlapping
cameras

= indoor as well as eutdoeer scenes

Explore various cues; such as geemetrc and
kinematics, lecal and glebal appearances, for
salient signatures ofi the ehjects.

Multiple cues are fused te compute the eptimal
matches among all the moving| ebjects.

Object Matching

Region based methods
. Color, texture, appearance, etc.

Geometry based metheds
- 3-D methoed (conrespondence of world coordinates)

. 2-Drmethoed! (‘ correspendence: of key points, principle
axes)

Other methods

- Nonlinear manifeld' learning and correspendence
- Trajectory based matching
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Methods

Calibrationrhased methods } Suitable for
Homography based methods ) o P g fea e

WEWS
Appearance hased methoeds
a Height, size, silhouette

s Color, texture Suitable for non-
overlapping field

Spatio-temporal metheds ofiatie
= Arfving time, armving situation
s trajectory- Vvelocity

Object Tracking in Multi-Camera Network
(Sarnofi)

Two people
area covered by

ol (14 c2 €3 = [ T 3 [ S

12' cameras i . "i i
liuman| trajectories h o

(<1
overlaid en a 2
plane-view: map
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Calilbrated Mapping

Anemaly: Detection

Detection off Add-on; and Missing
Intrusion te) FerbiddenrArea
Reverse Driving
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Detection of Add-on; and Missing

Crowd Density: Estimation

. AT | AREMNE
0000000000

U
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Anemaly Detection and
Alarming

Badl Deing
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Challenges

Occlusion Handling
Illumination Handling
Hand-off

Behavior Analysis
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Thank You

Contact:

Prof. Stan Z. Li

Center for Biemetricsi and Security Research

Institute ofi Automation, Chinese Academy ofi Sciences
szli@chsr.ia.ac.cn
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