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Abstract
Gradient sparsification is a promising technique
to significantly reduce the communication over-
head in decentralized synchronous stochastic gra-
dient descent (S-SGD) algorithms. Yet, many ex-
isting gradient sparsification schemes (e.g., Top-k
sparsification) have a communication complexity
ofO(kP ), where k is the number of selected gradi-
ents by each worker and P is the number of work-
ers. Recently, the gTop-k sparsification scheme
has been proposed to reduce the communication
complexity from O(kP ) to O(k logP ), which sig-
nificantly boosts the system scalability. However,
it remains unclear whether the gTop-k sparsifica-
tion scheme can converge in theory. In this paper,
we first provide theoretical proofs on the conver-
gence of the gTop-k scheme for non-convex objec-
tive functions under certain analytic assumptions.
We then derive the convergence rate of gTop-k S-
SGD, which is at the same order as the vanilla mini-
batch SGD. Finally, we conduct extensive exper-
iments on different machine learning models and
data sets to verify the soundness of the assumptions
and theoretical results, and discuss the impact of the
compression ratio on the convergence performance.

1 Introduction
Stochastic gradient descent (SGD) algorithms are commonly
used for training many machine-learning models. SGD min-
imizes the objective function f : Rd → R with stochastic
gradients G(xt) using the following update formula:

xt+1 = xt − αtG(xt), (1)

where xt ∈ Rd is a set of model parameters, and αt ∈ R
is the step size at iteration t. With large-scale models (i.e.,
d is at the order of millions or even billions) and data sets,
distributed synchronous SGD (S-SGD) with data-parallelism
is the key technique to reduce the overall training time us-
ing multiple computational workers [Goyal et al., 2017;
Jia et al., 2018]. Given a cluster with P workers, in the tth
iteration, the pth worker calculates the gradients Gp(xt) with
locally sampled data, and then all workers collaboratively

update the model parameters with the aggregated gradients
1
P

∑P
p=1G

p(xt), i.e.,

xt+1 = xt − αt
1

P

P∑
p=1

Gp(xt). (2)

Ideally, S-SGD with P workers would accelerate the train-
ing process by P times. However, the aggregation of gradi-
ents requires tremendous data communications among work-
ers, whose time cost becomes significant, especially when
the network bandwidth is relatively low [Dean et al., 2012;
Shi et al., 2018]. Efficient communication methods have
been proposed to alleviate the communication overheads on
the system level [Awan et al., 2017; Zhang et al., 2017;
Shi et al., 2019a; Chen et al., 2019], while the Top-k sparsifi-
cation scheme [Chen et al., 2018; Lin et al., 2018] has been
proposed to sparsify the gradients to dramatically reduce the
communication cost with little impact on the model accuracy
on the algorithm level. In Top-k S-SGD, each worker only se-
lects its top-k gradients (in terms of absolute magnitude) to be
exchanged with other workers. The update formula becomes:

xt+1 = xt − αt
1

P

P∑
p=1

G̃p(xt), (3)

where G̃p(xt) = TopK(Gp(xt)) is the sparsified top-k gra-
dients at the pth worker. Specifically, for a vector x ∈ Rd,
TopK(x) ∈ Rd, and the ith (i = 1, 2, ..., d) element of
TopK(x) is defined by:

TopK(x)(i) =

{
x(i), if |x(i)| > thr

0, otherwise
, (4)

where x(i) denotes the ith element of x and thr is the kth
largest value of |x|. In practice, k can be two to three or-
ders of magnitude smaller than d with little impact on the
model accuracy [Aji and Heafield, 2017; Lin et al., 2018;
Alistarh et al., 2018], which can dramatically reduce the com-
munication overhead. Some work [Wangni et al., 2018;
Stich et al., 2018; Alistarh et al., 2018; Jiang and Agrawal,
2018] has provided the theoretical convergence analysis of
Top-k S-SGD under different assumptions.

However, it is noted that the indices of non-zero elements
of G̃pi (xt) for different workers are generally inconsistent.
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Therefore, the aggregation of sparsified gradients of Top-k
S-SGD from P workers has a communication complexity of
O(kP ) [Renggli et al., 2018] 1. Recently, an alternative gra-
dient sparsification scheme named gTop-k [Shi et al., 2019b]
has been proposed to reduce the communication complexity
fromO(kP ) toO(k logP ) by using a tree based approximate
reduction algorithm. Their empirical studies show that gTop-
k S-SGD achieves much better training performance than the
Top-k scheme on GPU clusters; yet, there is no theoretical
justification on the convergence of gTop-k S-SGD.

In this paper, we provide a detailed theoretical analysis
on the convergence performance of gTop-k S-SGD on non-
convex problems. We summarize our main contributions as
follows:
• Unlike the existing convergence analysis in [Stich et al.,

2018; Alistarh et al., 2018] that uses some assumptions
on
∑P
p=1 G̃

p(xt) which may not hold in practice, we in-
troduce a relatively weak assumption which can be eas-
ily verified through real-world experiments.
• We prove that gTop-k S-SGD provides convergence

guarantees for non-convex problems under our analytic
assumptions. We conduct extensive experiments on rep-
resentative deep learning models and data sets to verify
the soundness of the assumptions and theoretical results.
• We show that gTop-k S-SGD has the same theoreti-

cal convergence rate with vanilla mini-batch SGD with
properly chosen learning rates. We also discuss the im-
pact of the compression ratio on the convergence rate
through experiments.

2 Related Work
There are two main types of communication reduction
schemes in S-SGD: gradient quantization and sparsification.

In quantization methods, the exchanged gradients at every
iteration can be quantified to a small number of bits (e.g., 2
bits) with error compensation [Alistarh et al., 2017; Wen et
al., 2017; Bernstein et al., 2018; Jiang and Agrawal, 2018;
Wu et al., 2018; Stich et al., 2018; Wangni et al., 2018;
Haddadpour et al., 2019] during communication while keep-
ing the model accuracy nearly unchanged. However, even
using only one bit for each gradient, the maximum communi-
cation compression ratio is 32× compared to the 32-bit coun-
terpart.

In sparsification methods, one can only transmit a small
portion of non-zero gradients [Aji and Heafield, 2017;
Chen et al., 2018; Lin et al., 2018; Stich et al., 2018; Jiang
and Agrawal, 2018; Alistarh et al., 2018; Wangni et al., 2018;
Wang et al., 2018] for aggregation so that the communi-
cation size can be reduced significantly. Researchers [Aji
and Heafield, 2017; Chen et al., 2018; Lin et al., 2018;
Renggli et al., 2018] first empirically show the effectiveness
of the Top-k or the random-k sparsification in S-SGD with
little impact on the model convergence, where k can be only

1For all-reduce based aggregation, every worker has a commu-
nication complexity of O(kP ). For parameter-server based aggre-
gation, the parameter server has a communication complexity of
O(kP ).

0.1% of the gradient dimension d. Some recent work [Stich
et al., 2018; Jiang and Agrawal, 2018; Alistarh et al., 2018;
Wangni et al., 2018] provides the convergence analysis on
Top-k S-SGD under different assumptions. However, even
though the Top-k sparsification scheme can zero-out a large
number of gradients, it generates the irregular indices among
different workers such that the communication complexity is
O(kP ) for P workers [Renggli et al., 2018], which limits
the system scalability. To further reduce the communication
complexity, a communication-efficient sparsification scheme
named gTop-k has been recently proposed [Shi et al., 2019b].
gTop-k has a communication complexity of O(k logP ) by
leveraging a tree structure for gradient communications, and
therefore it performs much better than Top-k on large clus-
ters. However, there is no theoretical justification on the con-
vergence of gTop-k S-SGD in [Shi et al., 2019b]. Due to
the biased gradients aggregation through the gTop-k sparsi-
fication, the theoretical convergence analysis is non-trivial.
In this study, we provide the convergence proofs for gTop-k
S-SGD, and we conclude that gTop-k S-SGD has the same
convergence rate as vanilla S-SGD.

We want to highlight that the existing convergence analy-
sis on Top-k S-SGD [Wangni et al., 2018; Stich et al., 2018;
Alistarh et al., 2018; Jiang and Agrawal, 2018] cannot be di-
rectly applied to prove the convergence of gTop-k S-SGD.
First, gTop-k S-SGD is a biased stochastic compression
scheme which is different with the unbiased one in [Wangni
et al., 2018]. Second, the analysis in [Stich et al., 2018] is for
convex problems, and it requires the sparsification on fully
aggregated gradients, while gTop-k S-SGD has no such con-
dition. Third, the analysis in [Jiang and Agrawal, 2018] re-
quires the algorithm to exchange all parameter components
in any certain T consecutive iterations, which could also not
hold on gTop-k S-SGD since in every iteration only top-k gra-
dients are selected and some very small gradients may not be
chosen throughout the training process. Our analysis is closer
to the work [Alistarh et al., 2018], but there are three main
technical differences. 1) We use a relatively weak analytic as-
sumption on the top-k gradients (and also gTop-k gradients).
2) We eliminate the condition (k > d/2) that is required in
[Alistarh et al., 2018] to guarantee the convergence. 3) We
prove the convergence of the gTop-k S-SGD algorithm, and
derive the convergence rate, and empirically evaluate the im-
pact of compression ratio on the convergence performance.

3 The Algorithm of gTop-k S-SGD
For completeness, in this section we briefly introduce the al-
gorithm of communication-efficient global Top-k (gTop-k) S-
SGD proposed in [Shi et al., 2019b]. Before describing the
algorithm, we define some notations. Let vt and εpt denote the
local model of each worker and the local gradient residuals
of worker p at iteration t, respectively. Note that all workers
have the consistent model at any iteration. In gTop-k S-SGD,
the model is updated by

vt+1 = vt − αt
1

P
gTopKPp=1(G

p
t (vt) + εpt ), (5)

where gTopKPp=1(x
p) = x1>x2>...>xP , and the operator

> is defined as follows. For any two vectors xi ∈ Rd and
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xj ∈ Rd,

xi>xj = mask � |TopK(xi) + TopK(xj)|, (6)

where mask = |TopK(xi) + TopK(xj)| > thr and thr is
the kth largest value of |TopK(xi)+TopK(xj)|. Assume that
x is the aggregation result by gTopKPp=1(x

p), it simultane-
ously generates a vector of gMaskp ∈ Rd which indicates
the indices of the selected local values (i.e., TopK(xp)) that
contribute to the final x. Specifically, the ith (i = 1, 2, ..., d)
element of gMaskp is defined as

gMaskp,(i) =

{
1, If TopK(xp)(i) contributes to x(i)

0, otherwise
.

(7)
The pseudocode of gTop-k S-SGD is shown in Algorithm 1.

Algorithm 1 gTop-k S-SGD at worker p
Input: Stochastic gradients Gp(·) at worker p
Input: Configured value k and the learning rate α
1: Initialize v0 = εp0 = 0;
2: for t = 1→ T do
3: accpt = εpt−1 + αGp

t (vt−1); // Accumulate the residuals
4: gt, gMaskpt = gTopKP

p=1(acc
p
t ); // Global top-k and mask

5: εpt = accpt � ¬gMaskpt ; // Store residuals
6: vt = vt−1 − 1

P
gt; // Update the model

7: end for

Similar to [Alistarh et al., 2018], we also use xt to denote
the auxiliary random variable at iteration t, and

xt+1 = xt − αGt(vt), (8)

where Gt(vt) = 1
P

∑P
p=1G

p
t (vt) and x0 = 0d. The differ-

ence between the auxiliary variable xt and the model variable
vt can be represented by

εt = vt − xt. (9)

According to Algorithm 1, we have εt = 1
P

∑P
p=1 ε

p
t .

4 Convergence Analysis
4.1 Notations and Assumptions
We mainly discuss the cases that all the computational work-
ers have a full copy of data. We assume that the gTop-k S-
SGD is applied to solve the non-convex objective function
f : Rd → R, which is L-Lipschitz smooth, i.e.,

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ Rd. (10)

The sampled stochastic gradients G(·) at every iteration are
unbiased, i.e., E[G(vt)] = ∇f(vt). We also assume that the
second moment of the stochastic gradients is bounded, i.e.,

E[||Gp,(i)t (x)||2] ≤M2, ∀x ∈ Rd, ∀t ∈ N, (11)

where Gp,(i)t (x) are the gradients of the ith sample in a mini-
batch and || · || is `2-norm. Let b denote the mini-batch
size used per worker, and the total mini-batch size with P
workers is B = Pb. The mini-batch setting has Gpt (x) =

1
b

∑b
i=1G

p,(i)
t (x). Thus, the second moment of the average

gradients has a smaller bound, i.e., for any t ∈ N,

E[|| 1
P

P∑
p=1

Gpt (x)||2] ≤
M2

Pb
=
M2

B
, ∀x ∈ Rd. (12)

Assumption 1. The gTopK operator is expected to select k
larger values than randomly selecting k values from the ac-
cumulated vectors, i.e.,

E[|| 1
P

P∑
p=1

xp − 1

P
gTopKPp=1x

p||2] ≤

E[|| 1
P

P∑
p=1

xp − randomK(
1

P

P∑
p=1

xp)||2], (13)

where randomK(xp) ∈ Rd is a vector whose k elements are
randomly selected from xp following a uniform distribution,
and the other d− k elements are zeros.

The assumption will be verified by experiments in Section
5. The key ideas of the proofs are 1) We first bound the dif-
ference between the model xt without sparsification and the
sparsified model vt. It enables us to bound the expected sum-
of-squares of gradients of f so that the convergence is guar-
anteed [Bottou et al., 2018]. 2) Then we bound the expected
average-squared gradients of f with some sufficient condi-
tions to derive the convergence rate.

4.2 Main Results
Lemma 1. For any vectors xp ∈ Rd, p = 1, 2, ..., P , and
0 < k ≤ d, it holds that

E[||
P∑
p=1

xp − gTopKPp=1x
p||2] ≤ (1− k

d
)||

P∑
p=1

xp||2 (14)

Proof. In [Stich et al., 2018], the authors have shown that for
any vector x ∈ Rd, it holds

E[||x− randomK(x)||2] = (1− k

d
)||x||2. (15)

Combined with Assumption 1, we easily obtain

E[||
P∑
p=1

xp − gTopKPp=1x
p||2] ≤ (1− k

d
)||

P∑
p=1

xp||2

Lemma 2. For any iteration t ≥ 1:

E[||vt − xt||2] ≤
1

η

t∑
i=1

(γ(1 + η))iE[||xt−i+1 − xt−i||2],

(16)
where γ = 1− k

d , 0 < k ≤ d and η > 0.

Proof. We derive the difference between vt+1 and xt+1, i.e.,

E[||vt+1 − xt+1||2] = E[|| 1
P

P∑
p=1

(αtG
p
t (vt) + εpt )
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+ vt − xt − εt −
1

P
gTopKPp=1(αtG

p
t (vt) + εpt )||2] =

E[|| 1
P

P∑
p=1

(αtG
p
t (vt) + εpt )−

1

P
gTopKPp=1(αtG

p
t (vt) + εpt )||2]

≤ γ|| 1
P

P∑
p=1

(αtG
p
t (vt) + εpt )||2 (by Lemma 1)

= γ||αtGt(vt) + vt − xt||2

≤ γ(1 + η)E[||vt − xt||2] + γ(1 +
1

η
)E[||αtGt(vt)||2]

= γ(1 + η)E[||vt − xt||2] + γ(1 +
1

η
)E[||xt+1 − xt||2].

Iterating the above inequality from i = 0→ t yields:
E[||vt − xt||2]

≤γ(1 + 1

η
)

t∑
i=1

(γ(1 + η))i−1E[||xt−i+1 − xt−i||2]

=
1

η

t∑
i=1

(γ(1 + η))iE[||xt−i+1 − xt−i||2].

Corollary 1.

E[||vt − xt||2] ≤
1

η

t∑
i=1

(γ(1 + η))iα2
t−i

M2

B
. (17)

Proof. Using Lemma 2 and the bound of (12), we have

E[||vt − xt||2] ≤
1

η

t∑
i=1

(γ(1 + η))iE[||xt−i+1 − xt−i||2]

=
1

η

t∑
i=1

(γ(1 + η))iE[||αt−iGt−i(vt−i)||2]

≤ 1

η

t∑
i=1

(γ(1 + η))iα2
t−i

M2

B
.

Theorem 1. Assume that gTop-k S-SGD is applied to mini-
mize the objective function f that satisfies the assumptions in
Section 4.1. If one chooses a learning rate schedule such that
for any iteration t > 0:

t∑
i=1

(γ(1 + η))i
α2
t−i
αt
≤ D, (18)

for some constant D > 0, then after running T iterations
with Algorithm 1, we have

1∑T
t=1 αt

T∑
t=1

αtE[||∇f(vt)||2] ≤

4(f(x0)− f(x∗))∑T
t=1 αt

+
(L+ 2L2D

η ) 2M
2

B

∑T
t=1 α

2
t∑T

t=1 αt
, (19)

where x∗ is the optimal solution to the objective function f .

Proof. Under the Assumption of L-smooth of f , we have

f(xt+1)−f(xt) ≤ ∇f(xt)>(xt+1−xt)+
L

2
||xt+1−xt||2

= −αt∇f(xt)>Gt(vt) +
α2
tL

2
||Gt(vt)||2. (20)

Taking the expectation at iteration t, we have

E[f(xt+1)]− f(xt)

≤− αt∇f(xt)>E[Gt(vt)] +
α2
tL

2
E||Gt(vt)||2

=− αt∇f(xt)>∇f(vt) +
α2
tL

2
E[||Gt(vt)||2]

=− αt
2
||∇f(xt)||2 −

αt
2
||∇f(vt)||2

+
αt
2
||∇f(xt)−∇f(vt)||2 +

α2
tL

2
E[||Gt(vt)||2]

≤− αt
2
||∇f(xt)||2 +

αtL
2

2
||vt − xt||2 +

α2
tL

2
E[||Gt(vt)||2]

=− αt
2
(||∇f(xt)||2 + L2||vt − xt||2)

+ αtL
2||vt − xt||2 +

α2
tL

2
E[||Gt(vt)||2]

≤− αt
2
(||∇f(xt)||2 + L2||vt − xt||2)

+ αtL
2||vt − xt||2 +

α2
tLM

2

2B
.

Taking the expectation before t, it yields

E[f(xt+1)]− E[f(xt)] ≤ αtL2E[||vt − xt||2]

+
α2
tLM

2

2B
− αt

2
E[(||∇f(xt)||2 + L2||vt − xt||2)]

≤αtL
2

η

t∑
i=1

(γ(1 + η))iα2
t−i

M2

B
+
α2
tLM

2

2B

− αt
2
E[(||∇f(xt)||2 + L2||vt − xt||2)]

=
α2
tL

2

η

t∑
i=1

(γ(1 + η))i
α2
t−i
αt

M2

B
+
α2
tLM

2

2B

− αt
2
E[(||∇f(xt)||2 + L2||vt − xt||2)].

Apply (18) to the above inequality, we have

E[f(xt+1)]− E[f(xt)] ≤ (L+
2L2D

η
)
M2α2

t

2B

− αt
2
E[(||∇f(xt)||2 + L2||vt − xt||2)].

Then we can obtain

αtE[(||∇f(xt)||2 + L2||vt − xt||2)] ≤

2(E[f(xt)]− E[f(xt+1)]) + (L+
2L2D

η
)
M2α2

t

B
. (21)
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Using the L-smooth property of f , we have

||∇f(vt)||2 = ||∇f(vt)−∇f(xt) +∇f(xt)||2

≤ 2||∇f(vt)−∇f(xt)||2 + 2||∇f(xt)||2

≤ 2L2||vt − xt||2 + 2||∇f(xt)||2.
Combine with (21), we obtain

αtE[||∇f(vt)||2] ≤ 2αtE[L2||vt − xt||2 + ||∇f(xt)||2]

≤ 4(E[f(xt)]− E[f(xt+1)]) + 2(L+
2L2D

η
)
M2α2

t

B
.

Summing up the above inequality for t = 1, 2, ..., T , we have

T∑
t=1

αtE[||∇f(vt)||2] ≤

4(f(x0)− f(x∗)) + 2(L+
2L2D

η
)
M2

B

T∑
t=1

α2
t . (22)

By dividing the summation of learning rates, we have:

1∑T
t=1 αt

T∑
t=1

αtE[||∇f(vt)||2] ≤

4(f(x0)− f(x∗))∑T
t=1 αt

+
2(L+ 2L2D

η )M
2

B

∑T
t=1 α

2
t∑T

t=1 αt
(23)

The condition (18) holds if γ(1 + η) < 1 for both fixed
learning rates and diminishing learning rates. To derive the
bound of η, we have

γ(1 + η) = (1− k

d
)(1 + η) < 1.

Therefore, one should choose η < k
d−k to satisfy the above

inequality. Theorem 1 implies that Algorithm 1 converges to
0 if T is large enough, when αt is set to satisfy the following
conditions:

lim
T→∞

T∑
t=1

αt =∞ and lim
T→∞

∑T
t=1 α

2
t∑T

t=1 αt
= 0. (24)

Corollary 2. Under the assumptions in Theorem 1, if τ =
γ(1 + η) and αt = θ

√
B/T , ∀t > 0, where θ > 0 is a

constant, we have the convergence rate for Algorithm 1:

E[
1

T

T∑
t=1

||∇f(vt)||2]

≤ 4θ−1(f(x0)− f(x∗)) + 2θLM2

√
BT

+
4 τ
(1−τ)ηL

2M2θ2

T
.

(25)

Proof. First we prove that αt = θ
√
B/T , which is a constant

step size (or learning rate), satisfies the condition in (18). We
set αt = α for simplification (i.e., α = θ

√
B/T ). We have

t∑
i=1

(γ(1 + η))i
α2
t−i
αt

=
t∑
i=1

τ i
α2
t−i
αt

= α
t∑
i=1

τ i = α
τ(1− τ t)
1− τ

.

Since 0 ≤ τ < 1, we obtain

lim
t→∞

α
τ(1− τ t)
1− τ

=
ατ

1− τ
.

Therefore, (18) holds by choosing D = ατ
1−τ . Applying The-

orem 1, we obtain the inequality of the expected average-
squared gradients of f , i.e.,

E[
1

T

T∑
t=1

||∇f(vt)||2]

≤4(f(x0)− f(x∗))
αT

+ 2(L+
2L2D

η
)
M2α

B

=
4θ−1(f(x0)− f(x∗))√

BT
+

2LM2θ√
BT

+
4 τ
(1−τ)ηL

2M2θ2

T
,

which concludes the proof.

From Corollary 2, we can seen that with a properly set
learning rate, the gTop-k S-SGD algorithm has a convergence
rate ofO( 1√

BT
), which is the same as that of mini-batch SGD

[Dekel et al., 2012]. It also indicates that k has small impact
on the convergence rate if T is large enough.

4.3 Discussion
In Corollary 2, there are two terms to determine the conver-
gence rate of gTop-k S-SGD. The first term indicates that the
convergence rate is affected by the constant θ and the mini-
batch size, and the second term indicates that the convergence
rate is also affected by both θ (related to the learning rate) and
τ (related to the compression ratio d

k ). The second term will
be dominated by the first term if T is large enough. How-
ever, it is not uncommon that a fixed number of iterations is
used for training deep neural networks (DNNs) in practice.
As a result, although a larger compression ratio leads to less
communications overhead, it would enlarge the bound of the
convergence rate.

To understand the details, we expand the second term on
the right-hand side of (25). Let c = d/k denote the compres-
sion ratio, then γ = 1− 1/c and τ = (1− 1/c)(1+ η). Since
η should satisfy the condition of η < k/(d − k), we choose
η = k/d = 1/c. Thus,

τ

(1− τ)η
=

(1− 1/c)(1 + η)

η − η(1− 1/c)(1 + η)
= c3 − c. (26)

Therefore, inequality (25) becomes

E[
1

T

T∑
t=1

||∇f(vt)||2]

≤ 4θ−1(f(x0)− f(x∗)) + 2θLM2

√
BT

+
4L2M2(c3 − c)θ2

T
.

(27)

The above inequality indicates that given a fixed iteration
budget (i.e., T ), a higher compression ratio (c) causes a larger
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bound of the convergence rate. In summary, to achieve a bet-
ter convergence with a given time budget, one should balance
the communication cost and the convergence rate. We will
further evaluate the impact of the compression ratio on the
convergence performance through experiments in Section 5.

5 Experiments
5.1 Experimental Settings
Our experimental settings cover three deep learning applica-
tions. 1) Image classification: Two popular DNNs, VGG-16
[Simonyan and Zisserman, 2014] and ResNet-20 [He et al.,
2016], are used for evaluation on the data set of Cifar-102

which consists of 50000 training images. 2) Language model:
A 2-layer LSTM model (LSTM-PTB) with 1500 hidden units
per layer is adopted for evaluation on the data set of PTB
[Marcus et al., 1993], which contains 923000 training words.
3) Speech recognition: A 5-layer LSTM model (LSTM-AN4)
with 800 hidden units per layer is used for evaluation on AN4
[Acero, 1990], which contains 948 training utterances. In all
training models, we exploit the warmup strategy in gTop-k
S-SGD on the 4-worker distributed environment. The base-
lines are evaluated using S-SGD without gradient sparsifica-
tion. The main hyper-parameters adopted in evaluation are
shown in Table 1.

DNN B Initial α # of epochs
VGG-16 512 0.1 140
ResNet-20 128 0.1 140
LSTM-PTB 400 30 40
LSTM-AN4 32 0.0002 80

Table 1: Hyper-parameters for different DNNs

5.2 Verification of Assumption and Convergences
We verify Assumption 1 empirically by training DNNs with
gTop-k S-SGD. During the training process, we measure

δ =
E[|| 1P

∑P
p=1 x

p − 1
P gTopKPp=1x

p||2]
E[|| 1P

∑P
p=1 x

p − randomK( 1
P

∑P
p=1 x

p)||2]
,

where xp = Gpt (vt) + εpt and k = 0.001× d (i.e., c = 1000).
Assumption 1 holds if δ ≤ 1. The measurements of δ corre-
sponded with the training losses on the evaluated DNNs are
shown in Fig. 1. It can be seen that we always have δ < 1,
which verifies the soundness of Assumption 1. In Fig. 1, the
convergences of gTop-k S-SGD are nearly consistent with S-
SGD, which validates our theoretical results and shows that
gTop-k S-SGD can converge as fast as S-SGD.

5.3 Convergence Rate v.s. Compression Ratio
The second term in inequality (27) indicates that the conver-
gence rate may be degraded by the compression ratio c. We
evaluate the sensitivity of the convergence rates to c on train-
ing DNNs without changing hyper-parameters including the
total number of iterations (i.e., a fixed number of epochs).

2https://www.cs.toronto.edu/∼kriz/cifar.html
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Figure 1: The measurements of δ and convergences on different
DNNs with a compression ratio c = 1000

The results are shown in Fig. 2, which shows that with larger
c, the convergence of the models would slowdown. There-
fore, with large compression ratios, there is a trade-off be-
tween the communication size, which is directly related to
the iteration time, and the convergence rate.
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Figure 2: The convergences with different compression ratios

6 Conclusion
Top-k gradient sparsification is crucial for reducing the com-
munication size in distributed S-SGD. The gTop-k scheme is
a more communication efficient scheme than Top-k for gra-
dient sparsification. In this study, we present a detailed con-
vergence analysis for gTop-k S-SGD under some analytical
assumptions, and we derive its convergence rate. Our theo-
retical results conclude that gTop-k S-SGD provides conver-
gence guarantees for non-convex objective functions and it
has the same convergence rate with vanilla mini-batch SGD
with properly chosen learning rates. We derive and evaluate
the impact of compression ratios on the convergence perfor-
mance. We finally conduct experiments to verify the sound-
ness of the analytical assumption and theoretical results.
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