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ABSTRACT
The past few years have witnessed significant growth in the compu-

tational capabilities of GPUs. The race for computing performance

makes the uses of many-core accelerators more necessary. How-

ever, GPUs consume a significant amount of energy as compared

with CPUs. One way to reduce the energy consumption is to scale

the speed and/or voltage of the processor. Typically, the faster the

processor runs, the faster we finish jobs, but the more power is

required by the processor. It is hence important to balance between

performance and power consumption.

In this paper, we consider the following scheduling problem. We

have a set of jobs to be assigned to different processors. Each jobmay

have different characteristics depending on the type of processor

that it is assigned to. The goal is to minimize the total energy

consumption. After proving the NP-hardness of this problem, we

propose a constant approximation algorithm for the case when

processors can scale to any continuous speed. When processors

have a set of discrete speeds, we propose a heuristic algorithm and

compare with some classical scheduling algorithms experimentally.

Then, we extend this heuristic to the online case where jobs arrive

over time. Our simulation results show that the proposed heuristic

algorithms are effective and can achieve near-optimal performance.
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1 INTRODUCTION
Power management aims in reducing the energy consumed by

computer systems while maintaining a good level of performance.

Especially, distributed systems need to satisfy the demands to the

detriment of energy consumption. As the demand of computation

and data processing is growing exponentially, researchers have

moved to high-performance computing platforms. The race for

computing performance makes the uses of many-core accelera-

tors (such as GPUs, Intel MICs, and FPGAs) more necessary. E.g.,

GPU-based cloud computing has been recently introduced by Ama-

zon, Microsoft Azure, Google, IBM, Aliyun, etc. This is because

the state-of-the-art GPUs are always around one order of magni-

tude faster than mainstream CPUs in terms of raw computational

power. Furthermore, GPUs are more power-efficient than CPUs in

terms of Flops-per-Watt [11, 26]. Indeed, in the TOP500 list of the

supercomputers, 94 of them are equipped with GPUs in June 2016.

However, GPUs consume significant amount of energy as compared

with CPUs. For example, the Titan supercomputer is equipped with

18,688 NVIDIA Tesla K20X GPU cards and consumes about 8.21 mil-

lion Watts at full load, resulting in about 23 million dollars per year

of electricity bill. Hence how to reduce the energy consumption

by GPUs becomes a key issue for data centers that host CPU-GPU

heterogeneous systems.

Because of the high energy consumption of GPUs, power man-

agement techniques are essential for both CPUs and GPUs. While

the power management in CPUs has been widely studied, the com-

bination of CPU-GPU has not been fully explored yet.

One traditional way to reduce the energy consumption is to

scale the speed and/or voltage of the processor. The faster the

processors run, the more power they consume. It becomes possible

to run the given jobs with slower speed to reduce the energy usage.

This mechanism, used to save energy, is known as the Dynamic

Voltage Frequency Scale (DVFS) mechanism where the speed (or

frequency) and voltage of the processors can be changed during

the execution. The theoretical study of this model was initiated in a

seminal paper by Yao, Demers and Shenker in [31]. The processor

can execute at most one job at each time. Each job is defined by

a processing requirement which corresponds to the number of
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cycles that a job needs to be completed. If f (t ) denotes the speed
(or frequency) of the processor at time t , then the total amount of

work executed by the processor during an interval of time [t , t ′) is

equal to

∫ t ′

t f (u)du. The processor’s dynamic power consumption

follows the well-known cube-root rule for CMOS devices [15, 16].

It can be considered as P ∝ f α which is proportional to f α with

α > 1 [12, 20, 31].

On the other hand, whenever the processor is on active state, it

consumes a fixed amount of static energy per unit of time due to

transistors leakage.

Our goal is to minimize the total energy consumption, i.e., the

sum of dynamic and static energy. It can be noticed that the faster

the processors run, the faster we complete jobs but the more power

is required by the processors. We aim to find a tradeoff between

the static and the dynamic energy by assigning jobs to appropriate

processors.

In this paper, we consider the following scheduling problem for

GPU-accelerated data centers. We have a set of jobs to be assigned

to different processors, including both CPUs and GPUs. Each job

may have different characteristics depending on the type of proces-

sor that it is assigned to. Especially, jobs are much more effective

when they are assigned to GPUs compared to CPUs. The goal is to

minimize the total energy consumption.

1.1 Related Work
In the following, we refer to homogeneous environment when jobs

have the same processing requirement on each processor while the

heterogeneous environment is when jobs may have different pro-

cessing requirement depending on the processor that it is assigned

to. The processing requirement of a job corresponds to the number

of operations a processor needs to do in order to complete the job.

In the context of CPU-GPU, Chen et al. [13] considered the case

of mixed CPU-GPUwithout DVFS. Different from our problem, they

considered that jobs have fixed processing time and their goal is to

minimize the makespan, i.e., the time duration up to the moment

that the last job finishes. They studied the online case where jobs are

revealed over time. They proposed a 3.85-competitive algorithm for

this problem and improved the competitive ratio for some special

cases.

A series of papers have appeared on the multiprocessor envi-

ronment with frequency scaling. Albers et al. [3] considered the

energy minimization problem on homogeneous processors. They

showed that the problem is strongly NP-hard when jobs have com-

mon release time and common deadline. Here, each job needs to

be scheduled within their own release time and deadline. Greiner

et al. [17] proposed a B ⌈α ⌉ -approximation algorithm for the ho-

mogeneous multiprocessor problem where B ⌈α ⌉ is the ⌈α⌉-th Bell

number. Bampis et al. [9] improved the result by proposing a gen-

eralized Bell number, i.e., Bα =
∑∞
k=0

kα e−1
k ! and gave a (1 + ε )Bα -

approximation algorithm for the heterogeneous multiprocessor.

Later, Cohen-Addad et al. [14] proved that the energy minimiza-

tion problem on heterogeneous multiprocessor is APX-hard, i.e.,

there is no PTAS (Polynomial Time Approximation Scheme) for this

problem. Liu et al. [22] considered the case when jobs can migrate

between two different core. They showed that their approach can

reduce the energy consumption by more than 50% compared with

traditional approaches. Ma et al. [23] proposed a holistic energy

management framework for GPU-CPU heterogeneous architectures

and showed that it achieves 21.04% average energy savings.

Mei et al. [25, 26] investigated the impact of GPUDVFS on energy

saving. They showed that scaling the frequency of the GPU can

reduce the energy consumption. Note that all these works did not

consider the static energy.

Recently, Mei et al. [24] considered the CPU-GPU DVFS prob-

lem. They proposed an algorithm to conserve energy consumption

without violating the deadlines of the jobs. They showed that as

much as 36% of the energy consumption can be saved.

Another related work is to minimize the makespan given an

energy budget. Pruhs et al. [29] first gave a log(m)-approximation

where m is the number of processors. It was then improved to

2-approximation by Bampis et al. [10].

Some works have been focusing on the load balancing problem.

There is a set of jobs to be assigned to a set of processors, and the

goal is to minimize the following cost:
α
√∑m

i=1W
α
i whereWi is the

workload of processor i . This problem is also named the Lα -norm
problem where α > 1 is the dimension of the vector space. This

problem is similar to minimizing the energy consumption when

jobs have common release time and common deadline. Indeed, the

energy consumption can be obtained by making the Lα -norm cost

to the power of α then multiply by the common deadline. Awerbuch

et al. [6] showed that there exists a constant approximation algo-

rithm for the problem of Lα -norm. Later, Alon et al. [4] proposed

an approximation scheme for this problem. Finally, Avidor et al. [5]

gave a greedy algorithm that is a

(
2 − Θ

(
ln α
α

))
-approximation

for the Lα -norm under the homogeneous environment. Azar and

Epstein [7] proposed a 2-approximation algorithm for the Lα -norm
under the heterogeneous environment. Note that this approxima-

tion ratio does not depend on the parameter α anymore.

Recent surveys of the area can be found in [1, 2, 8, 11, 25, 27].

We show in Table 1 the major difference between existing works

and the current paper.

Table 1: Summary of different related problems

Problem Results

Minimizing makespan log(m)-approximation [29]

s.t. energy consumption 2-approximation [10]

Minimizing energy NP-hardness [3]

consumption s.t. makespan (1 + ε )Bα -approximation [9]

Minimizing

total energy consumption This paper

with makespan cost

1.2 Our contributions
Our major contributions in this work can be summarized as follows.

• we prove the NP-hardness of the problem.

• we propose a greedy 2
α
-approximation algorithm for the

case when processors can scale to any continuous speed.

• we investigate the performance of the greedy algorithm

through simulations on real setting and compare with some
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classical scheduling algorithms.We show that the proposed

algorithm is effective and can achieve near-optimal solu-

tion.

• we extend the greedy algorithm to the online case where

jobs are revealed only we reach this time. We show that by

modifying the input data, we can also obtain a near-optimal

solution.

The rest of the paper is organized as follows. In Section 2, we

formulate the scheduling problem as an optimization problem

and prove its NP-hardness. Then in Section 3, we propose a 2
α
-

approximation algorithm for the case when processors can scale

to any continuous speed. In Section 4, we consider the case when

processors only have a set of discrete speeds that can be scaled to.

We propose a heuristic algorithm and compare with some classi-

cal scheduling algorithms through simulations in terms of energy

savings and execution time. Based on this heuristic, we extend it

to the online case where jobs arrive over time in Section 5. Finally,

we conclude the paper in Section 6.

2 PROBLEM DEFINITION AND NOTATIONS
In data center context, users have requests to submit to the servers.

The servers have to deal with them in order to satisfy the users. It

can be formalized as a scheduling problem where we have a set of

jobs to process by a set of processors. Since servers have different

types of processors, the processing time may be affected. Each

job j is defined by a processing requirement pi, j if it is assigned
to processor i which may be different depending on the type of

processor. The processing requirement corresponds to the number

of cycles that a job needs to be completed. Moreover, we have a

set of processors that can scale their speed. We distinguish two

components of power consumption. The first one is the dynamic
power which is related to the frequency and the voltage, and the

second component is the static power consumption which depends

on the time we keep the processor on active state. That is P =
Pdynamic + Pstatic .

The dynamic power of a processor is modeled as

Pdynamic = Keff · f ·V
2

whereKeff is the effective switching capacitance of the chip, f is the

processing speed of the processor, and V is the voltage [12, 20, 31].

It can be noted that Pdynamic is a convex and increasing function

of the voltage V . Moreover, the speed is bounded by the chosen

voltage. Once the voltage is set, the processor can only choose

among a set of available speeds. Therefore, if a job is scheduled

with a low speed, we can scale the voltage into a lower state in

order to save energy.

To simplify the notation, the dynamic power can be written

without loss of generality as Pdynamic = f α . If the processor

runs at speed f during t units of time, then the dynamic energy

consumption is Edynamic = f α t .
It can be noticed that if processors have independent completion

time, then assigning a job on a processor does not affect the other

processors. Therefore, we can assign jobs greedily to the processor

that minimizes the total energy consumption.

More generally, suppose first that jobs are already assigned to

processors, and letWi be the total workload assigned to processor

i . For a given time C to process the assigned jobs, each processor

needs to run at speedWi/C to get the minimum dynamic energy

consumption on each processor since the dynamic power function

is convex.

Thus the total dynamic energy consumption is

Edynamic =

m∑
i=1

(Wi
C

)α
C

wherem is the number of processors.

On the other hand, we also consider the static energy consump-

tion, i.e., whenever the processor i is on active state, the static

energy consumption rate is γi per unit of time. Therefore if the

processor i runs for t units time, then the static energy consumption

is Estatic = tγi . Moreover, we assume that all processors in our

system need to stay on active state together, i.e. a processor cannot

go into sleep state (and therefore no static energy is consumed)

as long as at least one processor is running jobs. Thus, the total

energy consumption is defined as

E =
m∑
i=1

((Wi
C

)α
+ γi

)
C = *

,

m∑
i=1

W α
i
+
-
C1−α +C

m∑
i=1

γi .

Our goal is to minimize the total energy consumption E. In other

words, we want to determine the workloadWi of each processor i
that is assigned (therefore the assignment of jobs on each processor)

and the time C such that all processors stay on active state.

We can assume without loss of generality that γ =
∑m
i=1 γi . Thus,

the objective function becomes

*
,

m∑
i=1

W α
i
+
-
C1−α +Cγ

We summarize the different notations in Table 2.

Table 2: Notation Summary

n number of jobs

m number of processors

f speed of the processor

γi static energy rate of processor i

γ static energy rate of all processors

Wi total workload that is assigned to processor i

C processing time

α parameter of the processor

P power function of the processor

E energy consumption

Pdynamic dynamic power

Edynamic dynamic energy

Pstatic static power

Estatic static energy

We can notice that the dynamic and static energy are opposite.

When the processing time decreases, the dynamic energy increases

while the static energy decreases. By the same way, if the process-

ing time increases, the dynamic energy decreases while the static

energy increases. As it is a sum of two convex functions, we can

find the optimal processing time C .



e-Energy’17, May 17-19, 2017, Hong Kong Vincent Chau, Xiaowen Chu, Hai Liu, and Yiu-Wing Leung

3 APPROXIMATION ALGORITHMS
In this section, we first show that the scheduling problem is NP-
hard. Then we show that there exists a greedy algorithm that

achieves an approximation of 2
α
.

Theorem 3.1. The problem of assigning jobs to processors and to
minimize the total energy consumption is NP-hard.

Proof. In order to establish the NP-hardness, we present a

reduction from the 3-Partition problem which is stronglyNP-hard.

In the problem of 3-Partition, we are given a set I of n = 3k items

and k bins of size B. Each item j ∈ I has a value B/4 ≤ vj ≤ B/2. In
the decision of the problem, we ask whether there exists a partition

of I into k triplets S1, S2, . . . , Sk such that the sum of the value of

the items of each triplet is equal to B.
Given an instance of the 3-Partition problem, we construct an

instance of our scheduling problem as follow. We have a set of k
identical processors where the power function is Pdynamic = f α

with α = 3 and Pstatic = γ = 2. For each item j, 1 ≤ j ≤ n, we
introduce a job j with pi, j = vj for each processor 1 ≤ i ≤ k .

We claim that the instance of the 3-Partition problem is feasible

if and only if there is a feasible schedule for our problem whose

cost is 3Bk .
Let us assume that the instance of the 3-Partition problem is

feasible. Therefore, there exists a partition of I into k triplets

S1, S2, . . . , Sk such that the sum of the value of the items of each bin

is equal to B. Then we can schedule the corresponding jobs of each

triplet Si on processor i with speed 1. The energy consumption for

each processor is 1
3B for the dynamic energy and 2B for the static

energy and the total energy is equal to 3B. We can see that the

speed of 1 leads to the minimum energy consumption. We recall

the energy consumption of one processor with a workload of B:
BαC1−α + γC with α = 3 and γ = 2.

In order to find the value of the processing timeC that minimizes

the energy consumption, we need to verify that the function is

convex.

(BαC1−α + γC )′′ = (B3C−2 + 2C )′′ =

(
−2B3C

C4
+ 2

) ′
=

(
−2B3

C3
+ 2

) ′
=

6B3C2

C6
≥ 0

The global minimum can be found by solving

−2B3

C3
+ 2 = 0⇔ B3 = C3 ⇔ B = C

Thus the total energy consumption is 3Bk .
For the opposite direction of our claim, we assume there exists

a feasible schedule of cost 3kB. Let Si be the set of jobs that are
scheduled on processor i . Clearly, due to the convexity of the power
function, if there is a processor with workload B + ε and another

processor B − ε for any ε > 0, the energy consumption will be

higher. Indeed, we have
(B+ε )3+(B−ε )3

C > 2B3

C for any processing

time C . Thus, the jobs in each Si form a partition of the items into

k triplets and therefore form a feasible solution for the 3-Partition

problem. □

Theorem 3.2. If there exists a α
√
ρ-approximation for the Lα -norm

minimization problem, then there exists a ρ-approximation for our
problem.

Proof. If jobs are already assigned to processors, the only vari-

able here is the makespan C , that is the time in which the last jobs

finish. Due to the convexity of the dynamic energy cost, the speed

will be scaled such that all jobs finish at time C . We recall that the

objective function is

∑
(Wi )

α

Cα−1 +Cγ .
Suppose we know the optimal assignment for the following

objective functionW =
∑
(Wi )

α
. In the following, we useWi as

the total workload on processor i of this solution. Similarly, letW ′i
be the total assigned workload on processor i by our algorithm and

the costW ′ =
∑
(W ′i )

α
.

If there exists a
α
√
ρ-approximation for the Lα -norm minimiza-

tion problem, then we have
α√
W ≤

α√
W ′ ≤ α

√
ρ

α√
W .

Consequently, we obtain

W ≤W ′ ≤ ρW (1)

We now show that this approximation ratio still holds

for our problem. Let C = argminx
(
Wx1−α + xγ

)
and

C ′ = argminx
(
W ′x1−α + xγ

)
be the makespan that min-

imizes the dynamic energy consumption for the respective

assignment.

From the above definition, we can deduce that for any other

makespan x , C , we have C1−αW + Cγ ≤ x1−αW + xγ , in
particular for x = C ′.

WC1−α +Cγ ≤ WC ′1−α +C ′γ (2)

W ′C ′1−α +C ′γ ≤ W ′C1−α +Cγ (3)

Our goal is to show that

WC1−α +Cγ ≤ W ′C ′1−α +C ′γ ≤ ρ (WC1−α +Cγ )

We have

WC1−α +Cγ ≤ WC ′1−α +C ′γ by (2)

≤ W ′C ′1−α +C ′γ by (1)

≤ W ′C1−α +Cγ by (3)

≤ ρWC1−α +Cγ by (1)

≤ ρ (WC1−α +Cγ ) because ρ ≥ 1

We showed that if we have a ρ-approximation for the min

∑
wα
i

problem, then we have the same approximation ratio for our prob-

lem. □

We now propose the following Algorithm 1 for assigning jobs

to processors. We consider that jobs have the same processing

requirement on all processors. We denote pj the processor require-
ment of a job j. After assigning jobs to processors, we compute

the optimal processing time (makespan) that minimizes the energy

consumption according to the assignment.
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Algorithm 1 Assignment of jobs

1: for each processor i do
2: Set the loadWi ← 0

3: end for
4: for each job j do
5: Assign job j on the least loaded processor.

6: UpdateWi ←Wi + pj
7: end for

8: Compute the optimal makespan C =
α

√
(α−1)

∑m
i=1W

α
i

γ accord-

ing to the obtained assignment

9: Schedule jobs at speedWi/C on each processor i .

Corollary 3.3. The Algorithm 1 is a
(
2 − Θ

(
ln α
α

))α
-

approximation algorithm when jobs have the same processing
requirement on each processor.

Proof. The part from line 1 to 7 of Algorithm 1 is proposed by

Avidor et al. [5]. Given this assignment of jobs, we have a workload

ofWi on each processor. It has been proved that this assignment is

a

(
2 − Θ

(
ln α
α

))
-approximation for the min

α
√∑

W α
i problem [5].

More formally, letOi be the workload of processor i in an optimal

solution, then we have

α

√√ m∑
i=1
Oαi ≤

α

√√ m∑
i=1

W α
i ≤

(
2 − Θ

(
ln α

α

))
α

√√ m∑
i=1
Oαi

By raising the above equation to the power α , we get

m∑
i=1
Oαi ≤

m∑
i=1

W α
i ≤

(
2 − Θ

(
ln α

α

))α m∑
i=1
Oαi

By Theorem 3.2, we conclude that we have

m∑
i=1
Oαi C

1−α +Cγ ≤
m∑
i=1

W α
i C ′1−α +C ′γ

≤

(
2 − Θ

(
ln α

α

))α
*
,

m∑
i=1
Oαi C

1−α +Cγ +
-

where C and C ′ are the processing time that minimize the cost of

the respective equation.

Thus, we have a

(
2 − Θ

(
ln α
α

))α
-approximation. □

We now need to prove that given the assignment, we can com-

pute the minimum cost schedule in polynomial time.

Property 1. Given the assignment, the total workload isWi on
each processor i , then C = argminx

(∑m
i=1W

α
i x1−α + xγ

)
can be

computed in O (m) time.

Proof. We first show that the function is convex, in particular,

we only need to show that the second derivative is positive. In order

to simplify the notation, we denoteW =
∑
iW

α
i .(

Wx1−α + xγ
) ′′
=W

(
1

xα−1

) ′′
+ (xγ )′′

=W

(
−(α − 1)xα−2

x2(α−1)

) ′
= −(α − 1)W

(
1

xα

) ′
= −(α − 1)W

(
−αxα−1

x2α

)
= α (α − 1)W

(
1

xα+1

)
≥ 0

In order to find the global minimum, we need to find the value of x
that verifies

0 =
(
Wx1−α + xγ

) ′
= −(α − 1)W

(
1

xα

)
+ γ

γ =
(α − 1)W

xα
⇔ x = α

√
(α − 1)W

γ

The optimal makespan of the schedule can be computed as above

in O (m) time because of the sum. □

Theorem 3.4. Algorithm 1 has a complexity of O (m + n logm)
where n is the number of jobs andm the number of processors.

Proof. By maintaining a sorted list of processors according to

their load, we can assign each job to the first processor of the list

and insert this processor in the list with binary search. Finally,

the initialization takes O (m) time, the assignment takes O (n logm)
time, and the optimal makespan can be computed inO (m) time. □

We now propose an Algorithm 2 for the case when jobs have

different processing requirement depending on the type of pro-

cessor to which the job is assigned. We denote pi, j the processor
requirement of a job j if it is assigned to processor i . The variables
yi, j correspond to the assignment of jobs: it is equal to 1 if job j
is assigned to processor i , 0 otherwise. In the following convex

program, we consider fractional assignment, i.e., the variables can

be any positive real number.

The constraints (4) ensure that each job is assigned at least once.

The constraints (5) ensure that the load on processor i is not less
than the assigned workload. After solving this convex program, we

need to round the fractional assignment into integral assignment,

i.e., the variables yi, j will be 0 or 1 after the rounding. This will

give us a feasible schedule. Finally, we calculate the processing time

that minimizes the global energy consumption according to the

assignment.

Corollary 3.5. The Algorithm 2 is a 2α -approximation algorithm
when jobs have different processing requirement on each processor.

Proof. As for Corollary 3.3, we refer to the algorithm proposed

by Azar et al. [7] for the assignment of jobs. They proposed a 2-

approximation algorithm for minimizing themin
α
√∑

W α
i problem

whereWi is the total workload on processor i . Based on their algo-

rithm, we get a 2
α
-approximation algorithm for our problem. □

Even though Algorithm 2 has a constant approximation ratio, it

implies to solve a convex program which may be hard in practice.

We propose a simple algorithm for the case when jobs have

different processing requirement. The idea is to assign jobs to a

processor such that the maximum workload among all processors

changes the least.
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Algorithm 2 Assignment of jobs when jobs have different process-

ing requirement

1: Solve the following Convex Program proposed by Azar et al.

in [7]:

2:

min

m∑
i=1

W α
i +

m∑
i=1

n∑
j=1

yi, jpi, j

s.t.

m∑
i=1

yi, j ≥ 1 ∀j = 1, . . . ,n (4)

n∑
j=1

yi, jpi, j −Wi ≤ 0 ∀i = 1, . . . ,m (5)

yi, j ≥ 0 ∀i = 1, . . . ,m, j = 1, . . . ,n (6)

3: Round the fractional assignment into integral assignment pro-

posed by Shmoys and Tardos in [30].

4: for each processor i do
5: Set the loadWi ←

∑n
j=1 yi, jpi, j

6: end for

7: Compute the optimal makespan C =
α

√
(α−1)

∑m
i=1W

α
i

γ accord-

ing to the obtained assignment

8: Schedule jobs at speedWi/C on each processor i .

Algorithm 3 Unobtrusive Fit: Assignment of jobs on heteroge-

neous environment

1: for each processor i do
2: Set the loadWi ← 0

3: end for
4: Set yi, j ← 0 for each processor i and each job j.
5: Sort jobs in non-ascending order of workload.

6: for each job j do
7: //Assign job j that modify the least the maximum workload.

8: i⋆ = argminiWi + pi, j
9: UpdateWi⋆ ←Wi⋆ + pi⋆, j
10: yi⋆, j ← 1

11: end for

12: Compute the optimal makespan C =
α

√
(α−1)

∑m
i=1W

α
i

γ accord-

ing to the obtained assignment

13: Schedule jobs at speedWi/C on each processor i .

Note that in Algorithm 3, we sort jobs in non-ascending order of

workload. It can be done only when jobs follow the same order on

each processor. If we consider the case when jobs have arbitrary

processing requirement, then we cannot get an order of the jobs.

As we consider the CPU-GPU environment, we assume that two

jobs will keep the same ratio of processing requirement on CPU as

well as GPU.

The intuition to sort jobs in this way comes from the fact that

if we schedule large jobs first, it will keep small jobs later, and

therefore the modification on the maximum workload will be less

significant.

4 PERFORMANCE EVALUATION
In the previous section, we show that there exists polynomial time

approximation algorithm for our problem. However, as the dynamic

power consumption follows the cube-root rule most of time, the

approximation ratio is 2
α = 8 which is not acceptable in practice.

We compare the quality of the solutions of classical algorithms with

the optimal solution. Moreover, we supposed previously that we

can scale the frequency of the CPU or GPU at any value, which may

not be true in practice. Therefore, we consider that each processing

unit has a set of available speeds, and we denote it Si for a pro-

cessor i . Notice that the cost may be higher in this case since due

of the convexity of the power consumption function, the optimal

frequency may not be in the set of available speeds. We compare

Unobtrusive Fit (Algorithm 3) with previous algorithms by simu-

lations. In the context of energy saving, we also need to consider

the running time of these algorithms.

To compute the optimal solution, we formulate our problem with

the following Integer Linear Program (Algorithm 4).

We denote xi, j,s as the workload of job j on processor i running
at speed s .

Algorithm 4 Integer Linear Program for the energy minimization

scheduling problem.

min

∑
s ∈Si

∑
i

∑
j
Kixi, j,s

(
sVi
sbase

)
2

+Cγ

s.t.

∑
i
yi, j = 1 ∀j (7)∑

s ∈Si

xi, j,s = pi, jyi, j ∀i, j (8)

∑
s ∈Si

∑
j

xi, j,s

s
≤ C ∀i (9)

yi, j ∈ {0, 1} ∀i, j (10)

xi, j,s ≥ 0 ∀i, j, s (11)

C ≥ 0 (12)

The constraints (7) ensure that each job is assigned exactly to

one processor. The constraints (8) ensure that each job is entirely

processed on the assigned processor. Finally, the constraints (9)

give us the makespan of the schedule. The objective function is

to minimize the summation of dynamic energy and static energy.

Moreover, we suppose that by scaling the frequency, we can also

change the voltage of the processor as consequence in order to

minimize the energy consumption. Indeed, if the voltage cannot be

scaled, we can see that the dynamic energy is the same whatever

the speed it is executed when the dynamic energy is defined by

KiV
2

i
∑
s ∈Si xi, j,s for a given job j on processor i . Then we can

simply schedule every job at the maximum speed to reduce the

static energy.

Note that in the discrete speed model, we can use the integer

linear program in Figure 4. Since the assignment of jobs is given, the

binary variablesyi, j are fixed, therefore it becomes a linear program

where we only need to find the speed execution of jobs and it can
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be solved efficiently with a solver. We compare the optimal solution

with the different schedules obtained by the following algorithms:

• L2-OPT (Algorithm. 5): the optimal solution of L2-norm;

• L2-approx (Algorithm 2): a 2
α
-approximation algorithm of

our problem;

• MS-approx: a 2-approximation algorithm for the makespan

minimization problem when jobs have different processing

requirement and proposed by Lenstra et al. [21];

• Unobtrusive Fit (Algorithm 3).

We are interested in the approximation ratio of each algorithm

by dividing the obtained cost by the optimal cost.

The L2-OPT algorithm corresponds to the following integer con-

vex program (Algorithm 5).

Algorithm 5 Integer Convex Program based on the L2-norm

min

∑
i

*.
,

∑
j
yi, jpi, j

+/
-

2

s.t.

∑
i
yi, j = 1 ∀j (13)

yi, j ∈ {0, 1} ∀i, j (14)

Constraints (13) ensure to assign each job to processors. As the

constraints (14) ensure that we have integer variables, thus the

solving may take time, indeed the integer convex programming is

harder than the integer linear programming.

In order to support the relevance of the experiments, we consider

a situation where we have a set of Intel CPUs Core E5-2650v3 and

a set of Nvidia GPUs Tesla K40. The following table summarizes

the features of these the computation units. We suppose that jobs

Table 3: Features of the used environment

CPU GPU

Model E5-2650 v3 K40

Processing Power (GFLOPS) 320 1430-1680

TDP (W) 105 235

Base Frequency (GHz) 2.3 0.8

Available Frequency (GHz) 1.6 ; 1.833 ; 2.067 0.5; 0.6; 0.7

Overclock Frequency (GHz) 2.533; 2.767 ; 3 /

Voltage (V) 1.3 12

Capacitance 2.70131E-06 2.03993E-06

are fully supported by both CPU and GPU. If a job is assigned to a

CPU, it can be processed by using all its cores, and as well for GPU.

The theoretical computational capacity of the E5-2650 v3 [19] is

320 GFLOPS while the K40 [28] is between 1430 and 1680 GFLOPS

in double precision. Therefore, the factor of the Processing Power

is within [4.46; 5.25].

The experiments are written in Python and we use Gurobi [18]

to solve both linear programs and convex programs. For every

case, we generated 40 instances of jobs and took the average of the

approximation ratio.

We first compare the different algorithms by changing the pa-

rameter γ = {0.001, 0.01, 0.1, 1} and with different size of instance,

i.e., the number of jobs is between 100 and 1000. Moreover, we

consider that there is 100 CPUs and 100 GPUs. The different re-

sults can be found respectively in Figures 1, 2, 3 and 4. Moreover,

the comparison of the running time of different algorithms can be

found in Table 4.

Table 4: Running time of the different algorithms (in sec-
onds)

jobs L2-OPT L2-approx MS-approx Unobtrusive Fit

100 1724.27 44.02 12.15 0.04

200 383.11 212.63 28.32 0.08

300 653.57 1068.55 45.29 0.13

400 108.72 1856.96 60.99 0.17

500 171.71 2618.88 79.79 0.21

600 289.22 5628.96 101.15 0.25

700 330.83 7510.32 117.80 0.28

800 422.75 9825.46 137.18 0.32

900 541.94 11495.95 158.76 0.36

1000 764.61 18248.75 185.90 0.39

We can observe that L2-approx has the worst performance com-

pared to the other algorithms especially when there are few jobs.

Moreover, its running time is also the worst when there are more

than 300 jobs to assign.

MS-approx has also bad performance but is more competitive

than L2-approx and its running time is much better than L2-approx.
Its approximation ratio is around 2 as we can observe in Figure 4.

Even though L2-OPT has better approximation ratio, it is still an

integer convex program, thus the running time can not be bounded

in the worst case. However, we observe in the simulation that it

takes less time than solving the L2-approx when there are more

jobs (less than 300) but its running time is high when there are few

jobs. Finally, Unobtrusive Fit has an approximation ratio less than

1.2 for any number of jobs (between 100 and 1000) and it takes less

than 1 second for 1000 jobs instance. On the other hand, we observe

that the approximation ratio decreases when there are more jobs

for all algorithms.

In the following, we investigate the modification of the input

data, i.e., the processing requirement of the jobs. Indeed, we only

considered processing requirement of jobs to assign them to proces-

sors. We now take into account the parameters of the processors,

i.e., the capacitance, the voltage and and the maximum speed.

We will consider four combinations of these parameters:

• VCS: Voltage, Capacitance and maximum Speed

• VC: Voltage and Capacitance

• VS: Voltage and maximum Speed

• CS: Capacitance and maximum Speed

The processing requirements are modified as follows: For every

parameter Π, we multiply the initial workload by Πi/Π1 where Π1

is the value of the parameter of the first processor. More formally,

we have for the different combination the following calculation for

each job j and each processor i:

• VCS: pi, j ← pi, j ×
Vi
V1

×
Ci
C1

×
max Si
max S1
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Figure 1: Approximation ratio of differ-
ent algorithms with 100 CPU and 100
GPU with γ = 0.001
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Figure 2: Approximation ratio of differ-
ent algorithms with 100 CPU and 100
GPU with γ = 0.01
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Figure 3: Approximation ratio of differ-
ent algorithms with 100 CPU and 100
GPU with γ = 0.1
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Figure 4: Approximation ratio of differ-
ent algorithms with 100 CPU and 100
GPU with γ = 1
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Figure 5: Approximation ratio of Unob-
trusive Fit with 100 CPU and 100 GPU
and γ = 1
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Figure 6: Approximation ratio of Unob-
trusive Fit with 500 jobs, 50 CPU and
γ = 1

• VC: pi, j ← pi, j ×
Vi
V1

×
Ci
C1

• VS: pi, j ← pi, j ×
Vi
V1

×
max Si
max S1

• CS: pi, j ← pi, j ×
Ci
C1

×
max Si
max S1

We first compare the different modifications of input on Unob-

trusive Fit under the same environment, i.e., there are 100 CPUs

and 100 GPUs and we consider that the static energy rate is γ = 1.

After running Unobtrusive Fit on these modifications of input,

we get an assignment of jobs on processors and we calculate the

energy consumption with initial input. The results can be found in

Figure 5.

First, we observe that there are two groups of results. When we

modify the processing requirement with VS (Voltage and maximum

Speed) or with VCS (Voltage, Capacitance andmaximum Speed), the

obtained assignments are very bad. They are even worse than the

previous algorithm that we compared before. The approximation

ratios are between 3 and 4. Secondly, the modification of input ac-

cording to VC (Voltage and Capacitance) is still worse than without

modification and the approximation ratios are less than 2. Finally,

the modification of input according to CS (Capacitance and maxi-

mum Speed) is better than without modification. Its approximation

ratios are also less than 1.2.

We then investigate the performance of Unobtrusive Fit when

there are different numbers of GPUs. In particular, we compare

the case when there are more or less GPUs than the number of

CPUs (see Fig.6). As previously, we observe that when we modify

the processing requirement with VS or with VCS rule, the result-

ing schedules are bad for our problem. The approximation ratio

increases when the number of GPUs increases. The approximation

ratio is almost 5 when there are 100 GPUs and 50 CPUs. Except

when there is less than 20 GPUs in our environment, the result-

ing schedule without modification in the input is better than the

modification of processing requirement according to VC. The mod-

ification of input according to CS rule is the best, resulting in an

approximation ratio less than 1.16 in all the simulated cases.

5 ONLINE ALGORITHM
We now suppose that jobs arrive over time. Each job j has a release
time r j at which it is revealed. The goal is to minimize the total

energy cost, our idea is to exploit the Unobtrusive Fit algorithm

whenever jobs arrive in order to assign them to processors. We

then compute the optimal schedule according to this assignment

of jobs. When another job is released, we update the load of each
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processor according to what it has been executed until this moment

and apply the Unobtrusive Fit algorithm again.

Algorithm 6 Online Unobtrusive Fit: Assignment of jobs on

heterogeneous environment

1: for each processor i do
2: Set the loadWi ← 0

3: end for
4: Set yi, j ← 0 for each processor i and each job j.
5: while Jobs arrive do
6: Let J be the set of jobs that arrive at time t .
7: Use Algorithm 3 (Unobtrusive Fit) with J and the load

Wi for each processor i
8: Execute jobs according to the obtained schedule and update

the remaining loadWi for each processor i .
9: end while

To compute the optimal solution, we formulate our problem with

the following Integer Linear Program (Algorithm. 7). We denote

xi, j,s,z as the workload of job j on processor i running at speed s
on zone z.

The difference with the previous section is that we have to assign

fragment of each job on different zone. We define a zone as an

interval of time between two release time. Let T = ∪nj=1r j be the

set of release time, and denote t1 < t2 < . . . < t |T | the elements of

T . Then the zone z is the following time interval [tz , tz+1) while
the length is ℓ(z) = tz+1 − tz . Note that the last zone is arbitrary
large, when z = |T |, we have tz+1 = +∞.

time

r1

r2

r4 r7

r3 r5
r6

t1 t2 t3 t4

zone 1 zone 2 zone 3 zone 4

Figure 7: Example of different zones. Job 1 is released at time
t1, jobs 2, 3 and 4 are released at time t2, jobs 5 and 6 are
released at time t3 and job 7 is released at time t4.

The constraints (15) ensure that each job is assigned exactly to

one processor. The constraints (16) ensure that each job is entirely

processed on the assigned processor. The constraint (17) gives us

the makespan of the schedule. We can see that this constraint is

sufficient for the makespan. Indeed, by considering the last zone,

the linear program will assign the maximum amount of workload

in the other zones. The constraints (18) ensure that in each zone,

the processing time does not exceed the length of the zone. Finally,

the constraints (19) ensure that each job cannot be scheduled before

it is released. Note that the makespan of the schedule is at least

t |T | since it is a release time. Thus, at least one job needs to be

scheduled after this time. The objective is to minimize the total

energy.

Algorithm 7 Integer Linear Program for the energy minimization

scheduling problem with release time.

min

∑
t ∈T

∑
s ∈Si

∑
i

∑
j
Kixi, j,s,t

(
sVi
sbase

)
2

+Cγ

s.t.

∑
i
yi, j = 1 ∀j (15)

|T |∑
z=1

∑
s ∈Si

xi, j,s,z = pi, jyi, j ∀i, j (16)

t |T |+
∑
s ∈Si

∑
j

xi, j,s, |T |

s
≤ C ∀i (17)

∑
s ∈Si

∑
j

xi, j,s,z

s
≤ ℓ(z) ∀i, z (18)

xi, j,s,z = 0 ∀i, j, s, tz < r j (19)

yi, j ∈ {0, 1} ∀i, j (20)

xi, j,s,z ≥ 0 ∀i, j, s, z (21)

C ≥ 0 (22)

5.1 Experiments setting
We consider there are 50 GPUs and 100 CPUs (core) for different

number of jobs : 100, 200, . . . , 1000. We compare the offline optimal

solution given by the Integer Linear Program (Algorithm 7) with

the energy consumption of the online algorithm (Algorithm 6). The

performance of the algorithm is given by the ratio of the respective

cost. As for the previous part, we take into account the different

parameter of each CPU before assigning jobs to processors (VC, VS,

CS, VCS).

We first define how to generate the release time of jobs. We

consider the following function from [22]:

request (x ) =0.0001x6 + 0.0064x5 − 0.2251x4+

2.9466x3 − 7.634x2 − 34.53x + 174.7863

The function request (x ) represents the request rate according to

the time. It starts at midnight and ends at midnight of the next day.

We consider that this function is within the interval x ∈ [0, 15.2]
in order to get the same value at x = 0 and x = 15.2 We mapped

this function into the interval [0, 1440] minutes by multiplying the

value x by 94.74. The representation of this function can be found

in Figure 9.

Then we use the exponential distribution which is given by the

following function F (x ) = 1−e−λx . The value of λ is the rate of the

distribution. When this rate is higher, the probability to get the next

event in a short period is higher. Typically, let us suppose we have

λ and we pick a random value r in [0, 1] in a uniform distribution,

then the next event will happen after x minutes with respect to the

equation 1 − e−λx = r . For example, let λ = 1/10 and r = 0.5, then

the next event will happen after 6.93 minutes. This distribution for

different value of λ can be found in Figure 8.

We combine this exponential distribution with the request rate

function. In the request rate function, the maximum value is 383.

Thus, we set λ =
r equest ( t

94.74 )
383

which is the ratio between the
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Figure 8: Exponential distribution
F (x ) = 1 − e−λx for λ = 0.9, 0.1 and 0.025.
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Figure 9: Request rate function with re-
spect to the time x for x ∈ [0, 15.2]

where request (x ) = 0.0001x6 + 0.0064x5 −
0.2251x4 + 2.9466x3 − 7.634x2 − 34.53x +
174.7863
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Figure 10: Approximation ratio of On-
line Unobtrusive Fitwith 100 CPU and
50 GPU and γ = 1

request rate at time t and the maximum value. We then pick a

random value in [0, 1] with a uniform distribution. Thus, we aim

to solve the following equation: 1 − e−λx = r ⇔ 1 − r = e−λx ⇔

log(1 − r ) = −λx ⇔ x = −
log(1−r )

λ . We then update the time t to
t + x .

Algorithm 8 Generation of release time of jobs with exponential

distribution

1: Input: time t in minutes

2: request (x ) = 0.0001x6 + 0.0064x5 − 0.2251x4 + 2.9466x3 −
7.634x2 − 34.53x + 174.7863

3: λ =
r equest

(
t mod 1440

94.74

)
383

4: r ← random value in [0, 1] with uniform distribution

5: t ′ = −
log(1−r )

λ
6: Update t ← t + t ′

7: return t

It can be noticed that if the value of λ is higher, then the next

event will happen after a shorter period. As shown in the request

rate function, during off-peak hour, the request rate is low, then

the next event will happen after a longer period.

According to experiments results, we observe that the results are

opposite. Unlike the previous part where there is no release time,

the performance of Online Unobtrusive Fit becomes bad when

we consider original processing requirement and when we modify

the processing requirement according to the Capacitance and the

maximum Speed (CS). The approximation ratio is between 2 and 3.

However, the Online Unobtrusive Fit for the other rules (VCS,

VC, VS) has a better performance. Their approximation ratios are

less than 1.5. Moreover, we observe that for VS and VCS rules, the

approximation ratio of Online Unobtrusive Fit is less than 1.2

when there are more than 400 jobs.

6 CONCLUSION
In this paper, we first showed that the problem of assigning jobs

on CPU-GPU heterogeneous systems with speed-scaling is NP-

hard. We then showed that there exists a constant approximation

algorithm when processors can scale into any continuous speed.

Since the approximation is not small, we propose a heuristic al-

gorithm and compare with some classical scheduling algorithms in

terms of performance and execution time. However, in practice, pro-

cessors are given a set of speeds that can be scaled. Our simulation

results show that the proposed heuristic algorithm (Unobtrusive

Fit) is very effective and can achieve near-optimal performance in

all simulated cases. It consumes only 20% more energy compared to

the optimal assignment. Especially when we modify the processing

requirement of jobs according to the Capacitance and the maximum

Speed of the processor, the proposed heuristic returns a schedule

with a cost at most 16% more than the optimal schedule.

In a second part, we consider the online setting. Jobs arrive over

time and they are discovered only once we reach this time. We

adapted the proposed heuristic for this setting. Moreover, we gen-

erate the set of release time according to a request rate function

and we apply the Unobtrusive Fit algorithm each time a job is

discovered. Finally, we find that, unlike the previous part where

there is no release time, and when we modify the processing re-

quirement according to the Capacitance and the maximum Speed or

when we do not modify, the performance of Online Unobtrusive

Fit becomes bad, while the other rules (VCS, VC, VS) consume on

average 50% more energy compared to the optimal solution.

Depending on whether there is release time or not, we may use

different rule of modification of processing requirement in order to

get a better assignment of jobs on heterogeneous environment.
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