
The Impact of GPU DVFS on the Energy and Performance of
Deep Learning: an Empirical Study
Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu

Department of Computer Science
Hong Kong Baptist University, Hong Kong

{zhtang,yxwang,qiangwang,chxw}@comp.hkbu.edu.hk

ABSTRACT
Over the past years, great progress has been made in improving
the computing power of general-purpose graphics processing units
(GPGPUs), which facilitates the prosperity of deep neural networks
(DNNs) in multiple fields like computer vision and natural language
processing. A typical DNN training process repeatedly updates tens
of millions of parameters, which not only requires huge computing
resources but also consumes significant energy. In order to train
DNNs in a more energy-efficient way, we empirically investigate
the impact of GPU Dynamic Voltage and Frequency Scaling (DVFS)
on the energy consumption and performance of deep learning. Our
experiments cover a wide range of GPU architectures, DVFS set-
tings, and DNN configurations. We observe that, compared to the
default core frequency settings of three tested GPUs, the optimal
core frequency can help conserve 8.7%∼23.1% energy consump-
tion for different DNN training cases. Regarding the inference, the
benefits vary from 19.6%∼26.4%. Our findings suggest that GPU
DVFS has great potentials to help develop energy efficient DNN
training/inference schemes.

CCS CONCEPTS
• Hardware→ Power and energy.

KEYWORDS
Graphics Processing Units, Dynamic Voltage and Frequency Scaling,
Deep Convolutional Neural Network
ACM Reference Format:
Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu. 2019. The Im-
pact of GPU DVFS on the Energy and Performance of Deep Learning: an
Empirical Study. In e-Energy ’19: Proceedings of the Tenth ACM International
Conference on Future Energy Systems, June 25–28, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3307772.3328315

1 INTRODUCTION
Recent years witnessed the fast development of deep neural net-
works (DNN)[20] that can achieve the state-of-art performance
in many challenging AI problems, such as image recognition [10,
14, 18, 41, 43], object detection [12, 27, 37] and natural language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6671-7/19/06. . . $15.00
https://doi.org/10.1145/3307772.3328315

processing. However, this kind of successful applications heavily
rely on the DNN training procedure, which requires a huge number
of computational resources. Graphics processing units (GPUs) are
currently the most widely used hardware to accelerate the training
speed of DNNs. Different from the conventional CPUs, a high-end
GPU board includes thousands of cores and a memory module with
hundreds of Gigabytes of memory bandwidth.

While most of the previous work addressed the model accuracy
and training performance [13, 15, 47], the energy consumption of
those high-throughput GPU machines is usually overlooked. Large
scale distributed systems [6, 8, 9, 13, 22, 24, 26] are being deployed
to speed up the training of complex DNNs, but they also consume
a significant amount of electricity. It becomes a critical issue to
investigate the trade-off between training performance and energy
consumption.

Dynamic voltage and frequency scaling (DVFS) is a widely used
technique to balance the performance and power consumption
of CPUs. In general, scaling up the CPU voltage/frequency can
improve the performance but requires more power supply [2, 17, 30,
46]. Different fromCPUs, GPUs have two sets of frequency domains,
the core frequency (f core) that controls the speed of ALU cores
and other on-chip components, and the memory frequency (fmem)
that controls the SDRAM module. Since different GPU applications
have different utilization of GPU cores and SDRAM [28, 31], raising
the frequency of the components with low utilization may bring no
performance improvement but consume higher power. Furthermore,
because energy consumption depends on the system power and
running time, it is a non-trivial problem to understand how GPU
DVFS affects the energy consumption of DNN training.

In this study, we empirically evaluate the performance and en-
ergy consumption of DNNs training under different GPU DVFS
settings and investigate the impact and energy conservation op-
portunities of GPU DVFS. Our experiments cover a wide range of
GPU architecture generations, GPU DVFS settings, neural network
configurations and convolution algorithms. Our major findings are
listed as follows:

(1) Scaling up the GPU core frequency can improve the perfor-
mance of DNN training and inference in varying degrees.
Especially for the Turing GTX 2080Ti, the performance of
different DNN training can achieve 17.4%∼38.2% improve-
ments by applying a 50% higher core frequency than the
default setting, while the performance of inference can be
improved by 22.5%∼33.0%.

(2) We observe that the default frequency settings are usually
not optimal for energy efficiency. For the Pascal P100 and
Volta V100 GPUs, the energy scaling curves with increas-
ing core frequency generally show a valley trend and there

https://doi.org/10.1145/3307772.3328315
https://doi.org/10.1145/3307772.3328315

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu

exists a sweet spot. Compared to the default setting, the opti-
mal core frequencies discovered by our experiments achieve
23.1%, 14.5% and 8.7% average energy conservation for DNN
training on three GPUs, respectively. For DNN inference, the
average benefits are 26.4%, 22,3%, and 19.6%.

(3) Three convolution algorithms, GEMM, FFT and Winograd,
have varying degrees of energy conservation when apply-
ing GPU DVFS techniques. Compared to the default setting,
the optimal core frequency brings an average 14.5% energy
savings for GEMM, 12.6% for FFT and 15.8% for Winograd.

The rest of this paper is organized as follows. Section 2 introduces
the background knowledge and related work of DNNs and GPU
DVFS. Section 3 describes our experimental design and setup. Sec-
tion 4 demonstrates our experimental results and discusses the
impact of GPU DVFS on the performance and energy consump-
tion of different DNNs. Finally, Section 5 concludes our work and
discusses some future research directions.

2 BACKGROUND AND RELATEDWORK
2.1 Convolutional Neural Networks
DNNs have been rapidly developed as one of the most popular
machine learning algorithms. Specifically, convolutional neural
networks (CNNs) have achieved state-of-the-art performance in
many AI applications. A typical CNN includes many convolutional
layers [14, 18, 41]. Some studies [42] indicated that the computation
of convolution layers usually dominate the training time. Besides,
GPUs have been acknowledged as one of the most powerful devices
to accelerate DNN training, whereas the downside is the huge
energy consumption. It is important to develop not only fast but
also energy efficient DNN training for GPUs.

There are three popular implementations of the convolution
operation. The first approach is transforming the convolution to
matrix multiplication [5], which can then benefit from the highly
optimized GPU library. The second approach is based on Fourier
transform [32], which transforms the convolution operation in
the spatial domain to point-wise multiplications in the Fourier
domain. The last one is the Winograd algorithm [19], which applies
transforms to the input image and kernel to reduce the number of
multiplications. NVIDIA’s cuDNN library [7] implements all three
algorithms. In addition to the exploration of the performance of
different convolution algorithms in [25], it is also important to
investigate their energy efficiency.

2.2 GPU DVFS
Recently NVIDIA has reinforced their GPUs with the extraordinary
computational capability to meet the requirements of DNN training.
For example, AutoML techniques often fully utilize hundreds or
even thousands of GPUs to search for an efficient DNN structure
with several weeks. E.g., Barret et. al [48] adopted 800 GPUs to
search for an efficient RNN for language modeling on PTB dataset.

DVFS is one of the most typical energy conservation techniques
for traditional CPUs. Some previous GPU DVFS works indicated
that GPUs have more complex energy scaling behaviors, and fo-
cused on how to balance the performance and energy efficiency
of GPUs [1, 2, 11, 17, 21, 30, 36, 44, 45]. Mei et al. [29] and Chau
et al. [4] further adopted those DVFS-based energy conservation

techniques to implement energy-efficient task scheduling for high-
performance clusters. Recent papers [23, 38–40] focused on the
performance of scalability of DNN training on different software
and hardware environments. Li et al. [23] and Cai et al. [3] started
to explore the energy characteristics of DNN processing on GPUs.
We believe that it is essential to develop a deeper exploration of the
impact of GPU DVFS on deep learning.

3 METHODOLOGY
To conduct a solid exploration of the impact of GPU DVFS on deep
learning, we design comparative experiments to cover different
facets, including GPU architecture, DVFS setting, the structure of
DNNs, and convolution algorithms.

3.1 Hardware Setup
Weperform our experiments on a singlemachine, which is equipped
with an Intel i7 920 CPU and 8 GB main memory. We study three
different GPUs, of which configurations are listed in Table 3 of the
appendix. The default frequency settings are bolded. Due to the
limited support offered by the GPU vendor, we can only control
the frequencies while the NVIDIA driver will automatically adjust
the voltage accordingly. We tune the GPU frequency setting with
NVIDIA Inspector [35] and nvidia-smi [34].

3.2 Network Setup
We explore the impact on both the training and inference proce-
dures of DNN. Caffe [16] and TensorRT1 are chosen as our training
and inference implementations respectively. The CUDA version is
10.0 and the cuDNN version is 7.4.2 for both toolkits. We test four
popular DNNs (i.e., AlexNet[18], VggNet-16[41], GoogleNet[43]
and ResNet-50[14]), and their setups are listed in Table 4 of the
appendix. Different batch sizes are tested for different DNNs accord-
ing to the GPU memory availability. To explore the impact of DVFS
on different convolution algorithms, we revise the Caffe source
code to allow fixing the desired convolution algorithm. We test
three algorithms, GEMM, FFT and Winograd. They are marked as
ipc_gemm, fft_tile, winograd in the figures of Section 4 respectively.

3.3 Performance and Power Measurements
ForDNN training, we define the performance, denoted by Per , as the
processing images per second. We repeat the experiments for 120
times and record the average time of one training iteration and Per
can be obtained by dividing it by the batch size. The performance
of inference is similar to training, except that it only records the
time of forwarding. We measure the power consumption, denoted
by Pow , by the NVIDIA management library (NVML)[33] API. We
implement a thread to sample the instantaneous power data during
the training/inference procedure and the sampling interval is 2 ms.
Since the thread may record those power data sampled before or
after GPU execution, we intercept those power data within DNN
processing from the sampling results and take the average value.
After obtaining all the performance and power data, we describe
the energy consumption, denoted by E, with Pow

Per , which represents
the average energy required by training/inferring a picture.

1https://developer.nvidia.com/tensorrt

The Impact of GPU DVFS on the Energy and Performance of Deep Learning e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

510 652 802 945 1087 1237 1380
coreF (Hz)

0

200

400

600

800

1000

1200

1400

1600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

alexnet-b1024 Perf.

alexnet-b1024 Energy

resnet-b32 Perf.

resnet-b32 Energy

vggnet-b64 Perf.

vggnet-b64 Energy

googlenet-b128 Perf.

googlenet-b128 Energy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

en
er

gy
(J

/i
m

ag
e)

(a) The performance and energy of V100

950 1150 1350 1550 1750 2050
coreF (Hz)

0

200

400

600

800

1000

1200

1400

1600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

alexnet-b512 Perf.

alexnet-b512 Energy

resnet-b16 Perf.

resnet-b16 Energy

vggnet-b64 Perf.

vggnet-b64 Energy

googlenet-b64 Perf.

googlenet-b64 Energy

0.0

0.5

1.0

1.5

2.0

2.5

en
er

gy
(J

/i
m

ag
e)

(b) The performance and energy of GTX 2080Ti

Figure 1: The impact of different core frequency settings on performance and energy consumptions of DNNs training.

Notice that both core and memory frequency scaling are adopted
to GTX 2080Ti.When exploring the effects of core frequency scaling,
we calculate the geometric mean value among all the samples of
each particular core frequency. The similar treatment is also used
to explore the effects of memory frequency scaling and different
convolution algorithms.

4 EXPERIMENTAL RESULTS
Due to the space limit, we only highlight some significant findings
in the experimental results analysis. The complete experimental
data can be found in the appendix.

510 652 802 982 1087 1237 1380
coreF (Hz)

0

50

100

150

200

250

300

p
ow

er
(W

)

alexnet Power

alexnet Perf.

resnet50 Power

resnet50 Perf.

vgg16 Power

vgg16 Perf.

googlenet Power

googlenet Perf.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) The performance and power of V100

510 652 802 982 1087 1237 1380
coreF (Hz)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
ne

rg
y

(J
/i

m
ag

e)

alexnet resnet50 vgg16 googlenet

(b) The energy of V100

950 1150 1350 1550 1750 2050
coreF (Hz)

0

50

100

150

200

250

300

350

p
ow

er
(W

)

alexnet Power

alexnet Perf.

resnet50 Power

resnet50 Perf.

vgg16 Power

vgg16 Perf.

googlenet Power

googlenet Perf.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) The performance and power of GTX
2080Ti

950 1150 1350 1550 1750 2050
coreF (Hz)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

en
er

gy
(J

/i
m

ag
e)

alexnet resnet50 vgg16 googlenet

(d) The energy of GTX 2080Ti

Figure 2: The impact of different core frequency settings on
performance, power and energy consumption of DNN infer-
ence.

4.1 Impact of GPU DVFS on Performance and
Energy Efficiency

Figure 1 shows the impact of different core frequency settings on
the performance and energy consumption of DNN training. Some
interesting phenomena are observed. First, scaling up the core
frequency generally helps improve the training speed, especially
for AlexNet and GoogleNet. The default core frequency of P100
and V100 are also the highest, which reasonably achieve the best

performance. For GTX 2080Ti, scaling up the default 1350 MHz to
2050MHz has 17.4%∼38.2% performance improvements for different
DNNs. Second, P100 and V100 generally perform a valley trend
in the energy scaling curve with increasing core frequency. They
achieve a sweet spot of the best energy efficiency in the middle
core frequency level, while GTX 2080Ti seems to benefit more
from a higher core frequency. The possible reason is that two Tesla
GPUs have a dramatically increasing power consumption (refer to
appendix) when the core frequency surpasses 1,000 MHz, while
GTX 2080Ti does not have this issue.

Different DNNs also demonstrate different performance and en-
ergy characteristics. The four DNNs have different numbers of con-
volution layers. It is reasonable that AlexNet always achieves the
best performance and the best energy efficiency, while ResNet-50
has the lowest throughput and needs the largest energy consump-
tion for each image processing. Notice that ResNet-50 shows the
best convergence and classification accuracy among four DNNs.
The progress of DNNs needs the support of GPU computing energy.

Table 1: Energy Conservation on DNN training/inference by
the optimal core frequency: different CNNs

network DNN training DNN inference
P100 V100 2080Ti P100 V100 2080Ti

AlexNet 25.7% 7.7% 20.2% 28.7% 17.9% 21.3%
VggNet-16 19.1% 17.9% 9.2% 25.7% 18.9% 26.9%
GoogleNet 24.3% 7.0% 2.3% 28.2% 27.8% 10.9%
ResNet-50 23.1% 25.3% 3.2% 23.1% 24.7% 19.5%

Figure 2 illustrates the impact of different core frequency set-
tings on DNN inference. It is observed that the benefits of GPU
DVFS is similar to DNN training. Higher core frequency leads to
better image processing throughput. For GTX 2080Ti, scaling up
the default 1350 MHz to 2050 MHz has 22.5%∼33.0% performance
improvements for different DNNs. The energy curves of P100 and
V100 achieve the best energy efficiency in the middle frequency
zone, while GTX 2080Ti benefits more from a high frequency.

It is also interesting to explore the energy saving by applying
the optimal frequency setting compared to the default one. Table 1
concludes the results. Compared to the default setting, the optimal
core frequency found in our experiments helps achieve remarkable

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu

energy conservation for DNNs training (23.1% for P100, 14.5% for
V100 and 8.7% for GTX 2080Ti on average). For DNNs inference,
the average benefits are 26.4%, 22,3%, 19.6% for three GPUs.

4.2 Impact of GPU DVFS on Convolution
Algorithms

Figure 3 illustrates the impact of GPU DVFS on the performance
and energy consumption of DNNs training when applying different
convolution algorithms. For P100 and V100, the performance of
three algorithms performs a similar linearly increasing trend with
scaling up the core frequency. The energy consumption curves
of them also show a valley trend and have a sweet spot on the
middle-level core frequency. It can be interpreted by the fact that
the power consumption of P100 and V100 have a larger jump when
the core frequency surpasses 1,000 MHz. Different from P100 and
V100, the performance of ipc_gemm on GTX 2080Ti shows a higher
acceleration rate than fft_tile and Winograd.

Table 2: Energy Conservation on DNN training by the opti-
mal core frequency: different convolution algorithms

Algorithm P100 V100 2080Ti
GEMM 23.3% 14.0% 6.3%
FFT 23.1% 11.5% 3.1%
Winograd 25.1% 11.3% 11.0%

Besides, we notice that the power consumption of fft_tile and
winograd have negligible changes when adjusting the core fre-
quency. We also have explored the effects of memory frequency
scaling and found it not significant. Thus, it is possible that the
current implementations of those two convolution algorithms on
Turing GPUs still cannot fully utilize the computational resources.
Table 2 concludes the energy conservation results of applying the
optimal core frequency on three convolution algorithms, compared
to the default setting. The average energy conservation is 14.5% for
GEMM, 12.6% for FFT and 15.8% for Winograd respectively.

4.3 Discussion
We have investigated the benefits brought by GPU DVFS for the
performance improvement and energy conservation of DNN train-
ing/inference. First, the performance improvement brought by scal-
ing up the core frequency depends on the GPU core utilization of
the software. On the one hand, DNN training includes the data
loading step that is not operated on GPUs. Whether the data load-
ing latency can be well hidden significantly affects the GPU core
utilization. On the other hand, the GPU kernels of tackling DNN
training/inference mainly determine the GPU core utilization. No-
tice that for GTX 2080Ti, scaling up the default core frequency
by 1.5× has 1.17∼1.38× performance improvement for DNN train-
ing and 1.22∼1.33× for DNN inference. Although Caffe, cuDNN
and TensorRT have highly optimized implementations for DNN
training/inference, the performance gap still exists.

Second, whether GPU DVFS helps conserve the energy consump-
tion of DNN training/inference depends on the changing curves of
both performance and power with the increase of the core/memory
frequency. For example, as shown in Figure 2(a), the performance of

510 652 802 945 1087 1237 1380
coreF (Hz)

0
20
40
60
80

100
120
140
160
180
200

p
ow

er
(W

)

ipc gemm Power

ipc gemm Perf.

winograd Power

winograd Perf.

fft tile Power

fft tile Perf.

0

100

200

300

400

500

600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) The performance and power of V100

510 652 802 945 1087 1237 1380
coreF (Hz)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

en
er

gy
(J

/i
m

ag
e)

ipc gemm winograd fft tile

(b) The energy of V100

950 1150 1350 1550 1750 2050
coreF (Hz)

0

50

100

150

200

250

300

p
ow

er
(W

)

ipc gemm Power

ipc gemm Perf.

winograd Power

winograd Perf.

fft tile Power

fft tile Perf.

0

50

100

150

200

250

300

350

400

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) The performance and power of GTX
2080Ti

950 1150 1350 1550 1750 2050
coreF (Hz)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

en
er

gy
(J

/i
m

ag
e)

ipc gemm winograd fft tile

(d) The energy of GTX 2080Ti

Figure 3: The impact of different core frequency settings on
performance, power and energy consumption of different
convolution algorithms.

alexnet-b1024 on V100 is improved with an approximately equal ra-
tio to the increase of the core frequency (nearly 83% from f core=510
MHz to f core=945 MHz). Meanwhile, as shown in Figure 4(a) in
the appendix, the average power of V100 is only increased by 66%.
Thus, the energy curve has the lowest value at f core=945 MHz.
However, when f core ≥1,000 MHz, the power consumption has
a big jump since a higher core voltage is needed to support that
frequency range, and then the energy consumption goes up again.

5 CONCLUSION
In this paper, we investigate the impact of GPU DVFS on energy
consumption and performance of DNN training and inference. Our
experiments cover a wide range of GPU architectures, DVFS set-
tings and CNNs. The results show that the optimal core frequency
can not only help improve the DNN performance by up to 33% but
also conserve up to 23.1% energy consumption of DNN training
and 26.4% of DNN inference. The observations suggest that GPU
DVFS has great potentials to help develop energy efficient DNN
processing schemes without significant performance degradation.

There are two directions of our future explorations on energy
efficient DNN training/inference. First, notice that the same volt-
age and frequency is applied throughout the feed-forwarding and
back-propagation procedures. But different layers may have dif-
ferent energy conservation benefits from different DVFS settings.
It is interesting to explore a layer-wise DVFS scheme for DNN
training/inference to further reduce energy consumption. Second,
considering a scheduling system for multiple DNN training tasks,
GPU DVFS can perform as an effective technique to improve the
system-wide throughput and decrease energy consumption.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their thorough
and insightful comments and suggestions. The research was sup-
ported by Hong Kong RGC GRF grant HKBU 12200418.

The Impact of GPU DVFS on the Energy and Performance of Deep Learning e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

REFERENCES
[1] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres. 2014. Power and

performance characterization and modeling of gpu-accelerated systems. In IEEE
28th International Parallel and Distributed Processing Symposium (IPDPS), Phoenix,
AZ, USA, May, 2014.

[2] R. A. Bridges, N. Imam, and T. M. Mintz. 2016. Understanding GPU Power: A
Survey of Profiling, Modeling, and Simulation Methods. ACM CSUR 49, 3 (2016),
41.

[3] E. Cai, D. Juan, D. Stamoulis, and D. Marculescu. 2017. Neuralpower: Predict and
deploy energy-efficient convolutional neural networks. In Proceedings of The 9th
Asian Conference on Machine Learning (ACML), Seoul, Korea, November, 2017.

[4] V. Chau, X. Chu, H. Liu, and Y. Leung. 2017. Energy Efficient Job Scheduling
with DVFS for CPU-GPU Heterogeneous Systems. In Proceedings of the Eighth
International Conference on Future Energy Systems (e-Energy ’17), Shatin, Hong
Kong, China, May, 2017.

[5] K. Chellapilla, S. Puri, and P. Simard. 2006. High Performance Convolutional
Neural Networks for Document Processing. In Tenth International Workshop on
Frontiers in Handwriting Recognition, La Baule, France, October, 2006.

[6] C. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan. 2018.
Adacomp: Adaptive residual gradient compression for data-parallel distributed
training. In Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), New
Orleans, Louisiana, USA, February, 2018.

[7] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E.
Shelhamer. 2014. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014).

[8] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B.
Kaul, and P. Dubey. 2016. Distributed deep learning using synchronous stochastic
gradient descent. arXiv preprint arXiv:1602.06709 (2016).

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, and Q. V. Le. 2012. Large Scale Distributed Deep Networks. In Advances
in Neural Information Processing Systems (NeurIPS), Lake Tahoe, Nevada, United
States, December, 2012.

[10] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. 2009. ImageNet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Miami, Florida, USA, June 2009,.

[11] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong. 2013. Effects of
dynamic voltage and frequency scaling on a k20 gpu. In 2013 42nd International
Conference on Parallel Processing, Lyon, France, October, 2013.

[12] R. Girshick. 2015. Fast R-CNN. In 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago, Chile, December, 2015.

[13] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He. 2017. Accurate, large minibatch SGD: training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017).

[14] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, June, 2016.

[15] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, and L.
Yu. 2018. Highly Scalable Deep Learning Training System with Mixed-Precision:
Training ImageNet in Four Minutes. In NeurIPS Workshop on Systems for ML and
Open Source Software, Montréal, Canada, December, 2018.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding.
In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando,
FL, USA, November, 2014.

[17] Y. Jiao, H. Lin, P. Balaji, and W. Feng. 2010. Power and performance characteriza-
tion of computational kernels on the gpu. In In International Conference on Green
Computing and Communications, Hangzhou, China, December, 2010.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification with
Deep Convolutional Neural Networks. In Neural Information Processing Systems
(NeurIPS), Miami, Florida, USA, June, 2009.

[19] A. Lavin and S. Gray. 2016. Fast Algorithms for Convolutional Neural Networks.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, June, 2016.

[20] Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015),
436–444.

[21] J. Lee, V. Sathisha, M. J. Schulte, K. Compton, and N. Kim. 2011. Improving
Throughput of Power-Constrained GPUs Using Dynamic Voltage/Frequency
and Core Scaling. In 2011 International Conference on PACT, Galveston, TX, USA,
October, 2011.

[22] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing. 2014. On Model
Parallelization and Scheduling Strategies for Distributed Machine Learning. In
Advances in Neural Information Processing Systems (NeurIPS), Montreal, Quebec,
Canada, December, 2014.

[23] D. Li, X. Chen, M. Becchi, and Z. Zong. 2016. Evaluating the Energy Efficiency of
Deep Convolutional Neural Networks on CPUs and GPUs. In 2016 IEEE Interna-
tional Conferences on Sustainable Computing and Communications (SustainCom),
Atlanta, GA, USA, October, 2016.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B. Su. 2014. Scaling Distributed Machine Learning with the
Parameter Server. In 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October, 2014.

[25] X. Li, G. Zhang, H. H. Huang, Z. Wang, and W. Zheng. 2016. Performance
Analysis of GPU-Based Convolutional Neural Networks. In 2016 45th International
Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, August, 2016.

[26] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. 2018. Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training. In 6th
International Conference on Learning Representations (ICLR), BC, Canada, April 30
- May 3, 2018.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and A. C. Berg. 2016.
Ssd: Single shot multibox detector. In 14th European conference on computer vision
(ECCV), Amsterdam, The Netherlands, October, 2016.

[28] X. Mei and X. Chu. 2017. Dissecting GPU Memory Hierarchy Through Mi-
crobenchmarking. IEEE TPDS 28, 1 (Jan 2017), 72–86.

[29] X. Mei, X. Chu, H. Liu, Y. Leung, and Z. Li. 2017. Energy efficient real-time task
scheduling on CPU-GPU hybrid clusters. In 2017 IEEE Conference on Computer
Communications (INFOCOM), Atlanta, GA, USA, May, 2017.

[30] X. Mei, Q. Wang, and X. Chu. 2017. A survey and measurement study of GPU
DVFS on energy conservation. Digital Communications and Networks 3, 2 (2017),
89 – 100.

[31] X. Mei, K. Zhao, C. Liu, and X. Chu. 2014. Benchmarking the memory hierarchy
of modern GPUs. In Network and Parallel Computing - 11th IFIP, Ilan, Taiwan,
September, 2014.

[32] M. Michaël, M. Henaff, and Y. LeCun. 2014. Fast training of convolutional
networks through ffts. In 2nd International Conference on Learning Representations
(ICLR), Banff, AB, Canada, April, 2014.

[33] NVIDIA. 2018. NVIDIA Management Library . [Online]
https://developer.nvidia.com/nvidia-management-library-nvml.

[34] NVIDIA. 2018. NVIDIA System Management Interface (nvidia-smi). [Online]
https://developer.nvidia.com/nvidia-system-management-interface.

[35] Orbmu2k. 2016. NVIDIA Inspector. [Online] http://blog.orbmu2k.de/tools/nvidia-
inspector-tool.

[36] I. Paul, W. Huang, M. Arora, and S. Yalamanchili. 2015. Harmonia: Balancing
compute and memory power in high-performance GPUs. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), Portland, OR,
USA, June, 2015.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You Only Look Once:
Unified, Real-Time Object Detection. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, June, 2016.

[38] S. Shams, R. Platania, K. Lee, and S. Park. 2017. Evaluation of Deep Learning
Frameworks Over Different HPC Architectures. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, June,
2017.

[39] S. Shi, Q. Wang, and X. Chu. 2018. Performance Modeling and Evaluation of
Distributed Deep Learning Frameworks on GPUs. In 4th Intl Conf on Big Data
Intelligence and Computing(DataCom), Athens, Greece, August , 2018.

[40] S. Shi, Q. Wang, P. Xu, and X. Chu. 2016. Benchmarking State-of-the-Art Deep
Learning Software Tools. In 2016 7th International Conference on Cloud Computing
and Big Data (CCBD), Macau, China, November, 2016.

[41] K. Simonyan and A. Zisserman. 2015. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on Learning Repre-
sentations (ICLR), San Diego, CA, USA, May, 2015,.

[42] V. Sze, Y. Chen, T. Yang, and J. S. Emer. 2017. Efficient Processing of Deep Neural
Networks: A Tutorial and Survey. Proc. IEEE 105, 12 (Dec 2017), 2295–2329.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. 2015. Going Deeper With Convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
June, 2015.

[44] Q. Wang and X. Chu. 2017. GPGPU Power Estimation with Core and Memory
Frequency Scaling. SIGMETRICS Perform. Eval. Rev. 45, 2 (Oct. 2017), 73–78.

[45] Q. Wang and X. Chu. 2018. GPGPU Performance Estimation with Core and
Memory Frequency Scaling. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS), Singapore, December, 2018.

[46] Q. Wang, P. Xu, Y. Zhang, and X. Chu. 2017. EPPMiner: An Extended Benchmark
Suite for Energy, Power and Performance Characterization of Heterogeneous
Architecture. In Proceedings of the Eighth International Conference on Future
Energy Systems (e-Energy’17), Shatin, Hong Kong, China, May, 2017.

[47] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer. 2018. ImageNet Training in
Minutes. In Proceedings of the 47th International Conference on Parallel Processing
(ICPP), Eugene, OR, USA, August, 2018.

[48] B. Zoph and Q. V. Le. 2017. Neural Architecture Search with Reinforcement
Learning. In 5th International Conference on Learning Representations (ICLR),
Toulon, France, April , 2017.

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu

A APPENDIX
In the appendix, we present the complete experimental results of
four DNNs on three GPU cards. The concrete hardware configura-
tions of three GPUs are listed in Table 3. The experiments cover a
wide range of frequency options. Due to the limited support offered
by the GPU vendor, we can only control the frequencies while the
NVIDIA driver will automatically adjust the voltage accordingly.

Table 3: Target GPU specifications

Device Tesla P100 Tesla V100 GTX 2080Ti
Architecture Pascal Volta Turing
SMs/SMCores 16/128 28/128 72/64
Global mem. 16 GB 16 GB 12 GB
Core freq.
(MHz)

[544, 683, 810,
936, 1,063,
1,202, 1,328]

[510, 652, 802,
945, 1,087,
1,237, 1,380]

[950, 1,150,
1,350, 1,550,
1,750, 1,950]

Memory freq.
(MHz)

715 877 [5,800, 6,300,
6,800, 7,300]

We test four popular DNNs (i.e., AlexNet[18], VggNet-16[41],
GoogleNet[43] and ResNet-50[14]), and their setups are listed in
Table 4. Different batch sizes are tested for different DNNs according
to the GPU memory availability.

Table 4: The experimental setup of neural networks

Network # of layers Parameters Batch size
AlexNet 8 ˜60 millions 128/256/512/1024
VggNet-16 16 ˜138 millions 16/32/64
GoogleNet 22 ˜53 millions 16/32/64/128
ResNet-50 50 ˜24 millions 8/16/32

We demonstrate the experimental results grouped by three dif-
ferent convolution algorithms: GEMM, Winograd, and FFT. We
present how the performance and power change with respect to
the GPU core and memory frequencies on different DNNs. Each
figure includes the results of different batch sizes. Due to the limita-
tion of GPU memory size, some large batch sizes are not supported.
Notice that GTX2080Ti supports both core and memory frequency
scaling. To give a comprehensive result of core frequency scaling,
we calculate the geometric mean of the data of each core frequency
across all memory frequency sets. For memory frequency scaling,
we calculate the geometric mean of the data of each memory fre-
quency across all memory frequency sets.

A.1 Using implicit GEMM algorithm
Figures 4 and 5 demonstrate the results of GEMM algorithm on
two Tesla GPUs, P100 and V100. When f core is less than 1,000
MHz, the performance mostly has a faster-growing trend than the
power consumption with the increase of the core frequency. How-
ever, when f core surpasses 1,000 MHz, the power consumption
has a sudden jump, which raises up the total energy consumption
again. Thus, the core frequency that achieves the best energy effi-
ciency usually lies in the middle interval. Besides, it is observed that
the performance of AlexNet and VggNet-16 rarely changes with
different batch sizes, while GoogleNet and ResNet-50 gain higher
image processing throughputs with larger batch sizes. Notice that

GoogleNet and ResNet-50 have more layers than the other two.
Larger batch sizes help GoogleNet and ResNet-50 achieve higher
GPU utilization.

Figures 6 and 7 demonstrate the results of GEMM algorithm
on GTX 2080Ti. Different from two Tesla GPUs, the performance
of GTX 2080Ti always has a faster-growing trend than the power
consumption, which results in that the best energy efficiency is
mostly achieved at the highest core frequency. On the contrary,
increasing the memory frequency hardly affects the performance
of DNN training, but leads to higher power consumption. Thus,
applying a low memory frequency surprisingly helps conserve
energy.

A.2 Using Winograd algorithm
Figures 8 and 9 demonstrate the results of Winograd algorithm on
two Tesla GPUs, P100 and V100. Notice that Winograd requires a
larger GPU memory to tackle convolution than GEMM does. Only
a few batch sizes of four DNNs are supported on GPUs. Similar to
GEMM, the core frequency that achieves the best energy efficiency
usually lies in the middle interval. Besides, GoogleNet and ResNet-
50 achieve higher image processing throughputs with larger batch
sizes. Compared to GEMM, Winograd achieves better performance
while keeping nearly the same power consumption. Thus,Winograd
has better energy efficiency than GEMM, which also meets the
results in Figure 3.

Figures 10 and 11 demonstrate the results of Winograd algorithm
on GTX 2080Ti. Scaling up the core frequency leads to different
performance improvement for different DNNs and even different
batch sizes. The power consumption of AlexNet remains nearly the
same when applying different batch sizes, while that of GoogleNet
and ResNet-50 becomes larger with the increase of the batch size.
Similar to GEMM, increasing the memory frequency hardly helps
conserve energy since the performance cannot benefit from it.

A.3 Using FFT algorithm
Figures 12 and 13 demonstrate the results of FFT algorithm on two
Tesla GPUs, P100 and V100. FFT requires the largest GPU memory
to tackle convolution among three algorithms. The tested GPUs
can only process small batch sizes when applying FFT for DNN
training. Similar to the previous two algorithms, the performance
grows faster than the power for most cases with the increase of the
core frequency. GoogleNet also achieves a higher image processing
throughput with a larger batch size.

Figures 14 and 15 demonstrate the results of FFT algorithm on
GTX 2080Ti. Unfortunately, no matter for the performance and the
power consumption, scaling up both the core and memory frequen-
cies brings few benefits. It seems that the current implementation
of FFT-based convolution on Turing GPUs still cannot fully utilize
the computational resources. Besides, FFT generally works slower
than the other two algorithms when the convolutional kernel size
is small. Since the convolution layers of four tested DNNs features
small kernel sizes, it is difficult for FFT to beat GEMM andWinograd
in DNN applications.

The Impact of GPU DVFS on the Energy and Performance of Deep Learning e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

544 683 810 936 1063 1202 1328
coreF (Hz)

0
20
40
60
80

100
120
140
160
180
200

p
ow

er
(W

)

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

alexnet-b512 Power

alexnet-b512 Perf.

alexnet-b1024 Power

alexnet-b1024 Perf.

0
100
200
300
400
500
600
700
800
900
1000

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

googlenet-b128 Power

googlenet-b128 Perf.

0

50

100

150

200

250

300

350

400

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

p
ow

er
(W

)

vggnet-b16 Power

vggnet-b16 Perf.

vggnet-b32 Power

vggnet-b32 Perf.

vggnet-b64 Power

vggnet-b64 Perf.

0

20

40

60

80

100

120

140

160

180

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training VggNet-16

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

p
ow

er
(W

)

resnet-b16 Power

resnet-b16 Perf.

resnet-b32 Power

resnet-b32 Perf.

0

20

40

60

80

100

120

140

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(d) power and performance of training ResNet-50

Figure 4: training using implicit GEMM on P100 with increase of core frequency

510 652 802 945 1087 1237 1380
coreF (Hz)

0

50

100

150

200

250

p
ow

er
(W

)

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

alexnet-b512 Power

alexnet-b512 Perf.

alexnet-b1024 Power

alexnet-b1024 Perf.

0

200

400

600

800

1000

1200

1400

1600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

510 652 802 945 1087 1237 1380
coreF (Hz)

0
20
40
60
80

100
120
140
160
180
200

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

googlenet-b128 Power

googlenet-b128 Perf.

0

100

200

300

400

500

600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)
(b) power and performance of training GoogleNet

510 652 802 945 1087 1237 1380
coreF (Hz)

0
20
40
60
80

100
120
140
160
180
200

p
ow

er
(W

)

vggnet-b16 Power

vggnet-b16 Perf.

vggnet-b32 Power

vggnet-b32 Perf.

vggnet-b64 Power

vggnet-b64 Perf.

0

50

100

150

200

250

300

350

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training VggNet-16

510 652 802 945 1087 1237 1380
coreF (Hz)

0

20

40

60

80

100

120

140

160

p
ow

er
(W

)

resnet-b16 Power

resnet-b16 Perf.

resnet-b32 Power

resnet-b32 Perf.

0

20

40

60

80

100

120

140

160

180

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(d) power and performance of training ResNet-50

Figure 5: training using implicit GEMM on V100 with increase of core frequency

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu

950 1150 1350 1550 1750 2050
coreF (Hz)

0

50

100

150

200

250

300

350
p

ow
er

(W
)

alexnet-b64 Power

alexnet-b64 Perf.

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

alexnet-b512 Power

alexnet-b512 Perf.

0

200

400

600

800

1000

1200

1400

1600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

950 1150 1350 1550 1750 2050
coreF (Hz)

0

50

100

150

200

250

300

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

0

50

100

150

200

250

300

350

400

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

950 1150 1350 1550 1750 2050
coreF (Hz)

0

50

100

150

200

250

300

350

p
ow

er
(W

)

vggnet-b16 Power

vggnet-b16 Perf.

vggnet-b32 Power

vggnet-b32 Perf.

vggnet-b64 Power

vggnet-b64 Perf.

0

50

100

150

200

250

300

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training VggNet-16

950 1150 1350 1550 1750 2050
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

resnet-b8 Power

resnet-b8 Perf.

resnet-b16 Power

resnet-b16 Perf.

0

10

20

30

40

50

60

70

80

90

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(d) power and performance of training ResNet-50

Figure 6: training using implicit GEMM on GTX2080Ti with increase of core frequency

5800 6300 6800 7300
memF (Hz)

0

50

100

150

200

250

300

p
ow

er
(W

)

alexnet-b64 Power

alexnet-b64 Perf.

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

alexnet-b512 Power

alexnet-b512 Perf.

0

200

400

600

800

1000

1200

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

5800 6300 6800 7300
memF (Hz)

0

50

100

150

200

250

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

0

50

100

150

200

250

300

350

p
er

fo
rm

an
ce

(i
m

ag
e/

s)
(b) power and performance of training GoogleNet

5800 6300 6800 7300
memF (Hz)

0

50

100

150

200

250

300

p
ow

er
(W

)

vggnet-b16 Power

vggnet-b16 Perf.

vggnet-b32 Power

vggnet-b32 Perf.

vggnet-b64 Power

vggnet-b64 Perf.

0

50

100

150

200

250

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training VggNet-16

5800 6300 6800 7300
memF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

resnet-b8 Power

resnet-b8 Perf.

resnet-b16 Power

resnet-b16 Perf.

0

10

20

30

40

50

60

70

80

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(d) power and performance of training ResNet-50

Figure 7: training using implicit GEMM on GTX2080Ti with increase of memory frequency

The Impact of GPU DVFS on the Energy and Performance of Deep Learning e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

160
p

ow
er

(W
)

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

0

200

400

600

800

1000

1200

1400

1600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

160

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

0

50

100

150

200

250

300

350

400

450

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

p
ow

er
(W

)

vggnet-b16 Power

vggnet-b16 Perf.

0

50

100

150

200

250

300

350

400

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training VggNet-16

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

p
ow

er
(W

)

resnet-b16 Power

resnet-b16 Perf.

resnet-b32 Power

resnet-b32 Perf.

0

20

40

60

80

100

120

140

160

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(d) power and performance of training ResNet-50

Figure 8: training using Winograd on P100 with increase of core frequency

510 652 802 945 1087 1237 1380
coreF (Hz)

0

50

100

150

200

250

p
ow

er
(W

)

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

0

500

1000

1500

2000

2500

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

510 652 802 945 1087 1237 1380
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

0

100

200

300

400

500

600

700

p
er

fo
rm

an
ce

(i
m

ag
e/

s)
(b) power and performance of training GoogleNet

510 652 802 945 1087 1237 1380
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

vggnet-b16 Power

vggnet-b16 Perf.

0
50
100
150
200
250
300
350
400
450
500

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training VggNet-16

510 652 802 945 1087 1237 1380
coreF (Hz)

0

20

40

60

80

100

120

140

160

p
ow

er
(W

)

resnet-b16 Power

resnet-b16 Perf.

resnet-b32 Power

resnet-b32 Perf.

0
20
40
60
80
100
120
140
160
180
200

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(d) power and performance of training ResNet-50

Figure 9: training using Winograd on V100 with increase of core frequency

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu

950 1150 1350 1550 1750 2050
coreF (Hz)

0

20

40

60

80

100

120

140

160

p
ow

er
(W

)

alexnet-b64 Power

alexnet-b64 Perf.

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

0

200

400

600

800

1000

1200

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

950 1150 1350 1550 1750 2050
coreF (Hz)

0
20
40
60
80

100
120
140
160
180
200

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

0

50

100

150

200

250

300

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

950 1150 1350 1550 1750 2050
coreF (Hz)

0

20

40

60

80

100

120

140

p
ow

er
(W

)

resnet-b8 Power

resnet-b8 Perf.

resnet-b16 Power

resnet-b16 Perf.

0

5

10

15

20

25

30

35

40

45

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training ResNet-50

Figure 10: training using Winograd on GTX2080Ti with increase of core frequency

5800 6300 6800 7300
memF (Hz)

0

20

40

60

80

100

120

140

160

p
ow

er
(W

)

alexnet-b64 Power

alexnet-b64 Perf.

alexnet-b128 Power

alexnet-b128 Perf.

alexnet-b256 Power

alexnet-b256 Perf.

0

200

400

600

800

1000

1200

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

5800 6300 6800 7300
memF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

googlenet-b64 Power

googlenet-b64 Perf.

0

50

100

150

200

250

300

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

5800 6300 6800 7300
memF (Hz)

0

20

40

60

80

100

120

140

p
ow

er
(W

)

resnet-b8 Power

resnet-b8 Perf.

resnet-b16 Power

resnet-b16 Perf.

0

5

10

15

20

25

30

35

40

45

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(c) power and performance of training ResNet-50

Figure 11: training using Winograd on GTX2080Ti with increase of memory frequency

544 683 810 936 1063 1202 1328
coreF (Hz)

0
20
40
60
80

100
120
140
160
180
200

p
ow

er
(W

)

alexnet-b128 Power

alexnet-b128 Perf.

0

200

400

600

800

1000

1200

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

544 683 810 936 1063 1202 1328
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

0

50

100

150

200

250

300

p
er

fo
rm

an
ce

(i
m

ag
e/

s)
(b) power and performance of training GoogleNet

Figure 12: training using FFT on P100 with increase of core frequency

510 652 802 945 1087 1237 1380
coreF (Hz)

0

50

100

150

200

250

p
ow

er
(W

)

alexnet-b128 Power

alexnet-b128 Perf.

0

200

400

600

800

1000

1200

1400

1600

1800

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

510 652 802 945 1087 1237 1380
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

googlenet-b32 Power

googlenet-b32 Perf.

0

50

100

150

200

250

300

350

400

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

Figure 13: training using FFT on V100 with increase of core frequency

The Impact of GPU DVFS on the Energy and Performance of Deep Learning e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

950 1150 1350 1550 1750 2050
coreF (Hz)

0

50

100

150

200

250
p

ow
er

(W
)

alexnet-b64 Power

alexnet-b64 Perf.

0

100

200

300

400

500

600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

950 1150 1350 1550 1750 2050
coreF (Hz)

0

20

40

60

80

100

120

140

160

180

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

0
10
20
30
40
50
60
70
80
90
100

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

Figure 14: training using FFT on GTX2080Ti with increase of core frequency

5800 6300 6800 7300
memF (Hz)

0

50

100

150

200

250

p
ow

er
(W

)

alexnet-b64 Power

alexnet-b64 Perf.

0

100

200

300

400

500

600

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(a) power and performance of training AlexNet

5800 6300 6800 7300
memF (Hz)

0

20

40

60

80

100

120

140

160

p
ow

er
(W

)

googlenet-b16 Power

googlenet-b16 Perf.

0

10

20

30

40

50

60

70

80

90

p
er

fo
rm

an
ce

(i
m

ag
e/

s)

(b) power and performance of training GoogleNet

Figure 15: training using FFT on GTX2080Ti with increase of memory frequency

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Convolutional Neural Networks
	2.2 GPU DVFS

	3 Methodology
	3.1 Hardware Setup
	3.2 Network Setup
	3.3 Performance and Power Measurements

	4 Experimental Results
	4.1 Impact of GPU DVFS on Performance and Energy Efficiency
	4.2 Impact of GPU DVFS on Convolution Algorithms
	4.3 Discussion

	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Using implicit GEMM algorithm
	A.2 Using Winograd algorithm
	A.3 Using FFT algorithm

