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ABSTRACT
To address the ever-increasing demand for computing capacities,
more and more heterogeneous systems have been designed to use
both general-purpose and special-purpose processors. On the other
hand, the huge energy consumption of these heterogeneous sys-
tems raises new environmental concerns and challenges. Besides
performance, energy efficiency is now another key factor to be
considered by system designers and also consumers. In this paper,
we present a benchmark suite EPPMiner for evaluating the per-
formance, power, and energy of different heterogeneous systems.
EPPMiner consists of 16 benchmark programs that cover a broad
range of application domains, and it shows a great variety in the
intensity of utilizing the processors. We have implemented a pro-
totype of EPPMiner that supports OpenMP, CUDA, and OpenCL,
and demonstrated its usage by three showcases. Firstly, we use
EPPMiner to compare the power efficiency of a set of processors,
including two Intel x86 CPUs, two Nvidia GPUs, and one AMD
GPU. Secondly, we investigate the impact of multi-threading on the
power efficiency of multi-core CPUs. At last, we use EPPMiner to
illustrate the effectiveness of GPU Dynamic Voltage and Frequency
Scaling (DVFS) on the power efficiency of GPGPU applications. We
show that DVFS can improve the energy efficiency by 86% over the
default setting on an AMD GPU.
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1 INTRODUCTION
The increasingly extensive use of high-performance computing
(HPC) in applications including big data analysis, bioinformatics,
and artificial intelligence driven by deep learning has demonstrated
its necessity over the past 40 years [28]. HPC has made remark-
able progress in parallel hardware, parallel algorithms, and parallel
and distributed programming techniques, primarily in attempts to
break the energy wall and memory wall. However, over the past
10 years, technical challenges to overcoming the power wall in
aspects including power consumption, energy conservation, and
environmental protection have gradually emerged because of the
exponential growth of data and the more complex operations that
are performed.

Currently, conventional central processing units (CPUs) can
barely provide satisfactory performance per watt for the aforemen-
tioned applications. Instead, accelerators, such as general purpose
graphics processing units (GPGPUs) and Inteląŕs many-core Xeon
Phi architecture, have gained considerable traction because of not
only their higher peak performance but also their energy efficiency.
Among the top 10 on the November 2016 TOP500 list of the most
powerful commercially available supercomputers, two are equipped
with GPGPUs and three are equipped with the Xeon Phi. Among
the Green500 list of the most energy-efficient supercomputers, for
the same period, the top 10 are all heterogenous systems.

Some studies have explored the energy, power, and performance
of these accelerators and revealed they have significant potential
energy conservation technologies, such as dynamic voltage and
frequency scaling (DVFS) techniques, power- and energy-aware
task mapping, and dynamic core assignment. However, few stud-
ies have horizontally compared these processors. Moreover, most
previously developed widely known benchmark suites focus on
computing throughput ability and memory bottlenecks, which may
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pertain to the functionality of the processor, but few studies have
characterized power and energy.

In this paper, we present a new benchmark suite named EPP-
Miner1 for evaluating the energy, power, and performance of het-
erogeneous systems. Specifically, EPPMiner defines a set of 16 appli-
cations that cover a broad range of domains and dwarves in parallel
computing [2].We have implemented a prototype of EPPMiner with
the following features: First, the benchmark suite can be executed
on various types of processors or accelerators, including Intel multi-
core and many-core CPUs, which are mainly installed in desktop
computers and servers; ARM-based CPUs, which are widely used in
mobile equipment and embedded systems; and mainstream GPUs.
It can also be executed on Linux andWindows systems. Our current
prototype of EPPMiner supports OpenMP, CUDA, and OpenCL,
and hence it can support many potential processors/coprocessors.
Second, to address the diversity of memory sizes, it includes a set
of normal workload for PCs and servers with enough memory, and
another set of light workload for devices with less memory. Third,
it can be used to more fairly test performance, in particular, for the
kernel part of each application on each target processor or accel-
erator. Each program will automatically repeat the kernel many
times, and the time information of each iteration will be recorded.
Fourth, it should produce stable power consumption data for the
target hardware when running the kernel parts of each application.
As many power measurement methods have a low time resolution
(e.g., one sample per second), the execution time of each program
should be long enough. EPPMiner allows the user to predefine the
running time of a program to assure accurate power measurement.
Finally, EPPMiner records the processor temperature information
when it is possible, considering that temperature has a significant
impact on power consumption.

Our study makes several contributions and yields valuable find-
ings, which are listed as follows:

(1) We present a new benchmark suite, EPPMiner, for char-
acterizing the energy, power, and performance, of a wide
range of processors and accelerators.

(2) We use EPPMiner to evaluate a set of processors and ac-
celerators, including an ARM CPU, two Intel CPUs, two
Nvidia GPUs, and one AMD GPU. We show that although
GPUs have a higher power requirement than CPUs, they
have a huge advantage over CPUs in energy, performance,
and energy-efficiency.

(3) We investigate the impact of multi-threading on the energy-
efficiency of multi-core CPUs. We find that when all
the CPU cores are being utilized by multi-threading, the
energy-efficiency can be improved in general. However,
the advantage will diminish when the number of threads
is more than that of the physical cores.

(4) We illustrate the effectiveness of DVFS technique on im-
proving the energy-efficiency of GPGPU applications. We
first show that frequency scaling alone on GPU core and
memory can lead to 55% of difference in terms of energy
efficiency on an Nvidia GTX980. We then show that GPU

1The source code and experimental data of EPPMiner can be downloaded from http:
//eppminer.comp.hkbu.edu.hk.

core voltage and frequency scaling can improve the en-
ergy efficiency by 86% over the default setting on an AMD
RX480.

The rest of this paper is organized as follows. Section 2 demon-
strates the motivation of designing a benchmark suite for heteroge-
neous systems. Section 3 describes our benchmark suite MPPMiner
and the performancemetrics.We also discuss how to conduct power
and performance measurements on different heterogeneous plat-
forms. Section 4 introduces our experimental platforms and then
presents three showcases of EPPMiner. Section 5 discusses some
related work on benchmarking and energy-efficient computing.
Finally we conclude the paper in Section 6.

2 MOTIVATION
2.1 Development of energy efficient processors
To attain higher peak performance with lower power consumption,
different types of energy-efficient accelerators have increasingly
been adopted in data centers, PCs, and mobile equipment. GPUs
and Intel Xeon Phi are the most representative among them. For
example, the latest NVIDIA GTX1080 can provide up to 9 Tflops
with a thermal design power (TDP) of only 180 W [25], whereas the
AMD RX480 achieves up to 5.8 Tflops with a TDP of 150 W. Intel
Xeon Phi 7290 achieves around 3.5 Tflops in double precision with
a TDP of 245 W. By contrast, small computers (like mobile phones)
equipped with ARM-based CPUs are now more important because
of sufficient computational capability with low power consumption.
For example, the latest Raspberry Pi 3B+ model features 1.2 GHz
frequency and can achieve up to 2 GFlops with no more than 4
Watts. Efforts to overcome the power wall are obviously a design
objective of all of the aforementioned productsąŕ designers.

2.2 Benchmark suites for power and energy
characterizations

Some studies have explored not only the performance but also the
power and energy efficiency of GPUs [7, 12, 15, 23] and Intel Xeon
Phi cards [16, 18, 29]. However, they have generally considered only
one type of device and ran different benchmark programs to reach
their findings. Comparing a variety of processors and accelerators
would be informative. Finding a sufficiently fair scheme for compar-
ing the performance, power, and energy across different types of
computational architectures is difficult. Some widely known bench-
mark suites, such as Rodinia [5], Parboil [31], SHOC [8], NUPAR
[32], are competently designed for measuring the performance of
general devices, such as Intel CPUs, NVIDIA, and AMD GPUs, and
can even be applied to a whole machine or cluster. However, they do
not characterize the power and energy of those devices. To remedy
these problems, we develop an extended set of benchmark suites
based on them.

2.3 Multi-objectives Task Mapping Design
Developing such benchmark suites is valuable because they can
provide sample programs for task mapping strategy testing on a
heterogeneous system. Performance is currently not the only factor
that should be considered in designing task scheduling strategies.
Numerous research papers describe the implementation of power-
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and energy-aware or even multi-objective task scheduling systems
[6, 14, 17, 20, 24]. We believe that an effective benchmark suite that
can be used for multi-characteristic explorations could serve as
a common platform for performance evaluation and hence help
fellow researchers obtain more solid results.

3 THE EPPMINER BENCHMARK
3.1 Description of selected applications and the

workload
To select an appropriate set of applications for the benchmark, we
need to consider the representability, workload variety, and also
development and maintenance cost. As an initial attempt, we follow
the concept of dwarves proposed by Asanovic et al. [2] and select a
total of 16 applications that cover a broad ranges of domains and
dwarves. The summary of the benchmark applications is shown in
Table 1.

(1) Breadth-First Search (bfs): traverse the shortest path from
a single vertex to each other in a graph of formatted edge
matrix.

(2) Distance-Cutoff Coulombic Potential (cutcp): Computes
the short-range component of Coulombic potential at each
grid point over a 3D grid containing point charges repre-
senting an explicit-water biomolecular model.

(3) Histogram (histo): Computes a moderately large, 2-D satu-
rating histogram with a maximum bin count of 255. Input
datasets represent a silicon wafer validation application
in which the input points are distributed in a roughly 2-D
Gaussian pattern.

(4) Dense Matrix-Matrix Multiplication (sgemm): One of the
most widely and intensely studied benchmarks, this appli-
cation performs a dense matrix multiplication using the
standard BLAS format.

(5) Sparse-Matrix Dense-Vector Multiplication (spmv): Com-
putes the product of a sparse matrix with a dense vector.
The sparse matrix is read from file in coordinate format,
converted to JDS format with configurable padding and
alignment for different devices.

(6) 3-D Stencil Operation (stencil): An iterative Jacobi stencil
operation on a regular 3-D grid.

(7) Magnetic Resonance Imaging - Q (mri-q): Computes a ma-
trix Q, representing the scanner configuration for calibra-
tion, used in a 3Dmagnetic resonance image reconstruction
algorithms in non-Cartesian space.

(8) Back propagation (bp): a machine-learning algorithm that
trains the weights of connecting nodes on a layered neural
network.

(9) HotSpot (hotspot): a widely used tool to estimate proces-
sor temperature based on an architectural floorplan and
simulated power measurements.

(10) Shortest Path (pathfinder): uses dynamic programming to
find a path on a 2-D grid from the bottom row to the top
row with the smallest accumulated weights, where each
step of the path moves straight ahead or diagonally ahead.

(11) LU Decomposition (lud): an algorithm to calculate the so-
lutions of a set of linear equations.

(12) Needleman-Wunsch (nw): a nonlinear global optimization
method for DNA sequence alignments.

(13) K-Means (kmeans): a clustering algorithm used extensively
in data-mining and elsewhere, important primarily for its
simplicity.

(14) Speckle Reducing Anisotropic Diffusion (srad): a diffusion
method for ultrasonic and radar imaging applications based
on partial differential equations.

(15) Nearest Neighbor (nn): finds the k-nearest neighbors from
an unstructured data set.

(16) CFD Solver (cfd): an unstructured grid finite volume solver
for the three-dimensional Euler equations for compressible
flow.

Table 1: Summary of benchmark applications

Applications Dwarves Domain
bfs Graph Traversal Graph Algorithms

cutcp Unstructured Grid Medical Imaging
histo Combinational Logic Image Processing
sgemm Dense Linear Algebra Linear Algebra
spmv Sparse Linear Algebra Linear Algebra
stencil Structured Grids Fluid Dynamics
mri-q Dense Linear Algebra Medical Imaging
bp Unstructured Grid Pattern Recognition

hotspot Structured Grid Physics Simulation
pathfinder Dynamic Programming Grid Traversal

lud Dense Linear Algebra Linear Algebra
nw Dynamic Programming Bioinformatics

kmeans Dense Linear Algebra Data Mining
srad Structured Grid Image Processing
nn N-body Data Mining
cfd Unstructured Grid Fluid Dynamics

Our prototype of EPPMiner currently supports three parallel pro-
gramming techniques: OpenMP, CUDA, and OpenCL, and hence
it can already support many processors and accelerators such as
Nvidia GPUs, AMD GPUs, and Intel Xeon Phi. Since many appli-
cations have a very short execution time, we allow the user to set
the running time of a benchmark program in the configuration file,
and then each program will automatically call its computational
kernel iteratively and calculate the average kernel execution time
and power consumption. There are two advantages to this design.
First, collecting the average time consumptions of the kernel parts
launched on the targeted device is fairer and more convenient. Sec-
ond, the programs can run for a long time, which enables stable
and sufficient power sampling.

We also design two sets of workloads. The normal workload
is designed for PCs and servers with enough memory, whereas
the light workload is designed for devices (such as mobile phones)
whose memory size is limited. The details of the workload can be
found in 2.

3.2 Design of performance metrics
EPPMiner aims to compare different systems in terms of perfor-
mance and energy consumption. For a given target platform, EPP-
Miner will report three performance metrics: mean execution time
T , mean energy consumption E, and mean energy efficiency F in
terms of operations per second per watt (OPS/W).
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Table 2: Input Data Configurations for tested devices

Applications Light workload Normal workload
bfs SF SF

cutcp small large
histo large large
sgemm medium medium
spmv large large
stencil small default
mri-q small large
bp 65536 65536

hotspot 1024 1024 100 4 1024 1024 100 4
pathfinder 100000 100 100000 100

lud 2400 8000
nw 2048 10 2 2048 10 2

kmeans kdd_cup kdd_cup
srad 2048 2048 0 127 0 127 2048 2048 0 127 0 127
nn 10000 131072
cfd 097K 193K

The mean execution time T is calculated as the geometric mean
of the set of execution times of each benchmark application:

T = n

√√ n∏
i=1

Ti (1)

wheren is the number of benchmark programs andTi is the average
kernel execution time of the i-th program.

The mean energy consumption E is calculated as the geomet-
ric mean of the set of energy consumptions of each benchmark
application:

E = n

√√ n∏
i=1

PiTi (2)

where Pi is the average power consumption.
We use operations per second per watt (OPS/W) to describe

the energy efficiency of running the benchmark programs on each
hardware platform. First, we count the total number of operations,
including integer operation, floating-point operation, and double-
precision floating-point operation, of each benchmark program by
software profilers. Each double-precision floating-point operation
contributes 2 to the total number of operations. Then we define the
energy efficiency F as:

F = n

√√ n∏
i=1

Oi/(PiTi ) (3)

where Oi is the total number of operations of the i-th application.

3.3 Practical issues: Performance and power
measurements

Here, we focus on the performance and energy efficiency of tested
processors and accelerators rather than the entire host machine.
To address performance, we refer to the active kernel execution
time, which includes only the part running on the target hardware.
We repeat the kernel code running on the tested accelerators for at
least 5 minutes and then average the total active kernel execution
time to obtain the performance data.

For power measurements, the users need to determine whether
they are evaluating the whole system or the processor. For many
contemporary processors and accelerators, we can rely on the inter-
nal sensors and the corresponding software interface to extract the
power information. E.g., for the Intel x86 CPUs, we use power_gov

[13], which is a software utility that allows us to monitor CPU
power with fine time granularities. For Nvidia GPUs, we use nvidia-
smi [27], which is a command line utility, based on top of the Nvidia
Management Library (NVML) [26], intended to aid in managing
and monitoring Nvidia GPU devices. Typically we can measure
the power of the aforementioned devices per 500 milliseconds. For
AMD GPUs, we use CodeXLPowerProfiler [1], which is also a com-
mand line tool playing the similar role as nvidia-smi but aiming to
AMD CPUs and GPUs. We measure the power of our AMD GPUs
per 100 milliseconds.

For systems without internal sensors such as Raspberry Pi 3B+
model, we can measure the whole system power consumption by
a commercial power meter, such as Watts Up? Pro which takes a
power sample every second. The meter has an independent power
supply; consequently, it does not considerably affect our system
power measurements.

4 SHOWCASES
To illustrate the usage of EPPMiner under different scenarios, we
present three showcases in this section.

4.1 Experimental testbed
We test our benchmark suite in terms of energy, power, and per-
formance on a total of six processors and accelerators, as shown
in Table 3. For the ARM Cortex-A53 CPU, the Raspberry Pi 3B+
is the host computer and has 1 GB of LPDDR2 memory and uses
the Rasbian Linux operating system. For the Intel CPU i7-3820
and three GPUs, we use the same desktop computer with 64 GB
of memory. The AMD RX480 uses a new version of the Ubuntu
operating system because the latest device driver and OpenCL tools
are available only on this version. We use the Leveno System x3650
M5 rack server as the host machine, which has two Intel Xeon
E5-2630v3 CPUs; this machine provides 128 GB of memory.

4.1.1 Multicore x86-based CPUs. We test two CPUs that are
representative of two usage scenarios, desktop and server. The Intel
i7-3820 CPU is typically installed in desktop PCs and is equipped
with four cores, each of which supports two hyperthreads. This
CPU can provide 30.74 GFLOPS at a frequency of 3.6 GHz with a
TDP of 130 W. It features 64 GB of memory support and a 10 MB
cache. The other is the Intel E5-2630v3 CPU with 6 physical cores
and is representative of the server scenario. It features a 2.8 GHz
turbo frequency.

4.1.2 ARM-based CPUs. Raspberry is a widely known and inex-
pensive single-board computer equipped with an ARM-compatible
CPU that can operate on a low power supply. We test the newest
model, the Raspberry Pi 3, which was released in 2016. With four
cores on an ARM Cortex-A53 CPU running at 1.2 GHz, the Pi 3 can
achieve up to 2 GFLOPS on no more than 4 W. It features 1 GB of
low-power double data rate 2 (LPDDR2) memory.

4.1.3 General Purpose Graphics Processing Units. We test three
GPU platforms: Nvidia’s GTX980 and GTX1080, and AMD’s RX480.
The Nvidia GTX980 is the first full realization of the Maxwell GPU
architecture.With 2048 compute unified device architecture (CUDA)
cores and 1126 MHz base core clock, the GTX980 can provide 4.27
TFLOPS with a TDP of only 165 W. As a graphics card used in



EPPMiner e-Energy ’17, May 16-19, 2017, Shatin, Hong Kong

desktop computers, it has 4 GB of memory with 3500 MHz base
memory clock, which provides a bandwidth of up to 224 GB/s.
The Nvidia GTX1080 is the most complete implementation of the
latest GPU architecture Pascal. Designed for high-performance
programming and having a TDP that is only 15 W higher than
that of the GTX980, the GTX1080 provides 8.23 TFLOPS with 2560
processor cores and a base core frequency of 1607 MHz. With a
5000 MHz memory clock, the GTX1080 achieves a bandwidth of up
to 320 GB/s, which represents an increase of nearly 43%.

The RX480, which is equipped with the fourth generation of the
Graphics Core Next (GCN) architecture and is also named Polaris,
is the most advanced GPU produced by AMD in 2016. With 2304
stream processors and a base clock frequency of 1340 MHz (with
OC version of our experimental card), the RX480 provides 6.17
TFLOPS with a TDP of 150 W.

Table 3: The host configurations for each device.

Year Device Cores Memory OS

2012 Intel CPU i7-3820 4 64 GB Ubuntu 14.04
2014 Intel CPU E5-2630 v3 12 128 GB CentOS 7.2
2014 Nvidia GTX 980 2048 4 GB Ubuntu 14.04
2016 ARM Cortex-A53 CPU 4 1 GB Rasbian
2016 Nvidia GTX 1080 2560 8 GB Ubuntu 14.04
2016 AMD RX 480 2304 8 GB Ubuntu 16.04

4.2 Showcase I: Comparison of different
devices

We first use EPPMiner to evaluate the energy, power, and perfor-
mance of different processors and accelerators. Figure 1 illustrates
the power distributions of programs running on different devices
with different thread settings. The term omp refers to the number
of threads with OpenMP implementation. The Raspberry Pi requires
only 1.05∼1.75 W with omp = 1 on all the programs and 1.5∼2.55W
with omp = 4. The Intel i7-3820 CPU’s power consumption exhibits
almost linear increments when the number of threads changes from
one to eight but remains almost the same when it changes from
8 to 16. That is probably because it has four physical cores and
supports eight hyperthreads. A similar phenomenon occurs in Intel
E5-2630v3 CPUs equipped with a total of 12 physical cores. Three
tested GPUs exhibit a wider range of higher power varying from
30∼180 W. However, given that GPUs have hundreds of times the
number of computation cores compared with CPUs, GPUs could
still be much more energy efficient than two x86 CPUs.

One goal of our benchmark suites is to enable comparisons
among different types of processors and accelerators in terms of
energy, power, and performance. Figures 2, 3 and 4 provide a hor-
izontal comparison of all the devices tested in this study. In this
showcase, we present the performance, energy consumption, and
energy efficiency of CPUs using a single core only.

We illustrate the performance for each program on all the tested
devices with normal workload in Figure 2. GPUs, especially the
GTX1080, achieve the optimal performance for all the benchmark
programs except srad . We show the energy consumptions of all

Figure 1: Runtime power distributions of all the benchmark
programs on different devices
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Table 4: The energy efficiency, performance, and energy of
different devices

Device GOPS/W Time(s) Energy(J)

Raspberry Pi 3B+ 0.06554 2.6433 1.738
Intel CPU i7-3820 0.0462 0.1466 6.562
Nvidia GTX 980 1.758 0.00137 0.1726
Nvidia GTX 1080 2.639 0.00106 0.115
AMD RX 480 1.1456 0.00358 0.265
Intel CPU E5-2630 v3 0.0386 0.1436 7.852

the benchmark programs on each device in Figure 3. Generally
GPUs can save more energy compared to CPUs since they can
achieve several magnitude of accelerations but with no more than
three times of power. In particular, for some applications belonging
to Dense Linear Algebra Dwarf including sдemm,mri − q and lud ,
GPUs consume only 1% of CPU energy. However, for some irregular
applications like pathf inder , CPUs and GPUs have nearly the same
energy consumption level since GPUs can hardly take full utilization
of its cores when maintaining the same power level. The energy
efficiencies of all benchmark programs are shown in Figure 4.

We show the overall performance and energy efficiency with our
designed metrics of each device by computing mean execution time
T , E and F in Table 4. Notice that the results of all CPUs are obtained
by using a single CPU core. The results of using multiple cores will
be shown in the next showcase. Basically GPUs show nearly 40
times of GOPS/W to those of CPUs. In our experiments, GTX 1080
is the winner in terms of both performance and energy efficiency.
We observe that the mean time of GPUs have hundred times of
speed up compared to CPUs, which makes GPUs outperform other
devices a lot. However, since we do not apply AVX optimization to
the CPU implementation of our benchmark programs, there still
exists a considerable space to improve the CPUs’ energy efficiency.

4.3 Showcase II: Impact of multi-threading on
performance/power/energy

Multi-threading programming collaborated with multi-core pro-
cessing commonly decreases time consumption if the application
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Figure 2: Horizontal comparison of performance
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Figure 3: Horizontal comparison of energy consumption

exhibits high parallelism. Furthermore, we analyze the effects of par-
allelism on energy, power, and performance with different thread
settings of each CPU we test.

Figure 5 depicts the effects of both one-thread and four-thread
settings on the energy and performance of the Pi 3B+ model. Most
programs exhibit speedup of at least three times with the four-
thread setting, except for b f s and histo because b f s has only small
segments of code available for parallelism, whereas histo has an
excessive number of critical operations when updating the his-
togram. However, as Figure 5(b) shows, the power level of all the
programs can increase by only about 2 times when the thread num-
ber changes from one to four. Thus, to apply four-thread setting can
conserve up to 50% of energy consumptions for most benchmark
applications, which can be inferred from Figure 5(c). Table 5 lists
the mean GOPS/W of those two multi-threading settings. Applying
four threads further helps exploit 50% more OPS/W compared to
just one thread, which also meets our previous analysis.

Because Intel x86 CPUs have more physical cores and a higher
frequency than the Pi model, we adopt more thread settings in those

experiments. Figure 6 and 7 show the results for the i7-3820 and E5-
2630v3, respectively. For the Intel i7-3820 CPU equipped with four
cores, the time consumption of each program achieves a minimum
with either four threads or eight threads. When the thread number
increases to 16, performance decreases. This could be explained by
the fact that the i7-3820 has four physical cores and supports eight
hyperthreads. By contrast, the power level increases approximately
linearly when the thread number changes from one to eight but
remains almost the same when the thread number increases from
8 to 16, as illustrated in Figure 6(b). Analogous characteristics are
found for the E5-2630v3. Because it has 12 physical cores and sup-
ports two hyperthreads in each core, the 16-thread setting usually
achieves optimal performance in our benchmark suites while it has
also the highest power level. Similar to i7-3820 CPU, E5-2630v3
achieves best energy efficiency when the thread number is closer
to its physical number. Table 5 also suggests the fact that applying
the same number of threads as that of CPU physical cores helps
achieve the best OPS/W.
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Figure 4: Horizontal comparison of energy efficiency
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(a) Performance of Pi 3B+ model (normalized with
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(b) Active Power of Pi 3B+ model
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(c) Energy of Pi 3B+ model(normalized with omp=1)

Figure 5: Energy and performance characterization of Pi 3B+ model (normalized with omp=1)
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(a) Performance of i7-3820
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(b) Active Power of i7-3820

bf
s

cu
tc

p
Hi

st
o

Sg
em

m
sp

m
v

st
en

ci
l

m
ri-

q bp
Ho

ts
po

t
Pa

th
fin

de
r

Lu
d

nw
km

ea
ns

sr
ad nn cf
d10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

En
er

gy
 (J

)

1 4 8 16

(c) Energy of i7-3820

Figure 6: Energy and performance characterization of Intel i7-3820 CPU
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(a) Performance of E5-2630 v3
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(c) Energy of E5-2630 v3

Figure 7: Energy and performance characterization of Intel E5-2630v3x2 CPUs

Table 5: The energy efficiency of different processors with
different number of threads.

Processors #threads GOPS/W Time(s) Energy(J)
Pi 3B+ 1 0.06554 2.643 3.233

4 0.098 0.915 1.895
i7-3820 1 0.0462 0.1466 6.562

4 0.0606 0.069 5.006
8 0.0589 0.062 5.15
16 0.0417 0.085 7.27

E5-2630 v3 1 0.0386 0.144 7.852
4 0.0525 0.073 5.782
8 0.0567 0.054 5.348
16 0.0573 0.047 5.295

4.4 Showcase III: Impact of DVFS on energy
efficiency

Finally, we explore the impact of DVFS on the energy efficiency of
GPGPU applications. In this part of experiments, we take Nvidia
GTX980 and AMD RX480 as our testbeds. The default voltage and
frequency setting for GTX980 is 1130 mV core voltage, 1126 MHz
core frequency and 3500 MHz memory frequency, while RX480 has
1150 mV core voltage, 1340 MHz core frequency and 4000 MHz
memory frequency. Due to their different DVFS capability, we use
GTX980 to investigate the impact of frequency scaling, and RX480
for dynamic voltage and frequency scaling. Specifically, we fix the
core voltage of GTX980 to 0.85 V and adjust both the core and
memory frequency from 400 MHz to 1000 MHz with a stepsize
of 300 MHz, which in total produces nine frequency settings. For
RX480, we are able to adjust its voltage from 1000 mV to 1150 mV
and scale the core frequency to the highest stable one. We plot
the normalized ops per watt of each benchmark application under
those DVFS settings in Figure 8 and Figure 9 for GTX980 and RX480
respectively.

First, we explore how core and memory frequency scaling af-
fects the energy efficiency of GTX980. As Figure 8 illustrates, each
legend item represents the core and memory frequency setting (e.g.,

400MHz/700MHz indicates that the core frequency is 400 MHz and
the memory frequency is 700 MHz). The OPS/W values are normal-
ized with the value at the 1000MHz/1000MHz setting. The results
show that the optimal frequency setting varies from application to
application. Generally, the highest frequency in our experiments is
not necessarily the optimal choice for achieving the optimal energy
efficiency. Lower core and memory frequencies can save substantial
energy for applications that do not fully utilize GPU core resources,
such as b f s . For some applications that mainly execute memory
transactions, such as k −means , raising the memory frequency and
lowering the core frequency help improve electricity utilization.
However, some notable cases reveal irregular energy characteriza-
tion. Some applications, such as bp, histo, cutcp, achieve optimal
energy efficiency under immediate frequency settings. This may be
because when we increase the frequency to some extent, the perfor-
mance cannot be significantly improved, but power consumption
may be larger.

As for RX480, we show the experimental results in Figure 9
where different core voltages are being compared. In general RX480
can achieve better energy efficiency when reducing the core voltage
and scaling down the core frequency. We can infer the possible
reasons from Table 7. Notice that the average time consumption
has no obvious change when increasing core voltage and core
frequency. On contrast, the applications digest more energy since
the power with those aggressive settings is higher. Thus, scaling
down the core voltage and frequency helps promote the energy
efficiency when sacrificing very little performance. To summarize,
our benchmark suite can help explore various scaling behavior of
different voltage and frequency settings of GPUs among different
types of applications.

Table 6 and 7 summarize the energy efficiency under different
voltage and frequency settings of GTX980 and RX480 respectively.
Compared to 1.758 OPS/W of GTX980, scaling down the core and
memory frequency helps increase up to 55% OPS/W. Notice that
we lower down the core voltage from 1130 mV to 850 mV and core
frequency from 1126 MHz to 1000 MHz under 1000MHz/1000MHz
setting, which helps conserve power remarkably. As for RX480,
the lowest voltage and core frequency in our experimental settings
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outperform nearly 86% OPS/W than that of default setting, which
indicates great potentials of RX480 on energy conservation with
dynamic voltage and frequency scaling techniques.

Table 6: The energy efficiency of GTX980 with frequency
scaling.

Fcore (MHz) Fmem (MHz) GOPS/W Time(ms) Energy(J)

400 400 2.087 3.895 0.145
400 700 2.445 3.07 0.124
400 1000 2.574 2.813 0.118
700 400 2.273 3.326 0.134
700 700 2.818 2.457 0.108
700 1000 3.105 2.116 0.098
1000 400 2.215 2.977 0.137
1000 700 2.795 2.185 0.109
1000 1000 3.078 1.865 0.099

Table 7: The energy efficiency of RX480 with frequency scal-
ing.

Vcore (mV) Fcore (MHz) GOPS/W Time(ms) Energy(J)

1000 1160 2.131 2.322 0.1424
1040 1266 2.003 2.242 0.1515
1080 1300 1.892 2.201 0.1604
1120 1340 1.726 2.206 0.1759
1150 1390 1.531 2.404 0.1983

5 RELATEDWORK
Benchmarking has been playing a key role during the evolution
of computing technologies by allowing comparison among differ-
ent architecture designs and/or system implementations. LINPACK
benchmarks are designed to compare the execution rate of floating-
point operations by solving a dense system of linear equations,
which is popular in engineering applications and scientific comput-
ing [9]. Its parallel extension High Performance Linpack (HPL) has
also been used to generate the TOP500 list twice per year [11]. As
LINPACK and HPL focus on solving dense linear systems which is
very computing extensive, they may not reflect the performance of
many other real applications. To this end, High Performance Con-
jugate Gradient (HPCG) benchmark has been recently proposed to
include the memory subsystem and interconnect of the supercom-
puters into consideration [10]. All these three benchmarks use a
single number to represent the performance of a tested system.

In the industry, System Performance Evaluation Cooperative
(SPEC) has been developing a set of benchmarks to evaluate dif-
ferent computer systems. E.g., SPEC CPU2006 benchmark suite
includes a set of integer benchmarks and a set of floating-point
benchmarks to compare the performance of different processors.
The execution time of each benchmark program is first normalized
with a reference processor, and then the geometric mean of the nor-
malized execution time is reported as the single performance metric.

SPECpower_ssj2008 is designed to evaluate the power and perfor-
mance of server computers. It records the power consumption as
well as performance (in terms of workload operations per second)
of the tested server at different workloads, ranging from 0% to 100%
with a stepsize of 10%, and then reports a single performance metric
named overall ssj_ops per watt, which is calculated as dividing the
total workload operations over the total power consumption [30].

With the ever-growing popularity of hardware accelerators such
as GPUs, MICs, FPGAs, new benchmarks have been designed to
investigate the performance and power efficiency of such heteroge-
neous systems. Parboil is a set of benchmark applications which
support multiple types of processors and different programming
languages to stimulate high throughput computation [31]. Rodinia
benchmark suite is also developed for evaluating the performance
of heterogeneous computing [5].

Jared et al. explored energy, power and performance character-
izations of 34 selected GPGPU benchmark programs by varying
the GPU frequency and input data size [7]. They revealed some
relationships between those factors and energy efficiency. Joao
et al. illustrated that GPU DVFS can affect energy consumption
of different types of GPU applications [12]. Mishra did a litera-
ture survey and provide thorough analysis of various schemes on
DVFS techniques during last decade and concluded that DVFS
can work together with other energy conservation technique like
load balancing and task mapping where various hardware platform
and applications can have significant impact on performance and
power efficiency [23]. Mei et al. also investigated the impact of
GPU DVFS on energy saving by conducting real experiments on a
set of benchmark applications [21, 22]. They also developed a set
of microbenchmark programs to dissect the GPU memory hierar-
chy [19]. Bridges also launched an investigation about GPU power
and energy characterizations of the previous work and concluded
that performance counters have shown great statistical correlations
with GPU power and energy characterizations [3]. Furthermore,
modeling and simulation work based on data mining on counters
indicates the potential for optimization in programming and even
future hardware design. Burtscher pointed out some irregular be-
haviors when measuring power with the on-board power sensors
of the GPUs and proposed a methodology which can precisely
compute the power and energy with the sampling sensor data [4].

As for Intel Xeon Phi cards, such many-core systems have been
hailed as an important step towards greater energy efficiency. Differ-
ent applications will suffer from different performance degradation
when the voltage and frequency of the processor have changed.
Lorenzo [18] studied the power and energy usage of a series of
benchmarks on the Intel Xeon Phi for different threads settings.
Shao [29] proposed some models to improve energy efficiency at
core or instruction level. However, few codes are developed to meet
the scalability of thread number on the Xeon Phi. If scalability is
limited, using all the resources on the Xeon Phi seems to be not
rational for energy conservation. Bo [16] presented a detailed study
of the performance-energy tradeoffs of the Xeon Phi architecture
and supported the view that limited scalability might introduce
worse energy efficiency in some applications on the Xeon Phi.
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Figure 8: Impact of Nvidia GTX 980 core/memory frequency scaling on ops per watt of each benchmark program(normalized
with 1000MHz/1000MHz)
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6 CONCLUSIONS
In this paper, we have introduced a new benchmark suite EPPMiner
for evaluating and comparing the energy, power, and performance
of various heterogeneous systems, which includes a set of 16 pro-
grams that support OpenMP, CUDA, and OpenCL. It is designed
to help researchers conduct energy-related studies by recoding the
detailed time, power, and temperature information when possible.
To illustrate the effectiveness of EPPMiner, we have also presented
three showcases that cover a broad range of processors and accel-
erators. In the first showcase, we have compared a set of CPUs and
GPUs and shown that GPUs have a huge advantage over CPUs
in energy, performance, and energy-efficiency, despite their high
power consumption. In the second showcase, we have investigated
the impact of multi-threading on the energy efficiency of multi-core
CPUs. We have found that when all the CPU cores are being uti-
lized by multi-threading, the energy-efficiency can be improved in
general. In the last showcase, we have illustrated the effectiveness

of DVFS technique on improving the energy efficiency of GPGPU
applications. We have shown that DVFS can improve the energy
efficiency by 86% over the default setting on an AMD RX480.

The current prototype of EPPMiner can be further improved in
the following direction. First, we plan to optimize the CPU imple-
mentation by using Intel AVX instructions. Second, we plan to port
EPPMiner to Android system so that mobile equipment can also be
tested. Third, the current workload is designed for a single machine.
We plan to include the support of MPI such that EPPMiner can also
be used by computer clusters.
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