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ABSTRACT
With the increasing installation of Graphics Processing Units (GPUs)
in supercomputers and data centers, their huge electricity cost
brings new environmental and economic concerns. Although Dy-
namic Voltage and Frequency Scaling (DVFS) techniques have been
successfully applied on traditional CPUs to reserve energy, the
impact of GPU DVFS on application performance and power con-
sumption is not yet fully understood, mainly due to the complicated
GPU memory system. �is paper proposes a fast prediction model
based on Support Vector Regression (SVR), which can estimate the
average runtime power of a given GPU kernel using a set of pro�l-
ing parameters under di�erent GPU core and memory frequencies.
Our experimental data set includes 931 samples obtained from 19
GPU kernels running on a real GPU platform with the core and
memory frequencies ranging between 400MHz and 1000MHz. We
evaluate the accuracy of the SVR-based prediction model by ten-
fold cross validation. We achieve an average Mean Square Error
(MSE) of 0.797 Wa� and Mean Absolute Percentage Error (MAPE)
of 3.08%, which are much be�er than existing results. Combined
with an existing performance prediction model, we can �nd the
optimal GPU frequency se�ings that can save an average of 17%
energy across 12 GPU kernels.

1 INTRODUCTION
Over the past few decades the Graphics Processing Units (GPUs)
have been increasingly adopted to massive parallel computing
across a wide range of industrial and academic areas, including big
data analysis [7], bio-informatics [26], image recognition based on
deep neural network [10], etc. Apart from 4.36 TFLOPS of the peak
single-precision performance, modern GPUs also bring brilliant
advantages in performance-per-wa�. In the GREEN500 supercom-
puter list [8] of November 2016, 6 of the Top 10 are equipped with
GPUs. Especially the top 1 machine can provide up to 9 GFLOPS per
wa� with NVIDIA Tesla P100. However, to deal with huge amout of
data generated every day, to manufacture such systems could su�er
from high electricity cost. One example is the Google’s DeepMind
infrastructure [21], which is built with about 600 million dollars
but consumes 150 million dollars of electricity annually. �ese facts
reveal great emergency and potential of energy conservation of
GPUs with hunger of e�cient power management techniques.

Dynamic Voltage and Frequency Scaling (DVFS) [12] is a tradi-
tional and useful technique to save energy of modern computers.
It allows the processors to achieve be�er energy e�ciency with
proper voltage and frequency se�ings. Compared with relatively
mature CPU DVFS technology, GPU DVFS is still at an early stage.
Unfortunately, according to existing studies [1, 16, 24], CPU DVFS

technology can not be directly adopted to GPUs. �at might be
caused by the fact that modern GPUs have two main frequency
domains (core and memory frequencies), which makes it more
complicated. Besides, scaling up the frequency is proved be en-
ergy e�cient for CPUs but not always for GPUs. To achieve the
maximum energy conservation of one given GPU application with
DVFS, it is necessary to predict its energy consumption, which
requires precise power estimation under di�erent frequency set-
tings. Besides, such power estimation could also help solve energy
e�cient tasking scheduling problem on CPU-GPU grid which has
been discussed by [4, 15].

Several previous literatures [1, 16] have explored much of GPU
power characteristics with DVFS and reveal the fact that to achieve
the best energy e�ciency needs careful frequency determinations.
Usually neither the lowest nor the highest is the optimal solution. To
model those complex correlations, recent research papers [1, 6, 25]
a�empt to apply machine learning methods. From linear regression
to K-means clustering, they reveal the considerable potential to
precisely catch the statistical correlations between performance
metrics of the GPU applications and the �nal power consumptions.
However, there might exist one or more drawbacks of each work.
For example, some of them applied too few performance features
of the GPU kernels which may result in large bias from the ground
truth. Furthermore, some works adopted too simple pre-processing,
especially like normalization, to the performance features before
feeding them to the machine learning algorithm. Even few of them
considered the e�ects of core and memory frequency scaling on
the �nal power consumption.

To address those problems, this paper proposes a power esti-
mation model based on support vector regression machine (SVR)
which is applicable to real GPU hardware. With special treatments
to the features extracted by the pro�ling tool during kernel run-
time, we can utilize them as input of the SVR model to let it master
the e�ects on the power consumption caused by both core and
memory frequency scaling. Our experimental results show that our
power prediction model achieves 3.08% Mean Average Percentage
Error (MAPE) among 19 tested kernels when estimating the average
power consumptions of new frequency se�ings, which includes
totally 49 di�erent frequency se�ings with up to 2.5x scaling range.

�e rest of this paper is scheduled as follows. Section 2 summa-
rizes some related work about power characterization and model-
ing of GPUs. Section 3 gives the basic idea of DVFS as well as an
overview of power characteristics of GPU with frequency scaling.
Section 4 proposes our GPGPU power estimation model with SVR.
Model evaluation and experimental results are revealed in Section
5. Finally we conclude our work in Section 6.
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2 RELATEDWORK
In this section we review some previous work about GPU DVFS
characteristics and power modeling. As mentioned before, GPU
DVFS can be very di�erent from traditional CPU DVFS. Mei et
al. [16] conducted real hardware experiments on Fermi GTX560Ti
and Maxwell GTX980 and observed that the best energy e�cient
se�ing of core voltage and two frequency domains varies from
kernel to kernel. Even the default se�ing is usually not the best
choice, which may bring up to 34% potential energy wastes. Jared et
al. [9] explored energy, power and performance characterizations of
34 selected GPGPU benchmark programs by varying the frequency,
input data size and ECC switch and revealed some relationships
between average runtime power and those three factors, which
suggests the potential of energy conservation with proper se�ings.

As for power modeling work, Hong and Kim [11] estimated the
access rates of di�erent components on the GPU based on the dy-
namic number of instructions and the cycles of each instruction.
�ey then designed a suite of micro-benchmarks to search for sep-
arated power of those components. A�er that they could estimate
the runtime GPU power consumption of a new kernel. However,
today’s GPU architecture can be more complicated with new hard-
ware features and instructions, which gives much more challenges
of power modeling. Leng et al. packed Hong and Kim’s power mod-
elling to GPGPUSim, to form GPUWa�ch, which could estimate
the runtime GPU power with di�erent voltage/frequency se�ings
at cycle-level [13]. �e authors re�ned Hong and Kim’s model
with supplemental micro-benchmarks, to overcome the power un-
certainties brought by the new Fermi hardware. �e prediction
error was 15% for the micro-benchmarks, and 9.9% for the general
GPU kernels, on the Fermi GTX480 GPU. Although those papers
achieve good accuracy, they can not avoid trivial micro-benchmark
procedures for new hardware and long time simulations.

Recent years witness the popularity of statistical methods ap-
plying to GPU power modeling, which treats the GPU hardware
as a black box and predicts the power with some monitored run-
time signals. Abe et al. built regression models to estimate the
average power consumption of the NVIDIA Tesla, Fermi and Ke-
pler GPUs under di�erent levels of core and memory frequency
[1]. Particularly, they de�ned three core/memory frequency set-
tings as part of the model inputs. �ey also chose 10 most relative
performance counters who provided the best-��ing results. �e
average prediction errors range from 15% to 23.5% depending on
the kernel characteristics and the generations of GPU architecture.
Newer hardware had larger prediction error, which indicates that
simple linear regression is not su�cient to catch those correlations
between power and performance counters.

Song et. al [22] a�empted to use arti�cial neural network (ANN)
to model the non-linear relationship between runtime events and
runtime average power of a given GPU kernel. �ey use two di�er-
ent independent threads to collect performance events with CUPTI
API and power metrics with NVML API respectively. �en they
select a collection of most relevant events as input of ANN. �eir
model achieved average prediction error of 2.1%. Wu et al. ex-
tensively studied the GPU power and performance, with di�erent
se�ings of GPU frequency, memory bandwidth and core number
[25]. �ey adopted K-means clustering and ANN simultaneously.

In the ANN modeling process, they �rst used K-means to cluster
the kernels according to the similarity of scaling behaviors. �en
for each cluster, they trained an ANN with two hidden layers. �e
reported average power prediction error over all frequency/unit
con�gurations was 10%.

3 BACKGROUND AND MOTIVATION
3.1 Dynamic Voltage and Frequency Scaling
Asmentioned before, DVFS is one of the most important techniques
for energy conservations of not only traditional CPUs but also GPUs.
�e dynamic power is usually modeled by Equation (1), where
a denotes a utilization ratio, C denotes the capacity, V denotes
the chip supply voltage and f denotes the frequency [12]. Since
the total energy consumption of one application is the product of
average runtime power and total execution time, power modeling
plays an important role in energy conservation with di�erent DVFS
se�ings.

Pdynamic = aCV 2 f (1)
Notice that the power has a linear correlation with the frequency.
Generally, it is true for traditional CPUs. However, some previous
GPU DVFS work indicates that GPUs have more complex power
scaling behaviors when adopting di�erent frequencies [16]. One
reason is that modern GPUs have two main frequency domains.
One is core frequency, which mainly controls the speed of stream
multiprocessors (SMs), while the other is memory frequency, which
a�ects the bandwidth of DRAM. Table 1 summarizes the dominating
frequency for di�erent types of memory. Note that only DRAM
works under memory frequency and L2 cache works under core
frequency though they both serve the global memory requests.

Table 1: Dominating Frequency for di�erent components.

Components Dominating Frequency

DRAM memory frequency
L2 Cache core frequency
Shared Memory core frequency
Texture Cache core frequency
Register core frequency
CUDA cores core frequency
Special Function Units core frequency

3.2 Power Characteristics of Frequency Scaling
Because di�erent applications can have diverse workloads on di�er-
ent units on the GPU, scaling both core and memory frequency may
result in completely disparate power scaling behaviors on them. In
this section, we demonstrate an example of Nvidia GTX 980 [17]
to illustrate the e�ects of di�erent frequency se�ings on its power
consumption.

We �rst �x the core frequency to 400 MHz and 1000 MHz respec-
tively and scale the memory frequency from 400 MHz to 1000 MHz
with a step size of 100 MHz. Figure 1(a) and 1(b) show the results
of six GPU kernels with those se�ings. �e power scaling behav-
iors could be either simple or complicated among di�erent GPU
kernels as well as di�erent frequency se�ings. For example, the
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Figure 1: Power scaling behavior under di�erent frequency
settings. �e upper two �gures show the normalized power
consumption of di�erent GPU kernels when increasing
memory frequency with �xed core frequency. �e below
two �gures show the normalized power consumption of dif-
ferent GPU kernels when increasing core frequency with
�xed memory frequency.

approximately linear correlations between power and frequency
can be observed from Figure 1(b) while there exist more complex
relationships than linearity in Figure 1(a). Furthermore, some ker-
nels have di�erent sensitivity to two frequency domains. �ese
phenomena happen to Matrix Multiplication with global memory
(MMG) and with shared memory (MMS). �eir power consump-
tions have very few changes when scaling up core frequency with
�xed 400 MHz memory frequency, which di�ers from the linear
increments in 1000 MHz memory frequency se�ing. �en we �x
the memory frequency to 400 MHz and 1000 MHz respectively and
scale the core frequency from 400 MHz to 1000 MHz. Figure 1(c)
and 1(d) show that MMG and MMS have linearly increasing power
consumptions with scaling up either core or memory frequency
this time. Other kernels also display di�erent scaling behaviors
from the core-frequency-�xed cases.

Notice that the power scaling behaviors are rather complex and
somehow non-linear with respect to not only frequency se�ings
but also GPU kernel characteristics. We would like to use statistical
methods to help estimate the power consumption under di�erent
frequency se�ings of the target GPU kernel.

4 POWER ESTIMATIONWITH CORE AND
MEMORY FREQUENCY SCALING

4.1 Feature Selection
�anks to the programmability provided by Compute Uni�ed De-
vice Architecture (CUDA), not only the so�ware developments be-
come simpler on modern NVIDIA GPUs, but also the performance

pro�ling becomes available in a convenient way. We adopt CUDA
version 8.0 in our work since it has good compatibility among a
wide range of GPU generations and also provides su�cient supports
for new features of recent GPU architectures. CUDA 8.0 provides
nvprof [19] which can capture more than 50 performance coun-
ters for analyzing kernel performance. We choose 13 major coun-
ters listed in Table 2 which signi�cantly a�ect the average power.
achieved occupancy and eligible warps per cycle indicate the utiliza-
tion of stream-multiprocessors on GPUs. dram read transactions
and dram write transactions mean the number of DRAM transac-
tions happened during kernel execution while l2 read transactions
and l2 write transactionsmean the number of L2 cache transactions.
Since shared memory is also widely used in GPU kernels for perfor-
mance optimization, we also include shared load transactions and
shared store transactions. branch e�ciency and cf executed re�ect
the divergence level of control �owwhile the rest three �oat count *
evaluate the workload of single/double precision �oating-point op-
erations.

However, it might cause large errors if such metrics data are
directly adopted to statistical methods. First, since most of the pro-
�ling metrics represent the total number of instructions or transac-
tions of the corresponding events, they could have extreme di�erent
magnitudes if the original GPU kernels have di�erent workloads.
Second, even for the same kernel, the distribution among di�erent
types of instructions can be considerably uneven. To be�er take
advantage of a data-driven model, we should conduct careful fea-
ture pre-processing according to not only the variable value itself
but also the characteristic of the feature.

4.2 Power measurement
To measure the power consumption of the tested GPU kernels, we
use the tool nvidia-smi [20], which is a command line utility based
on top of NVIDIA GPU driver API designed for the management
and monitoring of NVIDIA GPU devices. We choose the sampling
frequency at 1 read per second so that the impact of nvidia-smi on
the application performance is negligible. We also add ten seconds
of sampling before and a�er the kernel execution as safeguards. We
revise each tested application to let them run su�cient iterations
so that the GPUs are running for at least 10 minutes and generate
more than 600 power samples. It is also well-known that the GPU
temperature can also a�ect the runtime power consumption. Our
current work focuses on the e�ect of frequency scaling, hence we
control the GPU temperatures between 45 ◦C to 55 ◦C through
fan speed adjustment. To verify that our temperature range does
not bring obvious variance to the sampling results, we conduct
signi�cance test with t-distribution on the power samples of each
kernel and achieve 95% con�dence interval. �e result also suggests
the repeatability of our experiments. We will leave the investigation
of the impact of GPU temperature on power consumption as our
future work.

4.3 Power modeling with SVR
Some researchers established statistical models to estimate the GPU
runtime power consumption. �ose models include square linear
regression (SLR) [1], support vector regression with linear kernel
(SVR) [14], etc. Most of them a�empt to �t a linear relationship
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Table 2: Adopted CUDA performance counters

Metrics Description
achieved occupancy Ratio of the average active warps per active cycle to the maximum number of warps supported on a multiprocessor
eligible warps per cycle Average number of warps that are eligible to issue per active cycle
dram read transactions Device memory read transactions
dram write transactions Device memory write transactions
l2 read transactions Memory read transactions seen at L2 cache for all read requests
l2 write transactions Memory write transactions seen at L2 cache for all write requests
shared load transactions Number of shared memory load transactions
shared store transactions Number of shared memory store transactions
branch e�ciency Ratio of non-divergent branches to total branches expressed as percentage
cf executed Number of executed control-�ow instructions
�op count dp Number of double-precision �oating-point operations executed by non-predicated threads
�op count sp Number of single-precision �oating-point operations executed by non-predicated threads
�op count sp special Number of single-precision �oating-point special operations executed by non-predicated threads

tightly so that the model can explain the contribution of each in-
put variable. However, since the GPU architectures are becoming
more and more sophisticated, simple linear interpreters become
insu�cient to model the relationship between the extracted kernel
features and the power consumptions, which is also validated by
our motivation examples in Section 3.2.

Support Vector Regression (SVR) is a classical supervised learn-
ing algorithm for data regression. Mathematically, the basic idea
is to predict y given the input x with the function f in Eq. (2) by
solving the optimization problem in Eq. (3). < ω,x > represents
the kernel function used in the model, which helps map the original
input data to a higher dimension. �is is useful when exploiting the
non-linear correlation between the input variables and the output.
�us, we apply SVR in modeling the average GPU runtime power
consumptions. �e concrete algorithms can be found in [2].

f (x) =< ω,x > +b,ω ∈ Rd ,b ∈ R (2)

min
1
2
‖ ω ‖

s .t . ‖ y − (< ω,x > −b) ‖< ϵ (3)

• Pre-processing of the input features: Instead of di-
rectly using the pro�ling metrics as input data of the
SVR model, we conduct two special pre-processing on
them. First, since some performance counters represent the
number of di�erent types of operations and are typically
very large integers, we normalize this type of metrics, in-
cluding (a)dram read transactions, (b)l2 read transactions,
(c)shared load transactions, (d)dram write transactions,
(e)l2 write transactions, (f)shared store transactions,
(g)�op count dp, (h)�op count sp and (i)�op count sp special, by
dividing each dimension by the summation of them. Since our
objective is to predict the average runtime power consumption,
what we should concern is the relative workload information
of di�erent units on the GPU, which can be retained with that
normalization. Second, to introduce the e�ects of frequency
scaling, we multiply all the transaction and operation variables
by the ratio of the relative frequency domain to the baseline
frequency se�ing. For example, global memory speed is
in�uenced by the memory frequency while l2 cache and shared
memory speed is in�uenced by the core frequency. �e baseline
frequency se�ing is 400MHz core frequency and 400MHz
memory frequency.

• Model Selection: We have tried di�erent kernel functions in-
cluding linear kernel, gaussian kernel and polynomial kernel. We
also use grid search to �nd the optimal hyper-parameters of each
kernel, which is not listed here due to space limitation. Finally
we choose the polynomial kernel with degree three. We use lib-
SVM [3] as the implementation and set Epsilon, which is half the
width of epsilon insensitive bend, to be 0.1 and OutlierFraction,
which is the expected fraction of outliers, to be 0.2. To evaluate
the generalization capability of the model, we adopt ten-fold
cross validation.

5 PERFORMANCE EVALUATION
We apply the proposed power prediction model to 15 GPU kernels
from CUDA SDK 8.0 [18] and 4 from Rodinia [5], which are listed
in Table 3, to evaluate its accuracy. In the ten-fold cross validation,
the data set is separated evenly to ten subsets. For each subset, we
use mean squared error (MSE) to assess the model accuracy trained
by the other nine subsets. �e details of the hardware platform are
listed in Table 4.

5.1 Training and Evaluation Samples
We �rst run nvprof on all the tested GPU kernels under the con�g-
uration of 400MHz core frequency and 400MHz memory frequency
and collect all the required performance counters data. �en we
measure the power consumption of each kernel under both core and
memory frequency scaling from 400MHz to 1000MHz with a step
size of 100MHz so that all the power data of totally 49 frequency
se�ings are collected. Combined with the pro�ling data, we �nally
obtain 931 samples for SVR modeling.

We randomly select 40 frequency pairs and pick out the corre-
sponding samples to train the SVR model and record the model as
well as theMSEs of the cross validation and the mean absolute per-
centage error (MAPE) of the �nal model on the remaining testing
samples. We call it one training group and repeat it one hundred
times so that a total of one hundred training groups are obtained.

5.2 Experimental Results
We �rst analyze the distributions of pro�ling metrics among all the
tested kernels. As Fig. 2 demonstrates, our tested kernels have var-
ious partitions of di�erent types of pro�ling metrics, which some-
how makes it more convincing of the generalization of our SVR
model if the prediction accuracy is high. Unlike the performance
modeling, it seems that the relationship between these pro�ling
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Table 3: Tested Applications

abbr. Application Name Benchmark Suite
BP backprop Rodinia
BFS breath First Search Rodinia
BS BlackScholes CUDA SDK
CG conjugateGradient CUDA SDK
convSp convolutionSeparable CUDA SDK
convTx convolutionTexture CUDA SDK
FWT fastWalshTransform CUDA SDK
Hist histogram CUDA SDK
MMG matrixMul(Global) CUDA SDK
MMS matrixMul(Shared) CUDA SDK
MS merge sort CUDA SDK
NN k-Nearest Neighbors Rodinia
quasG �asi random Generator CUDA SDK
SP scalarProd CUDA SDK
SC scan CUDA SDK
SQ Sobol QRNG CUDA SDK
SN sortingNetworks CUDA SDK
TR transpose CUDA SDK
VA vector addition CUDA SDK

Table 4: Target GPU frequency con�gurations

Device GTX 980
Compute apability 5.2
SMs * cores per SM 16 * 128
Global Memory bus width 256-bit
Global Memory size 4GB
Core frequency scaling [400MHz, 1000MHz]
Memory scaling [400MHz, 1000MHz]
Scaling stride 100MHz
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Figure 2: Breakdown of pro�ling metrics

metrics and power consumption scaling is more complicated. For
example, MMS has larger partition of shared memory transactions
while the global memory transactions take majority of MMG. How-
ever, their power scaling behaviors seem to be close according to
Figure 1. �is phenomenon indicates the necessity of usingmachine
learning methods.

We present the results of all the training groups in Figure 3. �e
mean square error (MSE) of the leave-out validation subset of each
training group is used to evaluate the model accuracy and stability.
�e average MSE is 0.797 W with 5.5× 10−3 variance. �ese results
indicate the high accuracy and decent stability of our SVR model.
Based on them we can conduct further validation on the testing
samples.

We aggregate the absolute precision errors of the testing samples
of all the training groups in terms of frequency se�ings and use
a heatmap shown in Figure 4 to illustrate the results. Each entry
in Figure 4 is the average error of the certain frequency domain.
Notice that the upper le� triangle area has shallower gray scale
indicating higher error values show up in lower frequency domains
while the model performs be�er on the higher frequency domains
with less than 3% error on some particular frequency se�ings.
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Figure 5: Mean absolute percentage error average across all
available frequency pairs
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Figure 6: Energy Conservation achieved most by ground-
truth and modeling

We demonstrate the average MAPE of each GPU kernel in Fig-
ure 5. �e MAPE ranges from 1.5% to 5.7% across all the testing
frequency pairs of each kernel except �asiG. We �nally achieve
3.08% MAPE across all the testing samples, which indicates remark-
ably high accuracy of our SVR model.
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5.3 Energy Conservation
Combined with the performance model proposed by [23], we can
use our SVR-based power prediction model to �nd the optimal
frequency se�ing for a given kernel, which can achieve the best
energy e�ciency. We take the energy consumption under 1000
MHz for both core and memory frequency as the baseline. �en we
compare the best energy e�ciency achieved in measurements with
that predicted by our model. Figure 6 illustrates the results. First,
to conserve most energy, the highest frequency, which drives the
program run fastest in general, is rarely the best choice. Second,
except CG and MMG, the modeling results are basically similar to
the ground truth. With the prediction from our model, we �nally
achieve up to 45% energy saving and an average of 17% among 12
tested GPU kernels. Both the performance and power models only
need one-run pro�ling to extract the features of the GPU kernel
and an o�-line training, which makes it possible to determine the
best frequency se�ings for energy conservation in runtime.

6 CONCLUSION
In this paper, we derive an SVR-based prediction model to estimate
the average power consumptions of di�erent core and memory fre-
quency se�ings. Our approach provides not only good stability but
also decent accuracy. �e model takes the pro�ling data of a given
kernel as input to estimate the average power consumptions under
new frequency combinations which do not appear in the training
data. We show that our model can achieve 3.08% MAPE across up
to 2.5x both core and memory frequency scaling. Combined with
a proper performance model, we can easily determine the most
energy-e�cient frequency con�gurations for a give GPU kernel.
Our experimental results show that using GPU frequency scaling
alone can save an average of 17% energy consumption across 12
GPU kernels.

�ere exist several directions to further improve our prediction
model. First, we could further analyze the �nal SVR model to see
how the model performs on di�erent input performance features,
which can help us understand the contributions of each individ-
ual feature. Second, GPU temperature is also an important factor
a�ecting the runtime power. �ird, our current work focuses on
frequency scaling only. However to incorporate voltage scaling
into our model is also an important issue.
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