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Abstract—It has become a common practice to train large 

machine learning (ML) models across a cluster of computing 

nodes connected by RDMA-enabled networks. However, the 

communication overhead caused by parameter synchronization 

deteriorates the performance of such distributed ML (DML), 

especially in a large-scale setting. This paper tackles this issue by 

developing a traffic management scheme to support DML traffic, 

called TMDML (Traffic Management for DML), which needs 

only a minor modification to the existing RDMA congestion 

control scheme DCQCN. We assume that there is only one 

instance of DML workload running in a network. Existing 

literature has shown that Fat-Tree, a predominant topology in 

data center, poorly supports DML compared with BCube. With 

our proposed TMDML, training DML in Fat-Tree can achieve 

better performance than that in BCube. We first study the 

impact of multi-bottlenecks on DML via NS-3-based simulations. 

The results show that DCQCN is inefficient for DML traffic in 

the multi-bottlenecks scenario. To mitigate the impact of multi-

bottlenecks, we propose an optimization model to minimize the 

maximum flow completion time (FCT) while stabilizing the 

queues, and then apply the Lyapunov optimization technique to 

solve the problem. For all the practical purposes, we present two 

heuristic implementations of TMDML for different deployment 

requirements. We evaluate the performance of our proposals by 

simulation, comparing with DCQCN. We use All-Reduce 

parameter synchronization in Fat-Tree and BCube with traffic 

trace of modern deep neural network models, including AlexNet, 

ResNet50, and VGG-16. Our proposals can achieve up to 59% of 

the time reduction. 

Keywords—distributed machine learning (DML); multi-

bottlenecks; RDMA; transport protocol  

I. INTRODUCTION 

The training of machine learning (ML) model is time-
consuming due to its extensive data set and complicated model 
structure. Distributing the training task across a computer 
cluster can speed up the training. The distributed solution 
relieves the pressure of computing node; however, the 
communication traffic becomes a new bottleneck of distributed 
ML (DML). During each iteration of stochastic gradient 
descent (SGD) based training, each computing node calculates 
the gradients locally, then the local gradients are aggregated 
and updated according to the parameter synchronization 
scheme. This process of parameter synchronization deteriorates 
the performance by introducing a mass of communication. 

Recent works reveal that the communication overhead makes it 
challenging to achieve linear scale-up while training DML [1]. 
Therefore, reducing the communication overhead is vital to 
deploying efficient DML in the distributed environment. 

There are several current works proposed to mitigate the 
communication bottleneck in DML [2]–[12]. R2SP [2] adopts 
the round-robin scheme to minimize network contention under 
parameter server (PS); however, R2SP cannot be directly used 
in other parameter synchronization schemes without 
modification. Some works adopt the idea of overlapping the 
communication with computation [3], [5], [6]; moreover, MG-
WFBP [5] merges gradients from small layers into a large 
tensor to reduce the communication startup time while 
ByteScheduler [6] partitions and rearrange the transmission to 
obtain good performance in scheduling. Overlapping-based 
solution needs an elaborate control between computation and 
communication, making the implementation complicated. 
Another thread of research attempts to compress and/or 
quantize the gradients to reduce the volume of communication 
[7]–[10]. E.g., a recent global Top-k (gTop-k) mechanism [8] 
chooses the global k most significant gradients to control the 
overall communication complexity. These proposals may cause 
a loss of model accuracy under the same training budget. This 
paper provides a transport layer solution to reduce the 
communication overhead. Our proposed solution needs no 
modification to the existing DML models and algorithms and is 
orthogonal to the previous solutions. 

 Remote Direct Memory Access (RDMA) technique has 
been applied to improve the performance of DML. To support 
RDMA, the protocols such as RoCEv2 (RDMA over 
Converged Ethernet version 2) [13] and DCQCN (Data Center 
Quantized Congestion Notification) [14] are proposed. 
DCQCN improves throuhput and fairness of RoCEv2 traffic. 
In DCQCN, switch marks packet with Explicit Congestion 
Notification (ECN) based on the probability when the egress 
queue length exceeds a threshold. On the arrival of ECN-
marked packet, receiver sends a Congestion Notification 
Packet (CNP) to sender. Sender adjusts the transmission rate 
based on whether it has received a CNP or not. However,  
DCQCN cannot well support DML traffic in multi-bottlenecks 
scenario. Switch overwhelmed by multiple flows becomes a 
bottleneck. When a flow travels through several bottlenecks, its 
transmission rate is significantly reduced. Bulk Synchronous 



Parallel (BSP) is one of the commonly used synchronization 
mdoel where workers start the next iteration only when 
parameter servers finish updating all the parameters received 
from workers [15]. In BSP, the training process of DML can be 
stalled since the server has to wait for the parameters carried by 
the flow with long FCT. DCQCN tends to suppress the 
transmission rate of flow with several bottlenecks. Recent work 
also reports that compared with BCube, Fat-Tree fails to 
support DML traffic well because of the imbalanced load 
caused by uncertain hashing result of ECMP (Equal Cost 
Multi-Path) and PFC (Priority-based Flow Control) pause 
frames [16]. However, authors do not provide any solution for 
supporting DML traffic in [16]. There are state-of-the-art 
works about traffic management in the data center such as 
pFabric [17], and AuTO [18]. Those traditional TCP/IP-based 
transport protocols cannot meet the requirement of deploying 
DML in the distributed large-scale network due to the high 
CPU overhead. Other traffic control schemes for RDMA-
enabled DCNs such as Multipath-RDMA (MP-RDMA) and 
Improved RoCE NIC (IRN) are implemented based on FPGA 
(Field-Programmable Gate Array), which increase the 
hardaware cost and cannot be employed data center easily [19]. 

In this paper, we develop a traffic management scheme 
TMDML (Traffic Management for DML) to improve the 
performance of DML. We assume that there is only one DML 
training job in a network, and we leave the case where multiple 
DML workloads are training in a network in the futrue work. 
The contributions of our work are summarized as follows: 

1. We develop TMDML for data center networks in order 
to better support DML traffic. To the best of our knowledge, 
this work is the first attempt to improve the performance of 
DML through traffic management. 

2. We study the impact of multi-bottlenecks on DML 
training. We use NS-3-based simulator to model RoCEv2 NIC 
and simulate PS and All-Reduce parameter synchronization 
schemes in Fat-Tree with VGG-16 traffic. We conclude that 
DCQCN cannot handle DML traffic well in the multi-
bottlenecks scenario. 

3. We present an optimization model to minimize the 
worst-case FCT with the constraint of keeping the queue stable 
and solve it by Lyapunov optimization. For all the practical 
purposes, we propose a heuristic implementation of TMDML 
denoted by TMDML-NIC, where the main functionality of 
TMDML is implemented at NICs and only needs minor 
modifications to the existing protocol DCQCN. 

4. We study the performance of our proposal with All-
Reduce scheme in both Fat-Tree and BCube, and simulate the 
distributed training of three representative DML models: 
AlexNet, ResNet50, and VGG-16. The simulation results show 
that TMDML-NIC makes Fat-Tree more RDMA-friendly: 
training DML in Fat-Tree has less communication time than 
that in BCube, and TMDML-NIC can reduce up to 59% of the 
time in Fat-Tree compared with DCQCN.  

The rest of the paper is organized as follows. We study the 
impact of multi-bottlenecks on DML in Section II. Section III 
presents the design of TMDML. We present the performance 
evaluation in Section IV. Section V concludes this paper.  

II. THE IMPACT OF MULTI-BOTTLENECKS ON DML 

Considering the popularity of Fat-Tree topology in 
commercial data centers, we adopt Fat-Tree in our case study 
since it has been shown RDMA-inefficient [13], [16]. We 
consider a multi-bottlenecks scenario in Fig. 1. We simulate PS 
and All-Reduce in Fat-Tree. In PS, nodes are organized as 
parameter server node(s) and worker nodes. Workers train the 
model locally, and send the calculated gradients to the server 
that is responsible for aggregating the gradients from all 
workers and then updating the model parameters. The updated 
parameters will be pulled by workers. Servers can be the 
bottleneck due to the frequent communications, and All-
Reduce tackles this issue by leveraging direct communication 
between workers. Without central servers, nodes have to 
maintain partial global parameters. The synchronization in All-
Reduce consists of two stages: the scatter and gather. During 
the scatter stage, all the nodes send the corresponding gradients 
to each other, and then nodes aggregate the received gradients 
to update the parameters. In gather stage, each node sends the 
updated parameters to other nodes. The size of synchronized 
parameter is 527.8 MB, which is the size of VGG-16, a famous 
DNN model. The bandwidth of each link is 10Gbps. We 
simulate the gather stage in PS, i.e., each worker sends its 
parameter to PS, and the scatter stage in All-Reduce, where 
each node sends a partial set of parameters to each other. We 
present the throughput of Server 8 of All-Reduce in Fig. 2. 
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Fig. 1.  Fat-Tree (Server 8 is the parameter server under PS). 

Server 8 receives seven flows from other servers in both PS 
and All-Reduce scenarios. The transmission rate of each flow 
is almost the same in PS (see Fig. 2(a)); however, in All-
Reduce, each flow is allocated with different bandwidth (see 
Fig. 2(b)).  It can be observed that the flows from different 
pods (i.e., Server 1, 2, 3, and 4) are allocated with less 
bandwidth. We consider two flows, f1:Server 1 Server 8 and 
f2: Server 7 Server 8. By ECMP, flow  f1 takes the routing 
path 1-9-13-17-15-12-8, and f2 takes the routing path 7-12-8. 
In All-Reduce, f1 has lower transmission rate than f2 (see in 
Fig. 2(d)) while they have the same bandwidth in PS (see Fig. 
2(c)). To explain the rate deviation, we summarize the number 
of ECN generated by the switches and CNP received by each 
server in Table I and II, respectively.We also highlight the 
bottleneck switches of flow f1 in PS and All-Reduce in Fig. 2.  

DCQCN probabilistically marks the packet with ECN 
based on the egress queue length. In PS, workers send the local 
gradients to PS (i.e., Server 8). Then, all the flows are 
aggregated at Switch 12, and compete for the egress bandwidth, 
resulting in a substantial buildup of queue. Comparing with 
other switches, Switch 12 marks packet with ECN at higher 
probability (see Table I). Although Switch 9, 13, and 15 
generate a certain number of ECNs, they have a marginal 
contribution to the rate reduction: Server 8 generates almost the 



same number of CNPs for both f1 and f2 even though it will 
receive more ECNs for flow f1  than that for f2 (see Table II). 
We call Switch 12 the bottleneck switch. Both flow f1 and f2 
have only one bottleneck; thus, they have almost the same 
bandwidth allocation. The results in Table II also reveal that 
the path length has little impact on the bandwidth allocation in 
the multi-bottlenecks scenario. In All-Reduce, nodes have to 
communicate with each other simultaneously, and the 
competition for the egress bandwidth becomes much more 
intense. The packets are ECN-marked with higher probability 
(see Table I), and more switches become bottlenecks.  Flow f1 
encounters more bottlenecks, and it receives about twice as 
many CNPs as f2 from Server 8 (see Table II). Therefore, f1  
has a higher reduction in its rate. We call the flow with multi-
bottlenecks the slow flow.  

 
(a) PS, each individual flow          (b) All-Reduce, each individual flow 

 
(c) PS, flow f1 and f2                    (d) All-Reduce, flow f1 and f2 

Fig. 2. Throughput at Server 8. 

TABLE I.  THE NUMBER OF ECN GENERATED BY SWITCHES AT THE 

ROUTING PATH OF FLOW 1f . 

Switch 9 13 17 15 12 

PS 126 230 0 286 118058 

All-reduce 42348 49949 0 32726 38091 

TABLE II.  THE NUMBER OF RECEIVED CNP GENERATED BY SERVER 8 

FOR FLOW 1f . 

Server 1 2 3 4 5 6 7 

PS 12477 12525 12487 12489 12368 12410 12464 

All-reduce 1966 1931 2116 1991 1083 1103 1043 

DCQCN is unfair to the flow with multi-bottlenecks. The 
slow flow is allocated with less bandwidth, and its long FCT 
stalls the process of parameter synchronization. The impact of 
multi-bottlenecks on PS seems to be limited in our simulation; 
however, PS can suffer from the multi-bottlenecks in multi-
tasks scenarios. One of the keys to improving DML via 
communication is to make the slow flow faster at each iteration. 
Thus, we propose TMDML in order to reduce the difference in 
the completion time of flows. 

III. DESIGN OF TMDML 

We first present an optimization model for traffic management, 
then propose the heuristic implementation of TMDML.  

A. The Optimization Problem 

We can make the slow flow faster by allocating more 
bandwidth, i.e., the bandwidth allocated to each flow varies 

proportionally as its number of bottlenecks. Let ( )iM t  be the 

remaining data size of flow i F  at time t . Let ( )ir t  be the 

bandwidth allocated to flow i  at time t , in  denotes the 

number of bottlenecks on the path of flow i , ( )i  denotes the 

destination server of flow i , ( ) jj i
n

  denotes the total 

number of bottlenecks of flow j  that arrived at ( )i . We use 

the following function to evaluate the time it takes to 
accomplish the transmission of flow i :  


( )

( )
( ( )) ,

( )

i i
i

j i
j i

n M t
f r t

n r t
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 
  

We assume that the BSP synchronization model is adopted. 
BSP can guarantee the training accuracy, and it converges 
faster than SSP and ASP when training DNN model [1]. In 
BSP, the next iteration cannot be carried out until all the 
parameters are collected and updated. Therefore, an intuitive 
idea is to appropriately increase the transmission rate of the 
slow flow to make all the flows arrive at the same time. Our 
goal is to minimize the worst-case FCT, i.e., the completion 
time of the slowest flow. We formulate the traffic management 
problem as a min-max robust optimization constrained by link 
capacity while maintaining stable queues. The optimization 
problem is presented as following: 
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where lC  is the capacity of link l , ( )sQ t  is the queue length 

of switch s  at time t . 1ila   indicates that flow i  uses link l , 

and 0 otherwise. The first constraints are the link capacity 
constraint. The second constraint guarantees the stable queues. 

The third constraint is the non-negative constraint of ( )ir t .  

B. Solving Problem Using Lyapunov optimization 

By transforming the min-max robust optimization problem 
into the minimization problem, we rewrite (2) as follow: 
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We adopt the Lyapunov optimization to derive the solution 
since it is a powerful technique to maintain stability in an 

online manner. We define (0) 0,sQ s N   , and update the 

queue by ( )
( 1) max[ ( ) ( ) ,0]s s i si F s

Q t Q t r t 


    , where s  is 

the service rate of switch s , ( )F s  is the set of flows passing 

through switch s . The Lyapunov function is defined as  
1 2
2 1

( ( )) ( )
N

ss
L t Q t


 Q , which represents the congestion level. 

To keep the queue stable, we introduce ( ( ))t Q  as the 

Lyapunov drift: ( ( )) { ( ( 1)) ( ( )) | ( )}t L t L t t    Q Q Q Q . By the 

Lyapunov optimization, at each time slot, the objective is to 
minimize the supremum bound on drift-plus-penalty 

( ( ))t Q { | ( )}V t Q , where V  is the control parameter 



that affects the balance between penalty optimization and drift 
minimization. By the similar technique used in [20], [21], we 
find the upper bound of drift-plus-penalty 
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Problem (2) is now transformed to the following optimization 
problem at each time slot t  
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 By introducing the Lagrangian multiplier 1 , 2  and 3  

associated with the constraints, we can derive the Lagrangian 
duality problem of (5). Using the gradient descent method [22], 

we obtain the following updating rules for ( )ir t : 
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The following algorithm can solve the problem (5).  

Algorithm 1 The gradient-based algorithm. 

1: At the beginning of each time slot t , get the current 

queue backlog ( )sQ t  and other information 
s  at switch; 

2: Determine Lagrangian multiplier 1 , 2  and 3  to 

minimize the duality problem; 

3: Determine control decision ( )ir t ,   to minimize 

Lagrangian function; 

4: Update the queues ( 1)t Q  and the newly determined 

control decision. 

C. Heuristic Algorithm 

In the dynamic network environment, solving the global 
optimization problem can introduce high overhead and latency 
in both centralized and distributed manner. For all practical 
purposes, we design a heuristic implementations of TMDML 
(denoted by TMDML-NIC), where implements the main 
functionality of TMDML at NICs. TMDML-NIC is fully 
distributed and only need a little modification to the existing 
protocol. Recall the updating rule of rate in (6), the change of 

( )ir t  is mainly caused by the first two terms, i.e., ( )s
s S

Q t
  

and 
2

( )
( ) ( )i i i j

j i
n M t r t n

 . We develop the heuristics for rate 

control based on these two terms. Third term il
i K

a
  is the 

hop count of path that flow i  takes, and we have already 
shown in Section III that the path length has a marginal 
contribution to the change of rate. 

Rate decrement: The reduction in rate ( )ir t  is caused by 

the substantial backlog of queues ( )s
s S

Q t
 . Therefore, the 

ECN-based congestion control [23], which marks the packet 
with ECN based on the queue length at the switch, can be used 
to slow down the flow when congestion occurs. 

Rate increment: In 
2

( )
( ) ( )i i i j

j i
n M t r t n

 , the number of 

bottlenecks in  has a significant contribution to the rate 

increase. As we analyze in the last section, the flow with more 
bottlenecks is allocated with less bandwidth due to the massive 
CNPs it introduces. Therefore, an intuitive idea for our 
heuristic design is to reduce the number of CNP for those flows 
that have multi-bottlenecks.  

The TMDML-NIC algorithm has three components: (i) the 
sender server, or Reaction Point (RP); (ii) the switch, or 
Congestion Point (CP); and (iii) the receiver server, or the 
Notification Point (NP).  

CP Algorithm (Switch): The CP algorithm is similar to 
DCTCP and DCQCN: the switch marks a packet with ECN 
based on the probability [14], [24].  

NP Algorithm (Receiver): The receiver needs to maintain the 
progress of flow. We define the progress of a flow as the 
number of packets received for this flow. The global 
information of flow progress can help to achieve better 
performacne; however, maintaining global progress needs the 
central entity, and accessing such an entity can cause extra 
overhead. Therefore, in NP algorithm, each receiver maintain 
its own local progress. The NP algorithm follows the procedure 

in Fig. 3. Let .jpro i  be the progress of flow i arrives at 

receiver j , and we assume that packet P  belongs to flow i . 

Different from DCQCN, the CNP mechanism is triggered not 
only by the arrival of the ECN-marked packet but also when 

flow i does not fall behind the average progress .jpro avg . In 

this case, the slow flow will not become slower even if 

network congestion occurs. The average progress .jpro avg  is 

updated using a packet counter. The packet counter updates 

.jpro avg  for every B  packets. The selection of parameter 

B depends on the requirement of the accuracy and overhead. 
For example, using the large value of B can reduce computing 
overhead at NIC due to the infrequent update. We will study 
the impact of parameter B on the accuracy of average progress 
in our future work. 

Receive packet P

increase            by one

check CN tag Follow the CNP rule of DCQCN

Update average progress

Wait for packet

Yes

No

Yes

No

.jpro i

. .j jpro i pro avg

 

Fig. 3. Procedure of NP algorithm. 

RP Algorithm (Sender): As in DCQCN, the sender reduces 
the current rate upon the arrival of CNP and increases the 
sending rate using a timer and a byte counter. The detail about 
rate updating rules can be found in [14]. 

IV. PERFORMANCE EVALUATION 

A. Simulation Setup 

We choose two commonly used network topologies in data 
center networks: Fat-Tree and BCube. For Fat-Tree, we use an 
small-scale 8-server topology (as shown in Fig. 1) and a large-
scale 128-server topology. For BCube, we use a 9-server (see 



Fig. 4) and 121-server topology. We use All-Reduce for 
parameter synchronization because All-Reduce suffers severely 
from multi-bottlenecks. The bandwidth of each link is 10Gbps. 
We consider three famous DNN models: AlexNet, ResNet50, 
and VGG-16. The model details are shown in Table III. We 
train AlexNet and ResNet50 on a workstation equipped with 
one GPU (NVIDIA GeForce GTX 1080Ti, GPU memory 
11GB) and 32GB memory, while VGG-16 is trained on a 
server with one GPU (NVIDIA TitanXp, GPU memory 12GB) 
and 96GB memory. We use CIFAR-10 to train these three 
models in TensorFlow. The training converges if the loss value 
less than 0.5 in 10 consecutive iterations. Based on the total 
training time and number of iterations, we calculate the 
average time for each iteration and use the average iteration 
time as the computing time of each node at each iteration. 
Other traffic control schemes such as MP-RDMA and IRN are 
implemented based on FPGA, and they cannot be easily 
employed in DCNs. Since DCQCN is a practical solution to 
controlling traffic in RDMA-enabled DCNs, we compare our 
proposal with DCQCN for performance evaluation.  

1 2 3 4 5 6 7 8 9
10 11 12

13 14 15

 
Fig. 4.  BCube topology. 

TABLE III.  PARAMETER SIZE AND ITERATION TIME OF MODELS. 

 AlexNet ResNet50 VGG-16 

Parameter size 240 MB 97.7 MB 527.8 MB 

Iteration number 3804 9053 4132 

Total time 2148 s 7321 s 4678 s 

Average iteration time 0.565 s 0.809 s 1.132 s 

B. Simulation Result 

1) Comparison of Heuristic Algorithm and Numerical 

Results 
We study the gap between the heuristic algorithm and the 

gradient-based solution (Algorithm 1). We solve problem (5) in 
Matlab by the build-in function fmincon. We use the 8-
server Fat-Tree topology in this comparison. Fig. 5 presents the 
total throughput received at each server. It can be observed that 
both TMDML-NIC and the numerical result have a high 
utilization at the receivers’ link.  

TMDML DCQCN numerical   

 
Fig. 5.  Throughput Comparison with Numerical Results. 

2) Throughtput and Complete Time 
In this subsection, we compare TMDML-NIC with 

DCQCN in terms of total throughput and transmission 
completion time in both Fat-tree and BCube for three DNN 
models.  Due to the space limit, we here only present the total 
throughput results of VGG-16 in large scale 128-server Fat-

Tree and BCube. Fig. 6 shows the total throughput of each 
server. We simulate the data transmission in one iteration, 
consisting of the scatter and gather stage. In DCQCN, the 
imbalanced distribution of flows is caused by ECMP collisions. 
Multiple flows arriving at a switch compete with each other for 
egress bandwidth and suppress each other’s transmission. 
DCQCN slows down the flows that encounter multi-
bottlenecks, resulting in a long tail when others flows have 
completed their transmission (see Fig. 6 (a)). However, the 
next iteration cannot start until the server receives all the 
parameters. TMDML allocates the bandwidth to each flow 
based on the number of bottlenecks; thus it can achieve a 
balanced completion time among all the flows. Moreover, the 
fluctuations of the total throughput are limited within 8-10 
Gbps in TMDML, as shown in Fig. 6 (b). We compare the 
transmission completion time between DCQCN and TMDML 
with both small-scale and large-scale topology in Table IV. As 
shown in Table IV, TMDML can achieve a larger reduction of 
FCT when the number of servers increases, which means 
TMDML has better performance in a larger-scale network. 
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(a) VGG-16, DCQCN, 128-Fat-Tree      (b) VGG-16, TMDML, 128-Fat-Tree 

Fig. 6. Total throughput of each server in Fat-Tree. 
TABLE IV.  TRANSMISSION COMPLETION TIME OF DCQCN AND 

TMDML IN FAT-TREE. 

Model Topology DCQCN  TMDML Time reduction 

ResNet50 
8-Fat-Tree 206.04 ms 139.89 ms 32.10 % 

128-Fat-Tree 392.72 ms 160.32 ms 59.18 % 

AlexNet 
8-Fat-Tree 592.57 ms 349.69 ms 40.99 % 

128-Fat-Tree 934.16 ms 394.48 ms 57.77 % 

VGG-16 
8-Fat-Tree 1236.63 ms 769.01 ms 37.81 % 

128-Fat-Tree 1972.64 ms 907.92 ms 53.97 % 

Fig. 7 shows the total throughput of each server at one 
iteration while training VGG-16 in BCube. BCube can better 
fit the DML traffic as compared with Fat-Tree, which is 
consistent with the conclusion in [16]. In Fig. 7 (a), although 
BCube can achieve better load balance, there still exist some 
flows that have longer FCT. Due to the balanced completion 
time, TMDML can achieve up to 24% reduction of 
transmission completion time, as shown in Table V. Moreover, 
comparing Table V with IV, Fat-Tree has less transmission 
completion time, which means that TMDML can accelerate the 
training process of DML in Fat-Tree. 
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(a) VGG-16, DCQCN, 121-BCube     (b) VGG-16, TMDML, 121-BCube 

Fig. 7. Total throughput of each server in BCube. 



TABLE V.  TRANSMISSION COMPLETION TIME OF DCQCN AND 

TMDML IN BCUBE.  

Model Topology DCQCN  TMDML Time reduction 

ResNet50 
9-BCube 187.42 ms 162.68 ms 13.20 % 

121- BCube 197.28 ms 182.56 ms 7.46 % 

AlexNet 
9- BCube 467.43 ms 353.82 ms 24.30 % 

121-BCube 487.6 ms 460.4 ms 5.58 % 

VGG-16 
9- BCube 1063.69 ms 900.88 ms 15.31% 

121- BCube 1134.72 ms 1060.4 ms 6.55 % 

3) Mitigation of Multi-bottlenecks 
We then show the results of mitigating bottlenecks by 

TMDML in terms of ECN and CNP. Fig. 8 shows the number 
of ECN generated by each switch and CNP received for each 
flow. In Fig. 8 (a), TMDML reduces the number of ECN at 
each switch. The less ECNs implies a less occupied queue, 
indicating that TMDML can reach a lower congestion state. 
The receiver issues a CNP on the arrival of an ECN-marked 
packet if no CNP has been sent for this flow over a period of 
time. On receiving CNP, the sender server reduces the rate of 
the corresponding flow. In Fig. 8 (b), the flows with more 
CNPs are identified as the slow flows, and TMDML makes 
these flows faster by reducing the number of CNP. On the 
other hand, the fast flow will be dragged for the purposed of 
congestion control. 

TMDML

DCQCN

TMDML

DCQCN

 
(a) ECN, 128-Fat-Tree                       (b) CNP, 128-Fat-Tree 

Fig. 8. The number of ECN generated by switches. 

V. CONCLUSION & FUTURE WORK 
In this paper, we study the impact of multi-bottlenecks on 

DML via a packet-level simulation. Simulation results reveal 
that the exiting RDMA-based protocol (i.e., DCQCN) cannot 
perform well in terms of DML traffic in the multi-bottlenecks 
scenario. To mitigate the impact of multi-bottleneck, we 
propose a transport layer solution call TMDML. We present an 
optimization model with an objective function for minimizing 
the maximum FCT, constrained by the stability of queues. 
Based on the heuristics, we design two implementations of 
TMDML to solve the optimization problem. Simulation results 
show that our proposals can reduce up to 59% FCT in Fat-Tree 
and up to 24% in BCube. Moreover, with the proposed 
TMDML, DML can achieve better performance in Fat-Tree 
that BCube. The performance in Fat-Tree is significant since 
Fat-Tree (or Clos) is one of the most widely used topologies in 
today’s data center. In the future, we will first extend the 
current work to the scenario where multiple instances of DML 
are training with in a network. Then, we will present the detail 
of parameters tuning for TMDML. The parameter of packet 
counter B can affect the trade-off between accuracy and 
overhead; therefore, it needs to be tuned elaborately. 
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