

Traffic Management for Distributed Machine

Learning in RDMA-enabled Data Center Networks

Weihong Yang, Yang Qin*, and Zukai Jiang

Department of Computer Science,

Harbin Institute of Technology (Shenzhen),

Shenzhen, China

*corresponding author: csyqin@hit.edu.cn

Xiaowen Chu

Department of Computer Science,

Hong Kong Baptist University,

Kowloon Tong, Kowloon, Hong Kong, China

chxw@comp.hkbu.edu.hk.

Abstract—It has become a common practice to train large

machine learning (ML) models across a cluster of computing

nodes connected by RDMA-enabled networks. However, the

communication overhead caused by parameter synchronization

deteriorates the performance of such distributed ML (DML),

especially in a large-scale setting. This paper tackles this issue by

developing a traffic management scheme to support DML traffic,

called TMDML (Traffic Management for DML), which needs

only a minor modification to the existing RDMA congestion

control scheme DCQCN. We assume that there is only one

instance of DML workload running in a network. Existing

literature has shown that Fat-Tree, a predominant topology in

data center, poorly supports DML compared with BCube. With

our proposed TMDML, training DML in Fat-Tree can achieve

better performance than that in BCube. We first study the

impact of multi-bottlenecks on DML via NS-3-based simulations.

The results show that DCQCN is inefficient for DML traffic in

the multi-bottlenecks scenario. To mitigate the impact of multi-

bottlenecks, we propose an optimization model to minimize the

maximum flow completion time (FCT) while stabilizing the

queues, and then apply the Lyapunov optimization technique to

solve the problem. For all the practical purposes, we present two

heuristic implementations of TMDML for different deployment

requirements. We evaluate the performance of our proposals by

simulation, comparing with DCQCN. We use All-Reduce

parameter synchronization in Fat-Tree and BCube with traffic

trace of modern deep neural network models, including AlexNet,

ResNet50, and VGG-16. Our proposals can achieve up to 59% of

the time reduction.

Keywords—distributed machine learning (DML); multi-

bottlenecks; RDMA; transport protocol

I. INTRODUCTION

The training of machine learning (ML) model is time-
consuming due to its extensive data set and complicated model
structure. Distributing the training task across a computer
cluster can speed up the training. The distributed solution
relieves the pressure of computing node; however, the
communication traffic becomes a new bottleneck of distributed
ML (DML). During each iteration of stochastic gradient
descent (SGD) based training, each computing node calculates
the gradients locally, then the local gradients are aggregated
and updated according to the parameter synchronization
scheme. This process of parameter synchronization deteriorates
the performance by introducing a mass of communication.

Recent works reveal that the communication overhead makes it
challenging to achieve linear scale-up while training DML [1].
Therefore, reducing the communication overhead is vital to
deploying efficient DML in the distributed environment.

There are several current works proposed to mitigate the
communication bottleneck in DML [2]–[12]. R2SP [2] adopts
the round-robin scheme to minimize network contention under
parameter server (PS); however, R2SP cannot be directly used
in other parameter synchronization schemes without
modification. Some works adopt the idea of overlapping the
communication with computation [3], [5], [6]; moreover, MG-
WFBP [5] merges gradients from small layers into a large
tensor to reduce the communication startup time while
ByteScheduler [6] partitions and rearrange the transmission to
obtain good performance in scheduling. Overlapping-based
solution needs an elaborate control between computation and
communication, making the implementation complicated.
Another thread of research attempts to compress and/or
quantize the gradients to reduce the volume of communication
[7]–[10]. E.g., a recent global Top-k (gTop-k) mechanism [8]
chooses the global k most significant gradients to control the
overall communication complexity. These proposals may cause
a loss of model accuracy under the same training budget. This
paper provides a transport layer solution to reduce the
communication overhead. Our proposed solution needs no
modification to the existing DML models and algorithms and is
orthogonal to the previous solutions.

 Remote Direct Memory Access (RDMA) technique has
been applied to improve the performance of DML. To support
RDMA, the protocols such as RoCEv2 (RDMA over
Converged Ethernet version 2) [13] and DCQCN (Data Center
Quantized Congestion Notification) [14] are proposed.
DCQCN improves throuhput and fairness of RoCEv2 traffic.
In DCQCN, switch marks packet with Explicit Congestion
Notification (ECN) based on the probability when the egress
queue length exceeds a threshold. On the arrival of ECN-
marked packet, receiver sends a Congestion Notification
Packet (CNP) to sender. Sender adjusts the transmission rate
based on whether it has received a CNP or not. However,
DCQCN cannot well support DML traffic in multi-bottlenecks
scenario. Switch overwhelmed by multiple flows becomes a
bottleneck. When a flow travels through several bottlenecks, its
transmission rate is significantly reduced. Bulk Synchronous

Parallel (BSP) is one of the commonly used synchronization
mdoel where workers start the next iteration only when
parameter servers finish updating all the parameters received
from workers [15]. In BSP, the training process of DML can be
stalled since the server has to wait for the parameters carried by
the flow with long FCT. DCQCN tends to suppress the
transmission rate of flow with several bottlenecks. Recent work
also reports that compared with BCube, Fat-Tree fails to
support DML traffic well because of the imbalanced load
caused by uncertain hashing result of ECMP (Equal Cost
Multi-Path) and PFC (Priority-based Flow Control) pause
frames [16]. However, authors do not provide any solution for
supporting DML traffic in [16]. There are state-of-the-art
works about traffic management in the data center such as
pFabric [17], and AuTO [18]. Those traditional TCP/IP-based
transport protocols cannot meet the requirement of deploying
DML in the distributed large-scale network due to the high
CPU overhead. Other traffic control schemes for RDMA-
enabled DCNs such as Multipath-RDMA (MP-RDMA) and
Improved RoCE NIC (IRN) are implemented based on FPGA
(Field-Programmable Gate Array), which increase the
hardaware cost and cannot be employed data center easily [19].

In this paper, we develop a traffic management scheme
TMDML (Traffic Management for DML) to improve the
performance of DML. We assume that there is only one DML
training job in a network, and we leave the case where multiple
DML workloads are training in a network in the futrue work.
The contributions of our work are summarized as follows:

1. We develop TMDML for data center networks in order
to better support DML traffic. To the best of our knowledge,
this work is the first attempt to improve the performance of
DML through traffic management.

2. We study the impact of multi-bottlenecks on DML
training. We use NS-3-based simulator to model RoCEv2 NIC
and simulate PS and All-Reduce parameter synchronization
schemes in Fat-Tree with VGG-16 traffic. We conclude that
DCQCN cannot handle DML traffic well in the multi-
bottlenecks scenario.

3. We present an optimization model to minimize the
worst-case FCT with the constraint of keeping the queue stable
and solve it by Lyapunov optimization. For all the practical
purposes, we propose a heuristic implementation of TMDML
denoted by TMDML-NIC, where the main functionality of
TMDML is implemented at NICs and only needs minor
modifications to the existing protocol DCQCN.

4. We study the performance of our proposal with All-
Reduce scheme in both Fat-Tree and BCube, and simulate the
distributed training of three representative DML models:
AlexNet, ResNet50, and VGG-16. The simulation results show
that TMDML-NIC makes Fat-Tree more RDMA-friendly:
training DML in Fat-Tree has less communication time than
that in BCube, and TMDML-NIC can reduce up to 59% of the
time in Fat-Tree compared with DCQCN.

The rest of the paper is organized as follows. We study the
impact of multi-bottlenecks on DML in Section II. Section III
presents the design of TMDML. We present the performance
evaluation in Section IV. Section V concludes this paper.

II. THE IMPACT OF MULTI-BOTTLENECKS ON DML

Considering the popularity of Fat-Tree topology in
commercial data centers, we adopt Fat-Tree in our case study
since it has been shown RDMA-inefficient [13], [16]. We
consider a multi-bottlenecks scenario in Fig. 1. We simulate PS
and All-Reduce in Fat-Tree. In PS, nodes are organized as
parameter server node(s) and worker nodes. Workers train the
model locally, and send the calculated gradients to the server
that is responsible for aggregating the gradients from all
workers and then updating the model parameters. The updated
parameters will be pulled by workers. Servers can be the
bottleneck due to the frequent communications, and All-
Reduce tackles this issue by leveraging direct communication
between workers. Without central servers, nodes have to
maintain partial global parameters. The synchronization in All-
Reduce consists of two stages: the scatter and gather. During
the scatter stage, all the nodes send the corresponding gradients
to each other, and then nodes aggregate the received gradients
to update the parameters. In gather stage, each node sends the
updated parameters to other nodes. The size of synchronized
parameter is 527.8 MB, which is the size of VGG-16, a famous
DNN model. The bandwidth of each link is 10Gbps. We
simulate the gather stage in PS, i.e., each worker sends its
parameter to PS, and the scatter stage in All-Reduce, where
each node sends a partial set of parameters to each other. We
present the throughput of Server 8 of All-Reduce in Fig. 2.

1 2 3 4 5 6 7 8

10 11 129

13 14 15 16

17 18 PS

bottleneck

AllReduce

bottleneck

Fig. 1. Fat-Tree (Server 8 is the parameter server under PS).

Server 8 receives seven flows from other servers in both PS
and All-Reduce scenarios. The transmission rate of each flow
is almost the same in PS (see Fig. 2(a)); however, in All-
Reduce, each flow is allocated with different bandwidth (see
Fig. 2(b)). It can be observed that the flows from different
pods (i.e., Server 1, 2, 3, and 4) are allocated with less
bandwidth. We consider two flows, f1:Server 1 Server 8 and
f2: Server 7 Server 8. By ECMP, flow f1 takes the routing
path 1-9-13-17-15-12-8, and f2 takes the routing path 7-12-8.
In All-Reduce, f1 has lower transmission rate than f2 (see in
Fig. 2(d)) while they have the same bandwidth in PS (see Fig.
2(c)). To explain the rate deviation, we summarize the number
of ECN generated by the switches and CNP received by each
server in Table I and II, respectively.We also highlight the
bottleneck switches of flow f1 in PS and All-Reduce in Fig. 2.

DCQCN probabilistically marks the packet with ECN
based on the egress queue length. In PS, workers send the local
gradients to PS (i.e., Server 8). Then, all the flows are
aggregated at Switch 12, and compete for the egress bandwidth,
resulting in a substantial buildup of queue. Comparing with
other switches, Switch 12 marks packet with ECN at higher
probability (see Table I). Although Switch 9, 13, and 15
generate a certain number of ECNs, they have a marginal
contribution to the rate reduction: Server 8 generates almost the

same number of CNPs for both f1 and f2 even though it will
receive more ECNs for flow f1 than that for f2 (see Table II).
We call Switch 12 the bottleneck switch. Both flow f1 and f2
have only one bottleneck; thus, they have almost the same
bandwidth allocation. The results in Table II also reveal that
the path length has little impact on the bandwidth allocation in
the multi-bottlenecks scenario. In All-Reduce, nodes have to
communicate with each other simultaneously, and the
competition for the egress bandwidth becomes much more
intense. The packets are ECN-marked with higher probability
(see Table I), and more switches become bottlenecks. Flow f1
encounters more bottlenecks, and it receives about twice as
many CNPs as f2 from Server 8 (see Table II). Therefore, f1
has a higher reduction in its rate. We call the flow with multi-
bottlenecks the slow flow.

(a) PS, each individual flow (b) All-Reduce, each individual flow

(c) PS, flow f1 and f2 (d) All-Reduce, flow f1 and f2

Fig. 2. Throughput at Server 8.

TABLE I. THE NUMBER OF ECN GENERATED BY SWITCHES AT THE

ROUTING PATH OF FLOW 1f .

Switch 9 13 17 15 12

PS 126 230 0 286 118058

All-reduce 42348 49949 0 32726 38091

TABLE II. THE NUMBER OF RECEIVED CNP GENERATED BY SERVER 8

FOR FLOW 1f .

Server 1 2 3 4 5 6 7

PS 12477 12525 12487 12489 12368 12410 12464

All-reduce 1966 1931 2116 1991 1083 1103 1043

DCQCN is unfair to the flow with multi-bottlenecks. The
slow flow is allocated with less bandwidth, and its long FCT
stalls the process of parameter synchronization. The impact of
multi-bottlenecks on PS seems to be limited in our simulation;
however, PS can suffer from the multi-bottlenecks in multi-
tasks scenarios. One of the keys to improving DML via
communication is to make the slow flow faster at each iteration.
Thus, we propose TMDML in order to reduce the difference in
the completion time of flows.

III. DESIGN OF TMDML

We first present an optimization model for traffic management,
then propose the heuristic implementation of TMDML.

A. The Optimization Problem

We can make the slow flow faster by allocating more
bandwidth, i.e., the bandwidth allocated to each flow varies

proportionally as its number of bottlenecks. Let ()iM t be the

remaining data size of flow i F at time t . Let ()ir t be the

bandwidth allocated to flow i at time t , in denotes the

number of bottlenecks on the path of flow i , ()i denotes the

destination server of flow i , () jj i
n

 denotes the total

number of bottlenecks of flow j that arrived at ()i . We use

the following function to evaluate the time it takes to
accomplish the transmission of flow i :


()

()
(()) ,

()

i i
i

j i
j i

n M t
f r t

n r t


 
  

We assume that the BSP synchronization model is adopted.
BSP can guarantee the training accuracy, and it converges
faster than SSP and ASP when training DNN model [1]. In
BSP, the next iteration cannot be carried out until all the
parameters are collected and updated. Therefore, an intuitive
idea is to appropriately increase the transmission rate of the
slow flow to make all the flows arrive at the same time. Our
goal is to minimize the worst-case FCT, i.e., the completion
time of the slowest flow. We formulate the traffic management
problem as a min-max robust optimization constrained by link
capacity while maintaining stable queues. The optimization
problem is presented as following:

 1
11

0

min max (())

s.t. () ,

 lim {| () |} ,

 () 0,

i
i F

F

i il l
i

T

sT tT

i

f r t

r t a C l L

Q t s N

r t i F








  

    

  




 

where lC is the capacity of link l , ()sQ t is the queue length

of switch s at time t . 1ila  indicates that flow i uses link l ,

and 0 otherwise. The first constraints are the link capacity
constraint. The second constraint guarantees the stable queues.

The third constraint is the non-negative constraint of ()ir t .

B. Solving Problem Using Lyapunov optimization

By transforming the min-max robust optimization problem
into the minimization problem, we rewrite (2) as follow:

 1
11

0

min
s.t. (())

 () ,

 lim {| () |} ,

 () 0, .

i
F

i il li
T

sT tT

i

f r t

r t a C j L

Q t s N

r t i F











  

   

  




 

We adopt the Lyapunov optimization to derive the solution
since it is a powerful technique to maintain stability in an

online manner. We define (0) 0,sQ s N   , and update the

queue by ()
(1) max[() () ,0]s s i si F s

Q t Q t r t 


    , where s is

the service rate of switch s , ()F s is the set of flows passing

through switch s . The Lyapunov function is defined as
1 2
2 1

(()) ()
N

ss
L t Q t


 Q , which represents the congestion level.

To keep the queue stable, we introduce (())t Q as the

Lyapunov drift: (()) { ((1)) (()) | ()}t L t L t t    Q Q Q Q . By the

Lyapunov optimization, at each time slot, the objective is to
minimize the supremum bound on drift-plus-penalty

(())t Q { | ()}V t Q , where V is the control parameter

that affects the balance between penalty optimization and drift
minimization. By the similar technique used in [20], [21], we
find the upper bound of drift-plus-penalty


   

 

2 2 21

2 1

1 ()

() | () (())

| () () { () | ()}.

N

ss

N

s s is i F s

t V t F s C

V t Q t r t t

 

 



 

   

  



 

Q Q

Q Q
 

Problem (2) is now transformed to the following optimization
problem at each time slot t



 
1 ()

1

min ()

s.t. (())

 () ,

 () 0, .

N

s s is i F s

i
F

i il li

i

V Q t r t

f r t

r t a C l L

r t i F

 


 



  
 



  

  

 


 

 By introducing the Lagrangian multiplier 1 , 2 and 3

associated with the constraints, we can derive the Lagrangian
duality problem of (5). Using the gradient descent method [22],

we obtain the following updating rules for ()ir t :

1
2

1
()1

2 3

()
()

(())() ()

i i
s

s S
ji j ii i

il
i F

n M t
Q t

r t nr t r t

a


 




 










  
  

   
      






 

The following algorithm can solve the problem (5).

Algorithm 1 The gradient-based algorithm.

1: At the beginning of each time slot t , get the current

queue backlog ()sQ t and other information
s at switch;

2: Determine Lagrangian multiplier 1 , 2 and 3 to

minimize the duality problem;

3: Determine control decision ()ir t ,  to minimize

Lagrangian function;

4: Update the queues (1)t Q and the newly determined

control decision.

C. Heuristic Algorithm

In the dynamic network environment, solving the global
optimization problem can introduce high overhead and latency
in both centralized and distributed manner. For all practical
purposes, we design a heuristic implementations of TMDML
(denoted by TMDML-NIC), where implements the main
functionality of TMDML at NICs. TMDML-NIC is fully
distributed and only need a little modification to the existing
protocol. Recall the updating rule of rate in (6), the change of

()ir t is mainly caused by the first two terms, i.e., ()s
s S

Q t


and
2

()
() ()i i i j

j i
n M t r t n

 . We develop the heuristics for rate

control based on these two terms. Third term il
i K

a
 is the

hop count of path that flow i takes, and we have already
shown in Section III that the path length has a marginal
contribution to the change of rate.

Rate decrement: The reduction in rate ()ir t is caused by

the substantial backlog of queues ()s
s S

Q t
 . Therefore, the

ECN-based congestion control [23], which marks the packet
with ECN based on the queue length at the switch, can be used
to slow down the flow when congestion occurs.

Rate increment: In
2

()
() ()i i i j

j i
n M t r t n

 , the number of

bottlenecks in has a significant contribution to the rate

increase. As we analyze in the last section, the flow with more
bottlenecks is allocated with less bandwidth due to the massive
CNPs it introduces. Therefore, an intuitive idea for our
heuristic design is to reduce the number of CNP for those flows
that have multi-bottlenecks.

The TMDML-NIC algorithm has three components: (i) the
sender server, or Reaction Point (RP); (ii) the switch, or
Congestion Point (CP); and (iii) the receiver server, or the
Notification Point (NP).

CP Algorithm (Switch): The CP algorithm is similar to
DCTCP and DCQCN: the switch marks a packet with ECN
based on the probability [14], [24].

NP Algorithm (Receiver): The receiver needs to maintain the
progress of flow. We define the progress of a flow as the
number of packets received for this flow. The global
information of flow progress can help to achieve better
performacne; however, maintaining global progress needs the
central entity, and accessing such an entity can cause extra
overhead. Therefore, in NP algorithm, each receiver maintain
its own local progress. The NP algorithm follows the procedure

in Fig. 3. Let .jpro i be the progress of flow i arrives at

receiver j , and we assume that packet P belongs to flow i .

Different from DCQCN, the CNP mechanism is triggered not
only by the arrival of the ECN-marked packet but also when

flow i does not fall behind the average progress .jpro avg . In

this case, the slow flow will not become slower even if

network congestion occurs. The average progress .jpro avg is

updated using a packet counter. The packet counter updates

.jpro avg for every B packets. The selection of parameter

B depends on the requirement of the accuracy and overhead.
For example, using the large value of B can reduce computing
overhead at NIC due to the infrequent update. We will study
the impact of parameter B on the accuracy of average progress
in our future work.

Receive packet P

increase by one

check CN tag Follow the CNP rule of DCQCN

Update average progress

Wait for packet

Yes

No

Yes

No

.jpro i

. .j jpro i pro avg

Fig. 3. Procedure of NP algorithm.

RP Algorithm (Sender): As in DCQCN, the sender reduces
the current rate upon the arrival of CNP and increases the
sending rate using a timer and a byte counter. The detail about
rate updating rules can be found in [14].

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We choose two commonly used network topologies in data
center networks: Fat-Tree and BCube. For Fat-Tree, we use an
small-scale 8-server topology (as shown in Fig. 1) and a large-
scale 128-server topology. For BCube, we use a 9-server (see

Fig. 4) and 121-server topology. We use All-Reduce for
parameter synchronization because All-Reduce suffers severely
from multi-bottlenecks. The bandwidth of each link is 10Gbps.
We consider three famous DNN models: AlexNet, ResNet50,
and VGG-16. The model details are shown in Table III. We
train AlexNet and ResNet50 on a workstation equipped with
one GPU (NVIDIA GeForce GTX 1080Ti, GPU memory
11GB) and 32GB memory, while VGG-16 is trained on a
server with one GPU (NVIDIA TitanXp, GPU memory 12GB)
and 96GB memory. We use CIFAR-10 to train these three
models in TensorFlow. The training converges if the loss value
less than 0.5 in 10 consecutive iterations. Based on the total
training time and number of iterations, we calculate the
average time for each iteration and use the average iteration
time as the computing time of each node at each iteration.
Other traffic control schemes such as MP-RDMA and IRN are
implemented based on FPGA, and they cannot be easily
employed in DCNs. Since DCQCN is a practical solution to
controlling traffic in RDMA-enabled DCNs, we compare our
proposal with DCQCN for performance evaluation.

1 2 3 4 5 6 7 8 9
10 11 12

13 14 15

Fig. 4. BCube topology.

TABLE III. PARAMETER SIZE AND ITERATION TIME OF MODELS.

 AlexNet ResNet50 VGG-16

Parameter size 240 MB 97.7 MB 527.8 MB

Iteration number 3804 9053 4132

Total time 2148 s 7321 s 4678 s

Average iteration time 0.565 s 0.809 s 1.132 s

B. Simulation Result

1) Comparison of Heuristic Algorithm and Numerical

Results
We study the gap between the heuristic algorithm and the

gradient-based solution (Algorithm 1). We solve problem (5) in
Matlab by the build-in function fmincon. We use the 8-
server Fat-Tree topology in this comparison. Fig. 5 presents the
total throughput received at each server. It can be observed that
both TMDML-NIC and the numerical result have a high
utilization at the receivers’ link.

TMDML DCQCN numerical

Fig. 5. Throughput Comparison with Numerical Results.

2) Throughtput and Complete Time
In this subsection, we compare TMDML-NIC with

DCQCN in terms of total throughput and transmission
completion time in both Fat-tree and BCube for three DNN
models. Due to the space limit, we here only present the total
throughput results of VGG-16 in large scale 128-server Fat-

Tree and BCube. Fig. 6 shows the total throughput of each
server. We simulate the data transmission in one iteration,
consisting of the scatter and gather stage. In DCQCN, the
imbalanced distribution of flows is caused by ECMP collisions.
Multiple flows arriving at a switch compete with each other for
egress bandwidth and suppress each other’s transmission.
DCQCN slows down the flows that encounter multi-
bottlenecks, resulting in a long tail when others flows have
completed their transmission (see Fig. 6 (a)). However, the
next iteration cannot start until the server receives all the
parameters. TMDML allocates the bandwidth to each flow
based on the number of bottlenecks; thus it can achieve a
balanced completion time among all the flows. Moreover, the
fluctuations of the total throughput are limited within 8-10
Gbps in TMDML, as shown in Fig. 6 (b). We compare the
transmission completion time between DCQCN and TMDML
with both small-scale and large-scale topology in Table IV. As
shown in Table IV, TMDML can achieve a larger reduction of
FCT when the number of servers increases, which means
TMDML has better performance in a larger-scale network.

th
ro

u
g

h
p

u
t/

G
b

p
s

th
ro

u
g

h
p

u
t/

G
b

p
s

(a) VGG-16, DCQCN, 128-Fat-Tree (b) VGG-16, TMDML, 128-Fat-Tree

Fig. 6. Total throughput of each server in Fat-Tree.
TABLE IV. TRANSMISSION COMPLETION TIME OF DCQCN AND

TMDML IN FAT-TREE.

Model Topology DCQCN TMDML Time reduction

ResNet50
8-Fat-Tree 206.04 ms 139.89 ms 32.10 %

128-Fat-Tree 392.72 ms 160.32 ms 59.18 %

AlexNet
8-Fat-Tree 592.57 ms 349.69 ms 40.99 %

128-Fat-Tree 934.16 ms 394.48 ms 57.77 %

VGG-16
8-Fat-Tree 1236.63 ms 769.01 ms 37.81 %

128-Fat-Tree 1972.64 ms 907.92 ms 53.97 %

Fig. 7 shows the total throughput of each server at one
iteration while training VGG-16 in BCube. BCube can better
fit the DML traffic as compared with Fat-Tree, which is
consistent with the conclusion in [16]. In Fig. 7 (a), although
BCube can achieve better load balance, there still exist some
flows that have longer FCT. Due to the balanced completion
time, TMDML can achieve up to 24% reduction of
transmission completion time, as shown in Table V. Moreover,
comparing Table V with IV, Fat-Tree has less transmission
completion time, which means that TMDML can accelerate the
training process of DML in Fat-Tree.

th
ro

u
g

h
p

u
t/

G
b

p
s

th
ro

u
g

h
p

u
t/

G
b

p
s

(a) VGG-16, DCQCN, 121-BCube (b) VGG-16, TMDML, 121-BCube

Fig. 7. Total throughput of each server in BCube.

TABLE V. TRANSMISSION COMPLETION TIME OF DCQCN AND

TMDML IN BCUBE.

Model Topology DCQCN TMDML Time reduction

ResNet50
9-BCube 187.42 ms 162.68 ms 13.20 %

121- BCube 197.28 ms 182.56 ms 7.46 %

AlexNet
9- BCube 467.43 ms 353.82 ms 24.30 %

121-BCube 487.6 ms 460.4 ms 5.58 %

VGG-16
9- BCube 1063.69 ms 900.88 ms 15.31%

121- BCube 1134.72 ms 1060.4 ms 6.55 %

3) Mitigation of Multi-bottlenecks
We then show the results of mitigating bottlenecks by

TMDML in terms of ECN and CNP. Fig. 8 shows the number
of ECN generated by each switch and CNP received for each
flow. In Fig. 8 (a), TMDML reduces the number of ECN at
each switch. The less ECNs implies a less occupied queue,
indicating that TMDML can reach a lower congestion state.
The receiver issues a CNP on the arrival of an ECN-marked
packet if no CNP has been sent for this flow over a period of
time. On receiving CNP, the sender server reduces the rate of
the corresponding flow. In Fig. 8 (b), the flows with more
CNPs are identified as the slow flows, and TMDML makes
these flows faster by reducing the number of CNP. On the
other hand, the fast flow will be dragged for the purposed of
congestion control.

TMDML

DCQCN

TMDML

DCQCN

(a) ECN, 128-Fat-Tree (b) CNP, 128-Fat-Tree

Fig. 8. The number of ECN generated by switches.

V. CONCLUSION & FUTURE WORK
In this paper, we study the impact of multi-bottlenecks on

DML via a packet-level simulation. Simulation results reveal
that the exiting RDMA-based protocol (i.e., DCQCN) cannot
perform well in terms of DML traffic in the multi-bottlenecks
scenario. To mitigate the impact of multi-bottleneck, we
propose a transport layer solution call TMDML. We present an
optimization model with an objective function for minimizing
the maximum FCT, constrained by the stability of queues.
Based on the heuristics, we design two implementations of
TMDML to solve the optimization problem. Simulation results
show that our proposals can reduce up to 59% FCT in Fat-Tree
and up to 24% in BCube. Moreover, with the proposed
TMDML, DML can achieve better performance in Fat-Tree
that BCube. The performance in Fat-Tree is significant since
Fat-Tree (or Clos) is one of the most widely used topologies in
today’s data center. In the future, we will first extend the
current work to the scenario where multiple instances of DML
are training with in a network. Then, we will present the detail
of parameters tuning for TMDML. The parameter of packet
counter B can affect the trade-off between accuracy and
overhead; therefore, it needs to be tuned elaborately.

ACKNOWLEDGMENT
This work was supported by the Science and Technology

Fundament Research Fund of Shenzhen under grant
JCYJ20170307151807788.

REFERENCES

[1] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “GeePS:
Scalable Deep Learning on Distributed GPUs with a GPU-specialized
Parameter Server,” in EuroSys ’16, 2016, pp. 1–16.

[2] C. Chen, W. Wang, and B. Li, “Round-Robin Synchronization:
Mitigating Communication Bottlenecks in Parameter Servers,” in IEEE
INFOCOM 2019, Apr. 2019, pp. 532–540.

[3] H. Zhang et al., “Poseidon: An Efficient Communication Architecture
for Distributed Deep Learning on GPU Clusters,” in USENIX ATC,
2017, pp. 181–193.

[4] Q. Ho et al., “More Effective Distributed ML via a Stale Synchronous
Parallel Parameter Server,” in NeurIPS, 2013, pp. 1223–1231.

[5] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient Data Communication
for Distributed Synchronous SGD Algorithms,” in IEEE INFOCOM
2019, 2019, pp. 172–180.

[6] Y. Peng et al., “A generic communication scheduler for distributed
DNN training acceleration,” in SOSP ’19, 2019, pp. 16–29.

[7] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient
Compression: Reducing the Communication Bandwidth for Distributed
Training,” arXiv preprint arXiv:1712.01887v2, 2018.

[8] S. Shi et al., “A Distributed Synchronous SGD Algorithm with Global
Top-k Sparsification for Low Bandwidth Networks,” in IEEE ICDCS,
2019, pp. 2238–2247.

[9] W. Wen et al., “TernGrad: Ternary Gradients to Reduce
Communication in Distributed Deep Learning,” in NeurIPS, 2017, pp.
1509–1519.

[10] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-Efficient SGD via Gradient Quantization and
Encoding,” in NeurIPS, 2017, pp. 1709–1720.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[12] H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-Efficient
Cloud Resource Provisioning for Predictable Distributed Deep Neural
Network Training,” in ICPP, 2019, pp. 1–11.

[13] C. Guo et al., “RDMA over Commodity Ethernet at Scale,” in ACM
SIGCOMM, 2016, pp. 202–215.

[14] Y. Zhu et al., “Congestion Control for Large-Scale RDMA
Deployments,” in ACM SIGCOMM, 2015, pp. 523–536.

[15] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[16] S. Wang, D. Li, J. Geng, Y. Gu, and Y. Cheng, “Impact of Network
Topology on the Performance of DML: Theoretical Analysis and
Practical Factors,” in IEEE INFOCOM 2019, Apr. 2019, pp. 1729–1737.

[17] M. Alizadeh et al., “pFabric: minimal near-optimal datacenter
transport,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 435–446, 2013.

[18] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: scaling deep
reinforcement learning for datacenter-scale automatic traffic
optimization,” in Proceedings of ACM SIGCOMM, 2018, pp. 191–205.

[19] Z. Guo, S. Liu, and Z.-L. Zhang, “Traffic Control for RDMA-Enabled
Data Center Networks: A Survey,” IEEE Systems Journal, vol. 14, no. 1,
pp. 677–688, Mar. 2020.

[20] Z. Zhou, F. Liu, R. Zou, J. Liu, H. Xu, and H. Jin, “Carbon-Aware
Online Control of Geo-Distributed Cloud Services,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 9, pp. 2506–2519, Sep. 2016, doi:
10.1109/TPDS.2015.2504978.

[21] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. San Mateo, CA, USA: Morgan
Kaufmann, 2010.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[23] M. Alizadeh, A. Kabbani, B. Atikoglu, and B. Prabhakar, “Stability
Analysis of QCN: The Averaging Principle,” in Proceedings of the
ACM SIGMETRICS, 2011, pp. 49–60.

[24] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp.
397-413, 1993.

