
Exploiting Simultaneous Communications to
Accelerate Data Parallel Distributed Deep Learning

Shaohuai Shi†, Xiaowen Chu‡⇤, Bo Li†
†Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

‡Department of Computer Science, Hong Kong Baptist University
shaohuais@cse.ust.hk, chxw@comp.hkbu.edu.hk, bli@cse.ust.hk

Abstract—Synchronous stochastic gradient descent (S-SGD)
with data parallelism is widely used for training deep learning
(DL) models in distributed systems. A pipelined schedule of the
computing and communication tasks of a DL training job is
an effective scheme to hide some communication costs. In such
pipelined S-SGD, tensor fusion (i.e., merging some consecutive
layers’ gradients for a single communication) is a key ingredient
to improve communication efficiency. However, existing tensor
fusion techniques schedule the communication tasks sequentially,
which overlooks their independence nature. In this paper, we
expand the design space of scheduling by exploiting simultaneous
All-Reduce communications. Through theoretical analysis and
experiments, we show that simultaneous All-Reduce commu-
nications can effectively improve the communication efficiency
of small tensors. We formulate an optimization problem of
minimizing the training iteration time, in which both tensor
fusion and simultaneous communications are allowed. We develop
an efficient optimal scheduling solution and implement the
distributed training algorithm ASC-WFBP with Horovod and
PyTorch. We conduct real-world experiments on an 8-node GPU
cluster of 32 GPUs with 10Gbps Ethernet. Experimental results
on four modern DNNs show that ASC-WFBP can achieve about
1.09⇥�2.48⇥ speedup over the baseline without tensor fusion,
and 1.15⇥�1.35⇥ speedup over the state-of-the-art tensor fusion
solution.

Index Terms—Distributed Deep Learning; Communication-
Efficient; Simultaneous Communications

I. INTRODUCTION

Nowadays deep learning (DL) techniques are widely used
in numerous artificial intelligence applications including com-
puter vision, natural language processing, robotics, healthcare,
and many others. However, training a large deep neural
network (DNN) model with a large data set is very time-
consuming. To reduce the training time, the data parallel
synchronous stochastic gradient descent (S-SGD) and its vari-
ants are the main algorithms for training DNN models with
multiple processors [1]–[4]. In S-SGD, P processors keep
a consistent set of model parameters w

i

at any iteration i,
where processor p, p = 1, 2, ..., P , loads a local batch of data
Dp

i

and computes the gradients gp
i

with respect to the model
parameters. At the end of each iteration, the model parameters
are updated with the aggregation of the gradients 1

P

P
P

p=1 g
p

i

.
The gradient aggregation requires extensive data communica-
tions between the processors through All-Reduce operations,
or between the processors and parameter servers [5], which

*Corresponding author.

introduce extra time cost that may limit the system scalability.
E.g., according to the latest MLPerf benchmark1, the training
time of ResNet-50 [6] using one Nvidia DGX-A100 server is
39.78 minutes. By using 230 servers connected by 200Gbps IB
network, the training time is only reduced to 0.76 minutes (i.e.,
52⇥ speedup), resulting in poor system scalability of 22.6%.
Optimizing the communication performance is therefore of
critical importance in distributed DL.

There are various algorithmic optimizations to address the
communication challenge, such as stale synchronous parallel
SGD [7,8] and asynchronous parallel SGD [9,10] which relax
synchronization conditions, and communication compression
techniques like gradient quantization [11,12] and sparsification
[13]–[17] which reduce the communication traffic. However,
these methods could lead to slower convergence or accuracy
loss if the hyper-parameters were not well tuned [7,18]–[20].

On the other hand, pipelining the computing and communi-
cation tasks is a system-level optimization technique that has
no side-effect on the training convergence or model accuracy,
and hence is widely used in state-of-the-art distributed DL
frameworks such as TensorFlow, PyTorch, and BytePS2. For
example, the layered structure of many DNNs (such as Con-
volutional Neural Networks (CNNs) and transformer-based
models) enables the gradient computations to be overlapped
with the layer-wise gradient communications [21], which is
called wait-free backpropagation (WFBP) [22]. In practice,
many DNN layers are with a small number of parameters
(e.g., the convolutional layers in CNNs), whose gradient com-
munications suffer from low utilization of network bandwidth
due to the small transmission size [23]. Recently, tensor fusion
techniques have been proposed to merge some nearby gradient
tensors to improve the communication efficiency, and overlap
the communication tasks with either the backpropagation
computing tasks [2,3,16,24], or the feed-forward computing
tasks [4,25]–[27].

Although tensor fusion schemes can improve the commu-
nication efficiency to some extend, existing implementations
schedule the All-Reduce tasks sequentially and overlook their
independence nature [2]–[4]. To this end, we propose to use
simultaneous All-Reduce communications as an alternative to

1https://mlperf.org/training-results-0-7
2https://github.com/bytedance/byteps

tensor fusion3. Our experimental results verify that commu-
nicating multiple tensors simultaneously can achieve much
higher bandwidth utilization than communicating them se-
quentially. Therefore, we expand the scheduling design space
to three possible methods: naive WFBP, WFBP with tensor
fusion, and WFBP with simultaneous communications. To
determine the proper communication method for specific ten-
sors during the training process, we formulate an optimization
problem of scheduling the communication tasks, targeting at
minimizing the wall-clock training iteration time. The novelty
of the optimization problem is the relaxed constraint that en-
ables simultaneous All-Reduce communications. We develop
an effective optimal solution with polynomial time complexity,
based on which we implement an distributed training system
named WFBP with Adaptive Simultaneous Communications
(ASC-WFBP) atop the communication library Horovod [28].
Our contributions can be summarized as follows.

• We identify that sequentially scheduling the communi-
cation tasks in distributed DNN training is sub-optimal.
Through theoretical analysis and real-world experiments,
we show that simultaneous All-Reduce communications
can improve the utilization of network bandwidth.

• We expand the design space of scheduling by considering
both tensor fusion and simultaneous communications,
and define a new scheduling problem for distributed DNN
training. We develop an optimal solution with polynomial
time complexity.

• We conduct real-world experiments on an 8-node GPU
cluster with 32 Nvidia RTX2080Ti GPUs connected with
10Gbps Ethernet. Experimental results show that our
method achieves 15%�35% improvement over the state-
of-the-art tensor fusion solution.

The rest of the paper is organized as follows. We first
present some preliminaries related to the distributed training
of DNNs in Section II. We discuss the idea of simultane-
ous communications in Section III. Then we formulate the
scheduling problem in Section IV, followed with our proposed
optimal solution in Section V. The experimental studies are
demonstrated in Section VI. In Section VII, we introduce some
related work. We conclude this paper in Section VIII.

II. PRELIMINARIES

In this section, we present the preliminaries of mini-batch
SGD, S-SGD with WFBP, and S-SGD with tensor fusion
(e.g., MG-WFBP). For ease of presentation, we summarize
the frequently used notations in Table I.

A. Mini-batch SGD

With a single processor, mini-batch SGD is currently the
most popular training algorithm in DL, which iteratively
updates the model parameters with their first-order gradients
estimated from a batch of training data. Mini-batch SGD
contains several steps at each iteration with the current state

3In this paper, we mainly focus on the All-Reduce framework as it is
widely used in high-performance distributed training according to the MLPerf
submissions. It is possible to apply the idea to Parameter Server as well.

BL B2 B1 F1 F2 FL

CL

C2

C1

...

... ...

...

Computing task
(Backward)

Communication
task

Precedence
constraint

...

Computing task
(Forward)

(a) DAG of computing and communication tasks.

BLF1 F2 FL... BL-1 B1...

CL CL-1 ... C1

F1 ...

Time

()L
cW

(1)L
cW

�

(b) WFBP.

BLF1 F2 FL... BL-1 B1...

CL,L-1 ... C3,2,1

F1 ...

Time

(1)L
cW

�

(c) WFBP with Tensor Fusion: MG-WFBP.

BLF1 F2 FL... BL-1 B1...

CL-1

...

C1

F1 ...

Time

CL

(1)L
cW

�()L
cW

(d) WFBP with Simultaneous Communications.

Fig. 1: (a) The DAG of computing and communication tasks,
and (b-d) the timeline of S-SGD algorithms with different
schedules. (b) WFBP: Gradient communication of each layer
begins after that layer’s gradients are calculated and its previ-
ous layer’s communication is finished. (c) MG-WFBP: Nearby
gradients are merged in WFBP. (d) WFBP with two-way
simultaneous communications.

of model parameters w
i

. For the ith iteration, it first loads a
mini-batch of training samples X

i

. Second, it performs the
feed-forward computation from the first layer towards the
last layer to calculate the loss L(w

i

, X
i

). Third, it calculates
the gradients g

i

= rL(w
i

, X
i

) with respect to the model
parameters by the backpropagation algorithm (i.e., from the
last layer to the first layer). Finally, it updates the model
parameters using

w
i+1 = w

i

� ⌘rL(w
i

, X
i

), (1)

where ⌘ is the learning rate.

B. Synchronous SGD with WFBP

With multiple processors, Synchronous SGD (S-SGD) with
data parallelism is widely used to accelerate the training

TABLE I: Notations

Name Description
P The number of workers (or GPUs) in the cluster.
a Startup time of an All-Reduce operation.
b Transmission and aggregation time per byte of All-Reduce.
m(l) The gradient size in bytes of layer l.
L The number of learnable layers (or gradient tensors) of a DNN.
t
f

Feed-forward computation time in each iteration.
t
b

Backward computation time in each iteration.
t
(l)
b

Gradient calculation time of layer l in each iteration.
⌧
(l)
b

The timestamp when layer l begins to calculate gradients.
t
c

Gradient aggregation time in each iteration.
t
(l)
c

Gradient aggregation time of layer l in each iteration.
⌧
(l)
c

The timestamp when layer l begins to aggregate gradients.

process. S-SGD has the same convergence property with mini-
batch SGD, as it distributes the training data X

i

to P workers
with Xp

i

, where p = 1, 2, ..., P , and all workers keep the
consistent model parameters during the whole training process.
The update rule of S-SGD is

w
i+1 = w

i

� ⌘
1

P

PX

p=1

rL(w
i

, Xp

i

). (2)

The aggregation of distributed gradients introduces the com-
munication overhead which could limit the system scalability.
The training iteration time includes the feed-forward com-
putation time, backpropagation computation time, and the
communication time of gradient aggregation. These computing
and communication tasks can be modeled by a directed acyclic
graph (DAG) as shown in Fig. 1(a). By exploiting the layered
structure of many modern DNNs, the gradient communications
can be overlapped with gradient computations during back-
propagation (i.e., WFBP). In S-SGD with WFBP, once the
gradients of layer l have been calculated, the corresponding
tensor(s) can be immediately ready for communication through
an All-Reduce operation. At the same time, the gradient
computation of layer l � 1 can also be performed, since it is
independent of the communication of layer l’s gradients. As
shown in Fig. 1(b), the overlapping between communications
and computations can hide some communication cost and
reduce the overall iteration time.

C. S-SGD with Tensor Fusion

The layer-wise communications using All-Reduce may suf-
fer from the high-latency problem because a tensor will be
further split into multiple messages in the All-Reduce opera-
tion, which generally results in a very low network bandwidth
utilization [3,4]. Specifically, the time cost of an All-Reduce
operation for aggregating messages with size m (in bytes) can
be modeled as

t
AR

(m) = a+ b⇥m, (3)

where a is the startup overhead which is related to the link
communication latency, network topology, and All-Reduce al-
gorithm, and b is the transmission time per byte [3]. Therefore,

the overall communication time of an L-layer DNN with
WFBP is

tWFBP

c

=

LX

l=1

t
AR

(m(l)
) = aL+ b

LX

l=1

m(l), (4)

where m(l) is the gradient size of layer l. The gradients of
some consecutive layers can be merged as a large tensor to be
All-Reduced together, as shown in Fig. 1(c), which reduces the
number of startup overhead a. Since merging gradients should
wait for the completion of previous gradient computation, not
all layers need to be merged. According to [3], only the layers
that satisfy the condition

⌧
(l�l)
b

+ t
(l�1)
b

< ⌧ (l)
c

+ a, (5)

should be merged to reduce the iteration time. If layer l is
merged to layer l � 1, the saved time is

t
(l)
gain

= a�max{0, ⌧ (l�l)
b

+ t
(l�1)
b

� ⌧ (l)
c

}. (6)

Time

0 1 2 3 4 5 6 7 8

Communication cost

Communication contention penalty

Task 1 Task 2

Time

0 1 2 3 4 5 6 7 8

Task 2

Task 1

Time

0 1 2 3 4 5 6 7 8

Task 1

Task 2

(a) Sequentially perform two tasks.

(b) Full overlap of two tasks. (c) Partial overlap of two tasks.

Fig. 2: Three communication schedules for two communica-
tion tasks.

III. SIMULTANEOUS COMMUNICATIONS

The purpose of tensor fusion is to better utilize the network
bandwidth by reducing the impact of startup overhead. We
notice that an alternative to improving bandwidth utilization
is to simultaneously invoke multiple communication tasks
[29,30]. We use two-way simultaneous communications as an
example to illustrate the idea.

If there is only one All-Reduce operation with message size
m (as shown in Fig. 2(a)), the effective throughput is

T 1
AR

=

m

a+ bm
. (7)

Thus, sequentially performing two All-Reduce operations
takes the communication time of

t
a

= t
AR

(m) + t
AR

(m) = 2a+ 2bm. (8)

If we invoke two All-Reduce operations simultaneously (as
shown in Fig. 2(b)), each All-Reduce task can only use part of
the bandwidth. Assume the average transmission time per byte
is increased to �b, where � > 1 is used to model the contention
of simultaneous communications. Our extensive experiments
on ring-based All-Reduce show that 1 < � 2 for a large

spectrum of m in practice. Thus the overall throughput of two
simultaneous communications is

T 2
AR

=

2m

a+ �bm
. (9)

Obviously, we have

T 2
AR

> T 1
AR

, (10)

which indicates that the overall communication throughput
can be improved by simultaneous communications. The im-
provement comes from two factors: (1) the startup overhead is
reduced from 2a to a; (2) the bandwidth utilization is improved
by multiplexing multiple communications. Still, the communi-
cation time of each All-Reduce operation is increased. We call
the extra communication time for each All-Reduce operation
as penalty, i.e.,

t
(1,2)
penalty

= a+ �bm� (a+ bm) = (� � 1)bm. (11)

In practice, the two tensors may not arrive at the same time;
hence they are likely to be partially overlapped, as shown
in Fig. 2(c). So the duration of communication contention is
shorter than that of fully overlapped case, and the penalty is
also smaller. For example, in the case of Fig. 2(c), only half
of the message of Task 1 is overlapped with Task 2, so the
penalty is equal to (� � 1)bm/2.

Without loss of generality, assume that the tensor sizes of
Task 1 and Task 2 are m(1) and m(2) respectively, and the
arriving time of Task 2, denoted by ⌧

(2)
c

, is in the duration
of Task 1’s communication, i.e., ⌧ (1)

c

 ⌧
(2)
c

 ⌧
(1)
c

+ t
(1)
c

,
where ⌧

(1)
c

and t
(1)
c

are the beginning timestamp and the
communication time of Task 1 respectively. Then, we can
calculate the overlapped message size by

m = m(1) � (⌧
(2)
c

� ⌧
(1)
c

)m(1)

a+ bm(1)
. (12)

Thus, the penalty is

t
(1,2)
penalty

= (��1)bm = (��1)bm(1)
(1� ⌧

(2)
c

� ⌧
(1)
c

a+ bm(1)
). (13)

IV. PROBLEM FORMULATION

We demonstrate three possible schedules of two consecutive
layers in Fig. 3: WFBP, merging gradients (MG), and simul-
taneous communications (SC). We want to determine which
method can achieve the shortest completion time. Let ⇡

WFBP

,
⇡
MG

, and ⇡
SC

denote the completion time using WFBP, MG,
and SC respectively. We should also assume

⌧ (l)
c

+ t(l)
c

> ⌧
(l�1)
b

+ t
(l�1)
b

, (14)

because if the above inequality does not hold, the communi-
cation of layer l can be fully overlapped by the computation
of layer l � 1, which should be scheduled as WFBP and it is
obviously better than MG.

In WFBP (Fig. 3(a)), since there is at most one communi-
cation task being executed, the communication of layer l can

Time

()l
bt

(1)l
bt
�

()l
ct

(1)l
ct
�

()l
cW

(1)l
cW
�()l

bW
(1)l
cS
�

Computing task
(Backward)

Communication
task

Communication
contention penalty

(1)l
ct
�

(a) WFBP: Sequential communication

Time

()l
bt

(1)l
bt
�

(, 1)l l
ct

�

()l
cW

()l
bW

(1)l
cS
�

(1)l
ct
�

(b) MG-WFBP: Merging two layers.

Time

()l
bt

(1)l
bt
�

()l
ct

(1)l
ct
�

()l
cW

(1)l
cW
�()l

bW
(1)l
cS
�

(1)l
ct
�

(c) Simultaneous communications

Fig. 3: Three possible schedules for two consecutive layers,
where the second layers’ ready time is behind the first layer’s.

begin only after the completion of both gradient computation
of layer l and communication of layer l + 1. Thus,

⇡
WFBP

= ⌧ (l�1)
c

+ t(l�1)
c

= ⌧ (l)
c

+ t(l)
c

+ t(l�1)
c

= ⌧ (l)
c

+ t
AR

(m(l)
) + t

AR

(m(l�1)
)

= ⌧ (l)
c

+ 2a+ b(m(l)
+m(l�1)

). (15)

In MG (Fig. 3(b)), we merge the two nearby gradients (layer
l and layer l�1) to a single tensor. The communication of this
merged tensor should be after the completion of the gradient
computation of layer l � 1. Thus,

⇡
MG

= max{⌧ (l)
c

, ⌧
(l�1)
b

+ t
(l�1)
b

}+ t(l,l�1)
c

= max{⌧ (l)
c

, ⌧
(l�1)
b

+ t
(l�1)
b

}+ t
AR

(m(l)
+m(l�1)

)

= max{⌧ (l)
c

, ⌧
(l�1)
b

+ t
(l�1)
b

}+ a+ b(m(l)
+m(l�1)

).
(16)

In SC (Fig. 3(c)), the communication of layer l can be
immediately started after the gradients have been calculated,
which means that there are two simultaneous communications
during the communication period of layer l. Thus, we have

⇡
SC

=max{⌧ (l)
b

+ t
(l)
b

+ t(l)
c

+ t
(l+1,l)
penalty

, ⌧
(l�1)
b

+ t
(l�1)
b

}
+ t(l�1)

c

, (17)

where t
(l+1,l)
penalty

can be derived by Eq. (13).
Through the above discussion, we can quantitatively com-

pare ⇡
WFBP

, ⇡
MG

, and ⇡
SC

to determine which one is the

best communication schedule for layer l. We first define the
following terminologies.

Definition 1. (Normal layer). If a layer l is originally sched-
uled with WFBP to communicate its gradients, then it is a
normal layer and its gradients are communicated only after
the completion of the backward computation of layer l and the
completion of the communication of layer l + 1.

Definition 2. (Merged-gradient layer [3,24]). A layer l is
called a merged-gradient (MG) layer if at the timestamp of
⌧
(l)
c

, the gradients of that layer are merged to layer l � 1 to
be communicated together.

Definition 3. (SC layer). A layer l is called a simultaneous-
communications (SC) layer if at the timestamp of ⌧

(l)
c

, the
communication task of layer l + 1 has not been completed,
and the gradient communication of layer l is immediately
executed without waiting for the completion of layer (l+1)’s
communication.

We use l
n

, l
m

, and l
s

to denote the type of normal, MG,
and SC layer respectively. Let the variable e(l) denote the
type of layer l. We have e(l) 2 {l

n

, l
m

, l
s

}. According to the
definitions, layer L should be a normal layer or an MG layer,
i.e., e(L) 2 {l

n

, l
m

}, and layer 1 should always be the SC
layer, i.e., e(1) = l

s

. For a given L-layer DNN, the problem
is how to determine each layer’s type so as to minimize
the iteration time. We use S to denote the set of possible
combinations of layer types:

S = {[e(l)]|e(l) 2 {l
n

, l
m

, l
s

} and 1 l L}. (18)

As we focus on analyzing the elapsed time of one iteration,
we can assume the beginning time of layer 1’s feed-forward
computation is zero, i.e., ⌧ (1)

f

= 0. Thus, we can formulate
the scheduling problem as follows:

For an L-layer DNN training job on P workers, determine
e(l) for each l such that the iteration time is minimal, i.e.,

minimize: ⌧ (1)
c

+ t(1)
c

, (19)

s.t. s := [e(l)] 2 S. (20)

V. OPTIMAL SOLUTION

In this section, we first analyze how to determine the layer
type to achieve performance gain (i.e., shorter time) under
different conditions. Then we develop a theorem to optimally
determine each layer’s type, followed with the distributed
training algorithm with an optimal schedule.

A. Theoretical Analysis

We first discuss under different conditions, which one is the
smallest among ⇡

WFBP

, ⇡
MG

, and ⇡
SC

.
As we discussed in Section IV, if Eq. (14) is true, then the

communication of layer l can be fully overlapped with the
computation of layer l�1, which means layer l�1 should be
a normal layer. Thus, we define a condition for setting layer
l to a normal layer:

Q1: ⌧ (l)
c

+ t(l)
c

 ⌧
(l�1)
b

+ t
(l�1)
b

. (21)

Formally,

Q1 =) min{⇡
WFBP

,⇡
MG

,⇡
SC

} = ⇡
WFBP

. (22)

Next, we should solve min{⇡
WFBP

,⇡
MG

,⇡
SC

} if Q1 is
false. We first prove that ⇡

SC

< ⇡
WFBP

if Q1 is false. As in
SC, there are some overlaps between the communication tasks
of layer l and layer l�1, which means the network throughput
in the overlapping part is larger than WFBP which executes
sequentially according to Eq. (10). In both SC and WFBP, the
communication traffic is the same, thus the higher throughput
should have a shorter time, which proves that ⇡

SC

< ⇡
WFBP

holds if Q1 is false. Formally,

¬Q1 =) min{⇡
WFBP

,⇡
SC

} = ⇡
SC

. (23)

We further solve min{⇡
MG

,⇡
SC

} when Q1 is false. We
use a conclusion from [3,24] which says that if and only if

Q2: ⌧
(l�1)
b

+ t
(l�1)
b

< ⌧ (l)
c

+ a (24)

is true, then ⇡
MG

< ⇡
WFBP

. Thus, we have

¬Q2 =) min{⇡
WFBP

,⇡
MG

} = ⇡
WFBP

, (25)

and

¬Q1 ^ ¬Q2 =) min{⇡
WFBP

,⇡
MG

,⇡
SC

} = ⇡
SC

. (26)

We decouple the two max functions in ⇡
SC

and ⇡
MG

. Firstly,
we use a new condition

Q3: ⌧ (l)
c

+ t
(l)
b

+ t(l)
c

+ t
(l+1,l)
penalty

< ⌧
(l�1)
b

+ t
(l�1)
b

(27)

to decompose the max function in ⇡
SC

. If Q3 is true, then
simultaneous communications of layer l and l+1 can be fully
hidden by the gradient computation of layer l � 1, which is
obviously better than MG. Thus, we have

¬Q1 ^ Q2 ^ Q3 =) min{⇡
WFBP

,⇡
MG

,⇡
SC

} = ⇡
SC

.
(28)

If Q3 is false, then

⇡
SC

= ⌧
(l)
b

+ t
(l)
b

+ t(l)
c

+ t
(l+1,l)
penalty

+ t(l�1)
c

. (29)

We further decompose ⇡
MG

by introducing a condition

Q4: ⌧ (l)
c

< ⌧
(l�1)
b

+ t
(l�1)
b

. (30)

If Q4 is true, then

⇡
MG

= max{⌧ (l)
c

, ⌧
(l�1)
b

+ t
(l�1)
b

}+ a+ b(m(l)
+m(l�1)

)

= ⌧
(l)
b

+ t
(l)
b

+ a+ b(m(l)
+m(l�1)

). (31)

Thus, we have

⇡
MG

� ⇡
SC

=⌧
(l)
b

+ t
(l)
b

+ a+ b(m(l)
+m(l�1)

)� (⌧
(l)
b

+

t
(l)
b

+ a+ bm(l)
+ t

(l+1,l)
penalty

+ a+ bm(l�1)
)

=� a� t
(l+1,l)
penalty

< 0, (32)

which means min{⇡
MG

,⇡
SC

} = ⇡
MG

. Therefore, we con-
clude that

¬Q1^Q2^¬Q3^Q4 =) min{⇡
MG

,⇡
SC

} = ⇡
MG

. (33)

On the other hand, if Q4 is false, it means that both layers
are ready for communications at the timestamp of ⌧ (l�1)

c

, then

⇡
MG

= ⌧ (l)
c

+ a+ b(m(l)
+m(l�1)

), (34)

which indicates that both messages have a network throughput
of

T
MG

=

m(l)
+m(l�1)

a+ b(m(l)
+m(l�1)

)

. (35)

However, SC has a partial overlap between layer l + 1 and
layer l, so the overall network throughput of simultaneous
communications T

SC

should be smaller than T
MG

. Therefore,
we have

¬Q1^Q2^¬Q3^¬Q4 =) min{⇡
MG

,⇡
SC

} = ⇡
MG

(36)

According to the above analysis, we conclude that the
assertions of (22)(26)(28)(33)(36) can achieve shorter time for
any layer l, which can be summarized as follows

Q1 =) e(l) = l
n

. (37)

¬Q1 ^ Q2 ^ ¬Q3 =) e(l) = l
m

. (38)

(¬Q1 ^ ¬Q2) _ (¬Q1 ^ Q2 ^ Q3) =) e(l) = l
s

. (39)

Note that assertion (38) can be derived by combining (33) and
(36). Now we can conclude the above results as the following
theorem.

Theorem 1. Given an L-layer DNN to be trained with
distributed SGD using the All-Reduce collective for commu-
nication on a P -worker cluster, we can set the type of layer
l (1 l L) according to the following equation to achieve
optimal overlapping between gradient communications and
backpropagation computations:

e(l) =

8
><

>:

l
n

, Q1 is true;
l
m

, ¬Q1 ^ Q2 ^ ¬Q3 is true;
l
s

, otherwise.
(40)

Proof. According to the analysis of any layer l under the
assertions of (37), (38), and (39), any violation of these
assertions would bring longer time of layer l’s communication,
and thus a longer iteration time. Therefore, by setting the layer
type by Eq. (40), any changes in the layer type cannot achieve
a shorter iteration time, which concludes the proof.

B. Algorithm

According to Theorem 1, we derive the algorithm to de-
termine the layer types for a given DNN assuming that the
computation time of each layer is known. In practice, we
can simply profile each layer’s computation time with several
iterations before the training process. The pseudo-code of the
algorithm is shown in Algorithm 1.

In Algorithm 1, the procedure CALCCOMMTIME (Lines 20-
36) is to calculate the layers’ communication time and their
beginning time for invoking the communication according to
their types. The algorithm first (Line 1) initializes the output
to the default type of normal layer, and then calculates the

Algorithm 1 DetermineLayerType
Input: a, b, �, L, t

b

= [1...L], m = [m

(1)
,m

(2)
, ...,m

(L)
].

Output: s
1: s[1...L] = l

n

; . Initialize as normal layers.
2: Initialize ⌧

b

; . Layer-wise computation beginning time.
3: ⌧

b

[L] = 0;
4: for l = L� 1 ! 2 do
5: ⌧

b

[l] = ⌧
b

[l + 1] + t
b

[l + 1];
6: t

c

, ⌧
c

= CALCCOMMTIME(t
b

, ⌧
b

, s,m, L);
7: for l = L ! 2 do
8: Q1 = ⌧c[l] + t

c

[l] ⌧
b

[l] + t
b

[l � 1];
9: if Q1 then s[l] = l

n

;
10: else
11: Q2 = ⌧

b

[l � 1] + t
b

[l � 1] < ⌧
c

[l] + a;
12: Q3 = ⌧c[l] + t

b

[l] + t
c

[l] + (� � 1)bm[l + 1](1 �
⌧c[l]�⌧c[l+1]
a+bm[l+1]) < ⌧

b

[l � 1] + t
b

[l � 1];
13: if Q2 ^ ¬Q3 then
14: s[l] = l

m

;
15: else
16: s[l] = l

s

;
17: t

c

, ⌧
c

= CALCCOMMTIME(t
b

, ⌧
b

, s,m, L);
18: s[1] = l

s

;
19: Return s;
20: procedure CALCCOMMTIME(t

b

, ⌧
b

, s,m, L)
21: Initialize t

c

; . Layer-wise communication time
22: Initialize ⌧

c

; . Layer-wise communication beginning time
23: for l = L ! 1 do
24: e = s[l];
25: if e == l

n

then . The normal layer
26: ⌧

c

[l] = ⌧
b

[l] + t
b

[l];
27: t

c

[l] = a+ b⇥m[l];
28: else if e == l

m

then . The MG layer
29: m[l � 1] = m[l � 1] +m[l];
30: m[l] = 0;
31: ⌧c[l � 1] = max{⌧

c

[l], ⌧
b

[l � 1] + t
b

[l � 1]};
32: t

c

[l � 1] = a+ b⇥m[l � 1];
33: else . The SC layer
34: ⌧

c

[l] = ⌧
b

[l] + t
b

[l];
35: t

c

[l] = a+bm[l]+(��1)bm[l+1](1� ⌧c[l]�⌧c[l+1]
a+bm[l+1]);

36: Return t
c

, ⌧
c

;

beginning time of backpropagation computation of each layer
(Lines 2-5). In Line 6, it calculates the layers’ communication
time and their beginning time according to their initialized
types. Lines 7-16 determine the layer types according to
Theorem 1. In Line 17, the layers’ communication time and
their beginning time should be refreshed after the layer type
has changed from the normal layer to the MG or SC layer.

Algorithm 1 has a time complexity of O(L2
). In the loop

of Line 7, each time of changing the layer type requires to
re-calculate the communication time with the procedure CAL-
CCOMMTIME which has another loop in Line 23. Therefore,
the total time complexity of the algorithm is O(L2

).
With the solution derived by Algorithm 1, we can use the

layer type during the training process to invoke the communi-
cation task at a proper time. The training algorithm with layer
types is shown in Algorithm 2 by using a similar framework
in [16]. During the asynchronous communication, there are
multiple communication streams that can be used to invoke
the All-Reduce operations simultaneously. The communication

is invoked according to the layer type as in Line 21, where
it indicates that the normal layer and the SC layer can be
immediately communicated with other workers, while the MG
layer should merge its gradients with the previous layer.

Algorithm 2 ASC-WFBP at worker p
Input: D = [{X1, y1}, ..., {Xn

, y
n

}], net
1: Initialize a shared and synchronized queue Q;
2: Get s by calling Algorithm 1.
3: ASYNCCOMMUNICATION(Q,m);
4: while not stop do
5: Sample a mini-batch of data from D;
6: ASYNCCOMPUTATION(data, net,Q, s);
7: WaitForLastCommunicationFinished();
8: net.W = net.W � ⌘ ·rnet.W ,
9: procedure ASYNCCOMPUTATION(data, net,Q, s)

10: o = d;
11: for l = 1 ! L do
12: o=FeedForward(l, o);
13: for l = L ! 1 do
14: BackwardPropagation(l);
15: Q.push(l);
16: procedure ASYNCCOMMUNICATION(Q, s)
17: Initialize gb; //gradient buffer
18: while isRunning do
19: l = Q.pop();
20: if s[l] == l

n

or s[l] == l

m

then
21: AsyncAllReduce(gb);
22: Clear gb;
23: else if s[l] == l

m

then
24: gb.push(l);
25: if l == 1 then
26: SynchronizeAllReduceOperations();
27: NotifyLastCommunicationFinished();

VI. EXPERIMENTAL STUDIES

In this section, we first evaluate the parameters of a and b in
Eq. (3) on our testbed. Then we measure the contention model
of two simultaneous communications to verify the overall
throughput of Eq. (9). After that we present the iteration time
of WFBP [22], MG-WFBP4 [3], and our new ASC-WFBP to
show the effectiveness of our solution. Finally, we discuss the
experimental results.

A. Experimental Settings

Cluster Configuration. Our testbed is a 8-node GPU
cluster, each of which installs 4 Nvidia RTX2080Ti GPUs
connected with PCIe3.0x16. Each node has a network interface
card of 10Gbps Ethernet (10GbE). The details of the node con-
figuration are shown in Table II. The common libraries related
to communication performance are OpenMPI-4.0.1, NCCL-
2.4.7, and Horovod-1.9.2. The DL framework is PyTorch-1.4.0
with cuDNN-7.6 and CUDA-10.1.

Benchmark DNN Models. We measure the performance
with four modern DNN models from two widely used appli-
cations: image classification with CNNs and natural language

4https://github.com/HKBU-HPML/MG-WFBP

TABLE II: The server configuration.

Name Model
CPU Dual Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
GPU Nvidia RTX2080Ti (@1.35GHz and 11GB Memory)
Memory 512GB DDR4
OS Ubuntu-16.04

processing with Transformer. For CNNs, we choose ResNet-
152 [6], DenseNet-201 [31] and Inception-v4 [32], and for
Transformer, we exploit BERT [33] with the relative small-
size model BERT-Base. The details of the models are shown
in Table III, where the batch size indicates the number of
samples used on each GPU at each iteration. The input size in
CNNs is the resolution of input images, while in Transformer
is the sequence length of input sentences.

TABLE III: DNN details for experiments.

Model # Parameters # Gradient Batch Input Size(million) Tensors Size
ResNet-152 ⇠ 60 467 32 3⇥ 224⇥ 224

DenseNet-201 ⇠ 20 604 32 3⇥ 224⇥ 224
Inception-v4 ⇠ 42 449 32 3⇥ 224⇥ 224
BERT-Base ⇠ 110 206 64 64

B. Communication Models

We estimate the cluster related parameters: a and b in Eq.
(3) using the benchmark tool of nccl-tests5 by measuring All-
Reduce on a range of message sizes in [8K, 4M]. The results
are shown in Fig. 4(a), which indicates that the measured time
cost of All-Reduce is almost linear to the message size as
the predicted model of Eq. (3), where a = 1.4 ⇥ 10

�3 and
b = 1.7⇥ 10

�9 on the 8-node GPU cluster.

(a) Elapsed time of All-Reduce. (b) Bandwidth of All-Reduce.

Fig. 4: Time cost of All-Reduce on the 8-node cluster.

For the communication contention, we measure the overall
throughput by invoking two communications simultaneously
compared to that of only one communication occupying the
link resource on the 8-node cluster. The results are shown in
Fig. 4(b). The link bandwidth is measured by iperf36 with the
parallel mode enabled. We can see that a single All-Reduce
operation has a very low bandwidth utilization, while two
simultaneous All-Reduce operations can significantly improve

5https://github.com/NVIDIA/nccl-tests
6https://iperf.fr/

the bandwidth utilization so that it can achieve nearly opti-
mal bandwidth when the message size is greater than 2MB.
According to the results in Fig. 4(b), the transmission speed
penalty term � ⇡ 1.5 in our cluster. We further compare the
measured All-Reduce time with the simple analytical model
for different message sizes in Fig. 5. In general, the communi-
cation performance model well matches the measured results
on our 8-node cluster.

Fig. 5: Measured and predicted communication contention.

C. Wall-clock Iteration Time

TABLE IV: Average iteration wall-clock time (in seconds) of
1,000 running iterations. S1 and S2 represent the speedup of
ASC-WFBP over WFBP and MG-WFBP, respectively.

Model WFBP MG-WFBP ASC-WFBP S1 S2

ResNet-152 0.956 0.710 0.524 1.82 1.35
DenseNet-201 0.778 0.375 0.314 2.48 1.20
Inception-v4 0.719 0.510 0.377 1.91 1.35
BERT-Base 1.010 1.062 0.924 1.09 1.15

The wall-clock iteration time is measured by 1, 000 iter-
ations with extra 100 warmup iterations for each algorithm.
Note that the scheduling algorithms have no side-effect on
the convergence speed of S-SGD in terms of the number
of iterations, so we focus on the wall-clock iteration time
comparison. The experimental results are shown in Table IV.
As expected, MG-WFBP is generally better than WFBP, while
our ASC-WFBP outperforms MG-WFBP in all evaluated
models. Overall, ASC-WFBP achieves 1.15� 1.35⇥ speedup
over MG-WFBP, and 1.09� 2.48⇥ speedup over WFBP.

D. Time Breakdown

To further understand the performance improvement, we
breakdown the iteration time into computation time and com-
munication time as shown in Fig. 6. Note that the communica-
tion time shown in Fig. 6 is the non-overlapped communica-
tion overhead, i.e., it excludes the time that has been hidden by
the computation tasks. We can observe that the communication
time occupies a large proportion of the iteration time due

Fig. 6: Breakdown of iteration time. The computation time
includes forward and backward computations. The communi-
cation time excludes the part hidden by computations.

to two main reasons: 1) the 10GbE interconnect is not fast
enough, and 2) the small GPU memory limits the batch size
and hence the communication-to-computation ratio is high.
In terms of the communication cost, MG-WFBP can achieve
more than 65% reduction over WFBP on CNNs, while our
proposed ASC-WFBP further achieves 22%� 74% reduction
over MG-WFBP. The experimental results show that even
though MG-WFBP generates a good tensor fusion solution
for merging nearby gradients, it still cannot fully utilize the
bandwidth resource to achieve efficient communications. Our
ASC-WFBP exploits the opportunity of simultaneous commu-
nications to further improve the link bandwidth utilization and
alleviate the waiting cost for some layers.

E. Discussion

In the above presented results, the overall end-to-end train-
ing time of ASC-WFBP is about 15%�35% better than MG-
WFBP, which is significant because the maximum speedup
achieved by scheduling is limited by the communication-to-
computation ratio of the target DNN model.

As we discussed in Section II-B, there are three major steps
in S-SGD: forward computation (t

f

), backward computation
(t
b

), and gradient communication (t
c

). Assume that the overall
gradient size of the DNN is m, the communication cost can not
be less than the communication time when the link bandwidth
is fully utilized. For the ring-based All-Reduce algorithm,
the minimal time of aggregating the gradients should be at
least tmin

c

= 2m/B [34], where B is the link bandwidth.
For any scheduling algorithms that pipeline the backward
computations and communications on a P -worker cluster, the
speedup of the overall throughput over the single worker is
limited by

Smax

=

P ⇥ (t
f

+ t
b

)

t
f

+ t
b

+ tmin

c

� thidden
, (41)

where thidden is the overlapped time between communications
and backward computations. In the optimal scenario, either
backward computations or communications are fully hidden,

so thidden = min{t
b

, tmin

c

}. Thus, the P -worker system can
achieve the following maximal speedup over a singe worker:

Smax

=

P ⇥ (t
f

+ t
b

)

t
f

+ t
b

+ tmin

c

�min{t
b

, tmin

c

} . (42)

Taking the ResNet-152 model as an example, which has about
60 million parameters (each gradient is represented by a 32-bit
floating point number), we can calculate tmin

c

on the 10GbE
connected cluster by

tmin

c

=

2⇥ 60⇥ 10

6 ⇥ 32

9.43⇥ 10

9
= 0.407second. (43)

The forward and backward computation time of ResNet-
152 with a mini-batch size of 32 on an Nvidia RTX2080Ti
GPU are about 0.091s and 0.182s respectively. Therefore, in
ResNet-152, we obtain Smax

= 17.5. The iteration time of
ASC-WFBP is 0.524s on the 32-GPU cluster, so the actual
speedup of throughput over single GPU is S = 32⇥ (0.091+
0.182)/0.524 = 16.7, which is very close to Smax. We
compare the real throughput speedup of ASC-WFBP and the
theoretical optimal speedup in Table V. On average, ASC-
WFBP achieves 87.7% of the theoretical optimal speedup.

TABLE V: Comparison between the real speedup (S) of
ASC-WFBP on the 32-GPU cluster over single GPU and the
theoretical maximal speedup (Smax).

ResNet-152 DenseNet-201 Inception-v4 BERT-Base
Smax 17.5 32.0 17.2 11.5
S 16.7 22.3 16.1 10.6

S/Smax 95.4% 69.7% 93.6% 92.2%

In particular, with BERT-Base, ASC-WFBP only achieves
15% improvement over MG-WFBP as shown in Table V,
while our algorithm scales out in good scalability that is
very close to the maximum scalability in the 32-GPU system.
However, with DenseNet-201, ASC-WFBP has only about
22⇥ speedup while the optimal speedup can be 32. This
is mainly because DenseNet-201 has the largest number of
tensors but the smallest number of parameters among the four
evaluated models, i.e., its average tensor size is the smallest.
Hence its bandwidth utilization is the lowest. The current
design of ASC-WFBP only considers two-way simultaneous
communications. Allowing more simultaneous communica-
tions makes the theoretical analysis more challenging, and we
leave it as our future work.

VII. RELATED WORK

There are extensive designs of communication-efficient
techniques for S-SGD based distributed DL. Due to limited
space, we only discuss two most relevant areas: 1) efficient
communication collectives, and 2) scheduling algorithms to
overlap communication tasks and computing tasks.

Efficient Collectives: The communication cost in S-SGD
is introduced by the gradient aggregation with an All-Reduce
collective or through parameter servers. Thus, the communi-
cation complexity of the All-Reduce algorithms directly de-
termines the communication cost. The ring-based All-Reduce

algorithm is successfully applied in dense-GPU clusters in DL
applications, and it is still widely used in highly optimized
libraries like NCCL and Horovod. There exist other highly
optimized All-Reduce algorithms [2,21,35]–[40] for different
systems. For example, Wang et al., [38] proposed the efficient
All-Reduce algorithms for Fat-tree and BCube topologies,
while Ying et al., [41] proposed a two rings algorithm on
the Torus topology. Some optimizations [42,43] target at the
Nvidia GPU systems equipped with NVLink connections,
while the PLink system in [44] targets at public cloud clusters.

Scheduling Algorithms: Due to the tensor-wise or layer-
wise structure of DNNs, computation and communication
tasks can be highly parallelized so that some communication
costs can be hidden by the computing cost. Thus, it requires
wise and dynamic scheduling algorithms to better overlap
these tasks during the training process. The classical wait-
free backpropagation (WFBP) algorithm [21,22] invokes the
gradient communication when the gradients are ready and the
communication link is free. By decoupling the communication
priority of gradient aggregation, one can make the commu-
nication tasks be overlapped with feed-forward computations
[4,25]–[27]. To reduce the impact of startup overhead of small-
message communications when parallelizing the layer-wise
communications and computations, tensor fusion techniques
have been proposed [2]–[4,16]. However, existing tensor fu-
sion solutions do not allow multiple communication tasks to
be executed simultaneously, which could not fully utilize the
available network bandwidth.

VIII. CONCLUSION

In synchronous SGD with data-parallelism, wait-free back-
propagation (WFBP) overlaps the layer-wise computation and
communication tasks, but it could suffer from the startup
problem of small tensors. Existing tensor fusion techniques
can merge multiple small tensors to better utilize the network
bandwidth. In this paper, we proposed to exploit simultaneous
All-Reduce communications to further improve communica-
tion efficiency. We built a simple communication model to
predict the time performance of simultaneous All-Reduce
communications and verified its accuracy through experiments.
We then formulated an optimization problem to determine
which strategy should be used for specific layers and devel-
oped an efficient optimal solution. We evaluated our prototype
system ASC-WFBP on our testbed of 32-GPU cluster using
four modern DNNs. The experimental results showed that
our system significantly outperforms existing WFBP and MG-
WFBP algorithms by adaptively selecting the best schedule of
communication tasks.

ACKNOWLEDGMENTS

The research was supported in part by Hong Kong
RGC GRF grants under the contracts HKBU 12200418 and
RMGS2019 1 23 from Hong Kong Research Matching Grant
Scheme. It was also supported in part by Hong Kong RGC
GRF grants under the contracts 16206417 and 16207818.

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[2] X. Jia, S. Song, S. Shi, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, and X. Chu, “Highly scalable
deep learning training system with mixed-precision: Training ImageNet
in four minutes,” in Proc. of Workshop on Systems for ML and Open
Source Software, collocated with NeurIPS 2018, 2018.

[3] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient data communication for
distributed synchronous SGD algorithms,” in Proc. of IEEE INFOCOM.
IEEE, 2019, pp. 172–180.

[4] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce scheduling
for expediting distributed DNN training,” in Proc. of IEEE INFOCOM.
IEEE, 2020, pp. 626–635.

[5] S. Shi, W. Qiang, and X. Chu, “Performance modeling and evaluation of
distributed deep learning frameworks on GPUs,” in Proc. of DataCom
2018. IEEE, 2018.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of CVPR, 2016, pp. 770–778.

[7] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ML via
a stale synchronous parallel parameter server,” in Advances in neural
information processing systems, 2013, pp. 1223–1231.

[8] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mitigating
communication bottlenecks in parameter servers,” in Proc. of IEEE
INFOCOM. IEEE, 2019, pp. 532–540.

[9] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural Informa-
tion Processing Systems, 2015, pp. 2737–2745.

[10] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization
from zeroth-order to first-order,” in Advances in Neural Information
Processing Systems, 2016, pp. 3054–3062.

[11] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, 2017, pp. 1709–
1720.

[12] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519.

[13] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems, 2018, pp. 1299–1309.

[14] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoefler,
“Sparcml: High-performance sparse communication for machine learn-
ing,” in Proc. of SC’19, 2019, pp. 1–15.

[15] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous SGD algorithm with global top-k sparsification
for low bandwidth networks,” in Proc. of the 39th IEEE ICDCS. IEEE,
2019, pp. 2238–2247.

[16] S. Shi, Q. Wang, X. Chu, B. Li, Y. Qin, R. Liu, and X. Zhao,
“Communication-efficient distributed deep learning with merged gra-
dient sparsification on GPUs,” in Proc. of IEEE INFOCOM. IEEE,
2020, pp. 406–415.

[17] C.-Y. Chen, J. Ni, S. Lu, X. Cui, P.-Y. Chen, X. Sun, N. Wang,
S. Venkataramani, V. V. Srinivasan, W. Zhang et al., “ScaleCom:
Scalable sparsified gradient compression for communication-efficient
distributed training,” Advances in Neural Information Processing Sys-
tems, vol. 33, 2020.

[18] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous stochastic gradient descent with delay compensation,” in
International Conference on Machine Learning, 2017, pp. 4120–4129.

[19] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes SignSGD and other gradient compression schemes,” in Interna-
tional Conference on Machine Learning, 2019, pp. 3252–3261.

[20] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed SGD with communication-efficient gradient sparsifica-
tion.” in Proc. of IJCAI, 2019, pp. 3411–3417.

[21] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-caffe:
Co-designing MPI runtimes and Caffe for scalable deep learning on
modern GPU clusters,” in Proc. of PPoPP, 2017, pp. 193–205.

[22] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication architec-
ture for distributed deep learning on GPU clusters,” in Proc. of USENIX
ATC 17, 2017, pp. 181–193.

[23] Y. You, A. Buluç, and J. Demmel, “Scaling deep learning on gpu and
knights landing clusters,” in Proc. of SC’17, 2017, pp. 1–12.

[24] S. Shi, X. Chu, and B. Li, “MG-WFBP: Merging gradients wisely for ef-
ficient communication in distributed deep learning,” IEEE Transactions
on Parallel and Distributed Systems, 2021.

[25] S. H. Hashemi, S. A. Jyothi, and R. Campbell, “TicTac: Accelerating
distributed deep learning with communication scheduling,” in Proc. of
MLSys 2019, 2019.

[26] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN training,” in
Proc. of MLSys 2019, 2019.

[27] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo,
“A generic communication scheduler for distributed DNN training
acceleration,” in Proc. of the 27th ACM SOSP, 2019, pp. 16–29.

[28] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[29] Z. Liu, K. Chen, H. Wu, S. Hu, Y.-C. Hut, Y. Wang, and G. Zhang,
“Enabling work-conserving bandwidth guarantees for multi-tenant data-
centers via dynamic tenant-queue binding,” in Proc. of IEEE INFOCOM.
IEEE, 2018, pp. 1–9.

[30] S. Shi, X. Zhou, S. Song, X. Wang, Z. Zhu, X. Huang, X. Jiang, F. Zhou,
Z. Guo, L. Xie et al., “Towards scalable distributed training of deep
learning on public cloud clusters,” preprint arXiv:2010.10458, 2020.

[31] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. of CVPR, 2017, pp. 4700–
4708.

[32] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. of the 31st AAAI, 2017.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
of ACL, 2019, pp. 4171–4186.

[34] R. Rabenseifner, “Optimization of collective reduction operations,” in
International Conference on Computational Science. Springer, 2004,
pp. 1–9.

[35] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms for full
bandwidth broadcast, reduction and scan,” Parallel Computing, vol. 35,
no. 12, pp. 581–594, 2009.

[36] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, “Efficient
large message broadcast using NCCL and CUDA-aware MPI for deep
learning,” in Proc. of the 23rd European MPI Users’ Group Meeting,
2016, pp. 15–22.

[37] H. Mikami, H. Suganuma, Y. Tanaka, Y. Kageyama et al., “Massively
distributed sgd: Imagenet/resnet-50 training in a flash,” arXiv preprint
arXiv:1811.05233, 2018.

[38] S. Wang, D. Li, J. Geng, Y. Gu, and Y. Cheng, “Impact of network
topology on the performance of DML: Theoretical analysis and practical
factors,” in Proc. of IEEE INFOCOM, 2019, pp. 1729–1737.

[39] M. Cho, U. Finkler, and D. Kung, “Blueconnect: Novel hierarchical all-
reduce on multi-tired network for deep learning,” in Proc. of MLSys
2019, 2019.

[40] S. Li, T. Ben-Nun, S. D. Girolamo, D. Alistarh, and T. Hoefler, “Taming
unbalanced training workloads in deep learning with partial collective
operations,” in Proc. of the 25th PPoPP, 2020, pp. 45–61.

[41] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image classifica-
tion at supercomputer scale,” in Proc. of Workshop on Systems for ML
and Open Source Software, collocated with NeurIPS 2018, 2018.

[42] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. Thelin, and
I. Stoica, “Blink: Fast and generic collectives for distributed ML,” in
Proc. of MLSys 2020, 2020, pp. 172–186.

[43] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni, and
D. K. Panda, “NV-group: link-efficient reduction for distributed deep
learning on modern dense GPU systems,” in Proc. of the 34th ACM
International Conference on Supercomputing, 2020, pp. 1–12.

[44] L. Luo, P. West, J. Nelson, A. Krishnamurthy, and L. Ceze, “PLink:
Discovering and exploiting locality for accelerated distributed training
on the public cloud,” in Proc. of MLSys 2020, 2020, pp. 82–97.

